значительному снижению длительной прочности вследствие преждевременного разрушения по границам зерен. Это явление, вызывающую твердометаллическую хрупкость, также обнаружено на целом ряде поликристаллических металлов [4].

Проведенные исследования позволяют сказать, что ниобиевая защитная пленка препятствует образованию на границах зерен молибдена карбидных и нитридных фаз, поверхность зерен имеет меньшее число дефектов.

Выводы

Методом газотранспортных реакций на лабораторной установке получены покрытия ниобия на молиб-

СПИСОК ЛИТЕРАТУРЫ

- Молибден в ядерной энергетике / Под ред. В.С. Емельянова, А.И. Евстюхина. – М.: Атомиздат, 1977. – 160 с.
- Андреев Г.Г., Гузеева Т.И., Макаров Ф.В., Иванов М.Б. Состояние поверхностных слоев молибденовых лодочек, используемых для восстановления диоксида урана // Известия вузов. Физика. – 2004. – Т. 47. – № 12. – С. 219–223.
- Куликов И.С. Термодинамика карбидов и нитридов. Челябинск: Металлургия, 1988. – 320 с.

дене при температурах: в зоне образования иодидов ниобия – 800 °С и в зоне осаждения ниобия – 1200 °С.

Электронно-микроскопическим анализом установлено, что толщина поверхностного слоя молибдена с большим количеством дефектов для чистого молибдена составляет 0,1 мм, а для молибдена с защитным покрытием из ниобия — 0,03 мм.

Рентгенофазовый анализ образцов молибдена после испытаний в промышленных условиях показал, что состав молибдена на внешней поверхности существенно отличается от объемного состава. Для внешней поверхности характерно наличие различных модификаций Mo₂C и Mo₂N, а в объеме образца молибдена эти фазы не были обнаружены.

- Колобов Ю.Р. Диффузионно-контролируемые процессы на границах зерен и пластичность металлических поликристаллов. – Новосибирск: Наука, 1998. – 184 с.
- Мальцев М.В. Металлография тугоплавких, редких и радиоактивных металлов и сплавов. – М.: Металлургия, 1971. – 488 с.

Поступила 07.12.2006 г.

УДК 66.011

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ АППАРАТА КОМБИНИРОВАННОГО ТИПА ДЛЯ УЛАВЛИВАНИЯ ЦЕННЫХ КОМПОНЕНТОВ ИЗ ХВОСТОВЫХ ТЕХНОЛОГИЧЕСКИХ ГАЗОВ ПРОИЗВОДСТВА ГЕКСАФТОРИДА УРАНА

В.Н. Береза, В.Ф. Дядик, С.А. Байдали

Томский политехнический университет E-mail: baidaly@phtd.tpu.ru

Представлена математическая модель аппарата улавливания ценных компонентов из хвостовых газов сублиматного производства, учитывающая гидродинамику, термодинамику и кинетику процесса взаимодействия твердой и газообразной фаз, реализованная в пакете MATLAB. Получены и проанализированы статические и динамические характеристики аппарата как объекта управления, необходимые для синтеза алгоритма управления.

Одним из направлений федеральной программы развития энергопромышленного комплекса России на 2007–2010 гг. и на перспективу до 2015 г. является ускоренное развитие ядерной энергетики страны (постановление Правительства РФ от 6 октября 2006 г. № 605). В связи с этим возникает задача повышения производительности и эффективности работы предприятий по производству ядерного топлива для АЭС и улучшения их показателей по безопасности и экологичности.

В настоящее время гексафторид урана (ГФУ) является одним из основных промежуточных продуктов в ядерном топливном цикле. Уникальные свойства ГФУ, единственного легколетучего газообразного соединения этого элемента, успешно применяются в газодиффузионных и центробежных процессах разделения изотопов урана с целью получения продукта, обогащенного изотопом U²³⁵.

В производстве ГФУ можно выделить три основных стадии:

- синтез ГФУ в пламенном реакторе фторирования;
- выделение твердого ГФУ в узле десублимации;
- улавливание фтора, фтористого водорода и ГФУ из хвостовых технологических газов в узле улавливания [1].

На отечественных сублиматных заводах успешно эксплуатируются и непрерывно совершенствуются автоматизированные системы управления технологическими процессами, в создании и модернизации которых принимает участие Томский политехнический университет. Одним из вариантов узла улавливания является аппарат улавливания комбинированного типа (АКТ), рис. 1. Способ улавливания, реализуемый в АКТ, назван создателями аппарата «комбинированным», т. к. он сочетает в себе основные признаки «кипящего» слоя с обычным стесненным падением частиц в восходящем газовом потоке [2]. Модернизация автоматизированной системы управления АКТ привела к необходимости усовершенствования алгоритма управления, что невозможно без создания его математической модели, описывающей как статические, так и динамические режимы.

Математическое моделирование АКТ проводилось на основе анализа кинетики процесса улавливания, гидродинамического и теплового режимов в аппарате с использованием современных вычислительных методов в следующей последовательности:

- Составление математического описания процесса в аппарате, учитывающего особенности химического превращения и тепловых процессов, гидродинамику потоков и структуру реакционного пространства [3, 4].
- Расчленение физико-химической системы на уровни, в каждом из которых закономерности протекания процесса инвариантны к масштабу, и исследование всей системы по частям путем последовательного перехода от низшего уровня к высшему [5].

Рис. 1. Схема аппарата АКТ

- Выделение существенных связей и параметров, установление допущений с целью упрощения разрабатываемой модели.
- Учет влияния пространственных и временных факторов, что требует построения в общем случае динамической модели с распределенными параметрами.

АКТ относится к классу контактных аппаратов с дисперсным потоком и имеет ряд особенностей конструктивного и технологического характера, которые необходимо учитывать при его моделировании для исследования статических и динамических свойств, а также для решения вопросов, напрямую связанных с автоматизированным управлением узлом улавливания сублиматного производства.

Гидродинамический режим в АКТ является сложным и характеризуется следующими особенностями:

- Малой объемной концентрацией твердых частиц в реакционном пространстве (β≤0,003), что позволяет отнести такую дисперсную систему к классу газовзвесей.
- Переменной скоростью газа по длине реторты, обусловленной улавливанием компонент из исходной газовой смеси и изменением её температуры.
- 3. Противотоком газовой и твердой фаз, что улучшает условия тепло- и массообмена, приводит к увеличению времени контакта для частиц твердого, обеспечивает более равномерное, по сравнению с прямотоком, распределение скоростей реакций и температуры по длине реактора и увеличивает степень заполнения объема реактора твердой фазой.
- Полидисперсностью сырья размер частиц колеблется в широких пределах, что приводит к различным скоростям псевдоожижения для частиц различного диаметра и разнонаправленности их движения. Этот факт также влияет на тепловой режим в реторте аппарата.

Процесс улавливания в АКТ описывается химическими реакциями [1]

 $U_{3}O_{8} + 8HF \longrightarrow 2UO_{2}F_{2} + UF_{4} + 4H_{2}O + \Delta H$ $U_{3}O_{8} + 3F_{2} \longrightarrow 3UO_{2}F_{2} + O_{2} + \Delta H$ $U_{3}O_{8} + 2UF_{6} \longrightarrow 4UO_{2}F_{2} + UF_{4} + \Delta H$

и характеризуется интенсивным выделением тепла; гидродинамический режим, сочетая в себе свойства кипящего и падающего слоя, обеспечивает хорошие условия межфазного теплообмена и теплообмена со стенкой реторты, поэтому при малом размере частиц твердого сырья тепловое равновесие между газом и твердым наступает практически мгновенно по сравнению со временем пребывания частиц в реакторе и скоростью химической реакции [6]. Всю систему в этом случае можно представить квазигомогенной средой с эффективными коэффициентами диффузии и теплопроводности. Температура по длине реактора имеет распределенный характер, при этом особенно необходимо учитывать ее динамику в области максимальных значений – «горячей зоне» реактора, обусловленную нестационарностью концентрации фтора в газе (5...40 об. %). Температура в этой зоне может быстро достигать критических значений, поэтому актуальной является задача ее предварительного исследования на этапе моделирования и определения способа поддержания заданного температурного режима аппарата комбинированного типа (AKT), предназначенного для промышленной эксплуатации.

Структурная схема АКТ как технологического объекта управления представлена на рис. 2. Выходными управляемыми переменными (y_i) являются степени улавливания ценных компонентов и содержание ионов фтора в полупродукте. Управляющими переменными (u_i) являются расход твердого сырья и расход хладагента. Возмущающими переменными (f_i) являются расход технологического газа, его температура, концентрация компонентов газа, поступающего на улавливание, а также гранулометрический состав твердого сырья. Режимные переменные: температура реакционного объема и степень его заполнения твердой фазой.

Рис. 2. Структурная схема АКТ как объекта управления

Исследование идеальных моделей [4]: идеального смешения и вытеснения выявило их недостатки и привело к необходимости учета противотока фаз, переноса тепла и распределения температуры, запаздываний в «прохождении» возмущений и различной параметрической чувствительности по длине АКТ. Поэтому для исследования технологического процесса в АКТ, расчета возможных стационарных и переходных режимов предложена квазигомогенная модель неполного смешения. Модель учитывает противоточный характер системы, охлаждение корпуса реактора, переменную по высоте реторты скорость газа, возможность изменений граничных и начальных условий, отражающих изменение реальных переменных объекта управления.

Система уравнений имеет вид:

$$\begin{vmatrix} -u \frac{\partial X_i}{\partial l} + W_i(X_i, T) = \varepsilon \frac{\partial X_i}{\partial t}, \\ \lambda_{3\Phi} \frac{\partial^2 T}{\partial l^2} - \frac{\partial \left[\left(\varepsilon c_r u - \beta c_r \left(u_B - u \right) \right) \right]}{\partial l} + \\ + \sum_{i=1}^3 \Delta H_i C_{i0} W_i(X_i, T) - B(T - \Theta) + kP = c_\rho \frac{\partial T}{\partial t} \\ - u_x \frac{\partial \Theta}{\partial l} + B_1(T - \Theta) = \frac{\partial \Theta}{\partial t}, \\ u = u_0 \left[\frac{T}{T_{BX}} - 0,005 C_{10} X_1 - 0,00827 C_{20} X_2 - \\ - 0,01265 C_{30} X_3 \right], \\ B = \frac{K_T F}{V_\rho}, \\ B_1 = \frac{B V_\rho}{c_x V_x}. \end{aligned}$$

Граничные условия: $l=0: X_i = X_{i0}; \Theta = \Theta_0$,

$$\lambda_{s\phi} \frac{\partial I}{\partial l} = (\varepsilon c_{r} u - \beta c_{r} (u_{s} - u))(T - T_{0}),$$
$$l = L: \quad \frac{\partial T}{\partial l} = 0.$$

Начальные условия: $t=0: X_i = X_i^0; T=T^0; \Theta = \Theta^0.$

Описание переменных, входящих в систему уравнений: u_0, u, u_x, u_B – скорости газа на входе в реторту, газа по высоте реторты, хладагента, витания твердых частиц, м/с; Х_i – степень превращения *i*-го компонента; W_i – наблюдаемая скорость *i*-ой реакции, c^{-1} ; *T* – температура дисперсной системы, K; ε – доля свободного объема в реторте; $\lambda_{_{9\varphi\varphi}}$ – эффективный коэффициент теплопроводности, Вт/(м·К); c_{ρ} , c_{τ} , c_{τ} , c_{χ} – объемные теплоемкости дисперсной системы, газа, твердого сырья и хладагента, Дж/(м³·К); ΔH_i – тепловой эффект *i*-ой реакции, Дж/(м³·об. %); $C_{\mathfrak{d}}$ – входные концентрации компонентов, об. %; Θ – температура хладагента, К; L – высота реторты, м; V_p и V_x – объем реторты и охлаждающей системы, м³; F и F_x – площадь поверхности реторты и охлаждающей системы, м²; *β* – степень заполнения реторты твердой фазой; $K_{\rm r}$ – коэффициент теплопередачи от дисперсной системы к хладагенту, Вт/(м² К); X_{i0} , Θ_0 – граничные значения степени улавливания *i*-го компонента и температуры хладагента; X_i^0 , T^0 , Θ^0 – начальные значения степени улавливания і-го компонента, температуры дисперсной системы и температуры хладагента.

Решение системы уравнений модели аналитическими методами затруднено, поэтому для ее решения был использован метод конечных разностей [7]. Для решения системы конечно-разностных уравнений, полученной в результате применения этого метода, использовался метод прогонки [7]. Программная реализация модели была выполнена в пакете MATLAB 7.0.

При указанных особенностях для различных исходных данных и параметров, табл. 1, были рассчитаны возможные стационарные режимы АКТ. Расчетные распределения температуры приведены на рис. 3.

Таблица 1. Исходные данные для расчета стационарных режимов в АКТ

	Возмущения					Управляющие воздействия			
N⁰	C ₁₀	C ₂₀	C_{30}	<i>U</i> ₀	T _{bx}	В	$B_1 \cdot 10^4$	Ux	β ·10 ⁴
	об. %			M/C	K	Вт/(К∙м³)	1/c	м/с	-
1	20	20	2	0,11	540	2,500	57	0,014	28
2	20	20	2	0,21	520	0	0	0	28
3	20	20	2	0,21	505	0,250	5,7	0,030	28
4	20	20	2	0,21	505	0,150	3,4	0,014	28
5	10	20	1	0,14	480	0,150	3,4	0,014	20
6	5	10	1	0,18	310	0,085	1,8	0,004	18
7	17	32	1	0,12	430	0,125	2,7	0,010	18

Рис. 3. Распределения температуры по высоте реторты АКТ. Номера кривых соответствуют табл. 1

Анализ полученных результатов позволяет сделать следующие выводы:

- Существует зона максимального тепловыделения и максимальной интенсивности процесса улавливания, особенно F₂ и UF₆, длина которой приблизительно 0,25...0,3*L*. Наибольшее влияние на величину температуры в этой зоне оказывает концентрация фтора C₂₀; теплоотвод (величины *B* и *B*₁) и входная температура газа влияют слабее, однако в остальной части реактора влияние их существенно.
- В зоне максимальной температуры 0,03...0,18L наблюдается ее зависимость от концентрации определяющего компонента C₂₀, близкая к линейной при постоянном параметре теплоотвода В. При изменении концентрации C₂₀ на 10 об. % температура изменяется на 65...70 К. Диапазон изменения максимальной температуры в этой зоне от 453 до 753 К.
- 3. Иллюстрируется влияние теплоотвода на температуру в реторте АКТ.
- 4. Показано влияние возможного подогрева корпуса реактора на участке его длины 0,34...1*L* (пунк-

тир на рис. 3). Температура нагревателя Θ^* , контактирующего со стенкой, составляла 573 К.

Таким образом, применение охлаждающей рубашки переменной длины и подогрев корпуса реактора при *і*≥0,3...0,37*L* и незначительном разогреве твердого сырья в узле загрузки позволит создать нужный температурный профиль в АКТ.

Для исследования динамических характеристик АКТ как объекта управления производился расчет переходных режимов в реторте при различных воздействиях скачкообразного характера. В табл. 2 приведены величины концентраций компонентов, расхода и температуры газа, степень заполнения и параметры теплоотвода, соответствующие начальным стационарным состояниям, а также скачкообразные изменения входных переменных или параметров.

Таблица 2. Исходные данные для расчета переходных режимов в АКТ

		Ha	чалі							
Nº	C ₁₀	C_{20}	C ₃₀	U ₀	Твх	В	<i>B</i> ₁ ·10 ⁴	$\beta \cdot 10^4$	Изменение	
	об. %			м/с	Κ	Вт/(К∙м³)	1/c	-	переменных	
1	10	25	2	0,11	540	0,085	1,8	12	C ₂₀	-15
2	10	10	2	0,11	540	0,085	1,8	28	C ₂₀	15
3	20	20	2	0,14	540	0,100	2,1	28	C ₂₀	-10
									U ₀	-0,03
4	20	20	2	0,14	540	0,100	2,1	28	C ₂₀	-10
									U ₀	-0,03
									В	0,02
5	5	10	1	0,18	340	0,125	2,7	18	C ₂₀	10
	J								U ₀	0,14
6	17	32	1	0,12	430	0,125	2,7	18	β	6
7	17	32	1	0,12	430	0,125	2,7	18	β	-6

Исследовалось влияние скачкообразных изменений возмущающих воздействий: концентрации фтора C_{20} и скорости газа u_0 , а также управляющих воздействий: степени заполнения реторты АКТ твердой фазой β и параметра теплоотвода B на профиль температуры по высоте реторты и степени улавливания компонентов газа. Графики реакций температуры и степени улавливания фтористого водорода как компонента, улавливаемого значительно хуже других, на изменение указанных воздействий (переходные процессы) для различных точек по высоте реторты АКТ приведены на рис. 4–6.

Наибольшая чувствительность температуры и степени улавливания X_1 к изменению входных воздействий наблюдается по длине реторты от 0,07 до 0,3*L*, т. е. в области «горячей точки». Длительность переходных процессов на уровне 0,95 и запаздывания на уровне 0,1 от установившихся значений переменной по каналу « $C_{20} \rightarrow T$ » составляют:

- в точке $0,18L t_n = 7...15$ с; $\tau_n = 0,5...2$ с;
- на выходе реторты $-t_n = 14...32$ с; $\tau_n = 7...20$ с.

Для переходных процессов при изменении степени заполнения (рис. 6) принималось, что β изменяется скачкообразно по всему реактору, т. е. не учитывалось время прохождения твердой фазы от

Рис. 4. Переходные процессы по температуре (—) и степени улавливания X₁ (----): а) на уровне 0,18L; б) на выходе аппарата

Рис. 5. Переходные процессы по температуре в различных точках реторты для вариантов воздействий: а) 3 (---) и 4 (----); 6) 5

шнека загрузки до конкретной точки реторты. Величина этого времени рассматривалась как транспортное запаздывание $\tau_{\rm rp}$, суммируемое в дальнейшем с величиной чистого запаздывания $\tau_{\rm n}$. В зависимости от скорости газа в реторте величина $\tau_{\rm rp}$ Для точки 0,18*L* составляет 9...12 с; для выхода реторты $\tau_{\rm rp}$ =40...50 с. Величина чистого запаздывания значительно меньше: 1...2 с для точки 0,18*L* и 8...15 с для выхода реторты.

Рис. б. Переходные процессы по температуре в трех точках реторты для вариантов воздействий 6 (----) и 7 (—)

Исследование переходных режимов позволяет сделать два основных вывода:

- Наибольшей чувствительностью к входным воздействиям и наименьшей инерционностью отличаются переходные процессы в области максимальных температур, поэтому необходимо осуществлять контроль температуры внутри реторты в этой области с помощью малоинерционных датчиков.
- Изменение концентрации на 15 об. % соответствует изменению температуры в этой области на 90...110 К, уменьшение степени заполнения на одну третью часть приводит к увеличению температуры на 110...120 К.

Таким образом, чувствительность температуры в реторте сравнима для основных входных воздействий — возмущения C_{20} и управления G_{M} .

При моделировании оценено влияние основных возмущающих воздействий (концентрации фтора и расхода газа) и возможных управляющих воздействий (загрузки сырья, интенсивности теплоотвода и подогрева) на стационарные и переходные режимы в аппарате.

Разработанная математическая модель, реализованная в пакете MATLAB 7.0, будет использована для синтеза модернизированного алгоритма управления АКТ. Усовершенствование алгоритма заключается в автоматической стабилизации необходимого профиля распределения температуры в реторте аппарата путем изменения загрузки сырья в аппарат. Алгоритм управления будет реализован на современных программно-технических средствах, с программной реализацией на высокоуровневом объектно-ориентированном языке

СПИСОК ЛИТЕРАТУРЫ

- Тураев Н.С., Жерин И.И. Химия и технология урана. М.: Издательский дом «Руда и металлы», 2006. – 396 с.
- Андреев Г.Г., Пермяков О.Е. Химическая кинетика гетерогенных некаталитических процессов в технологии ядерного топлива. – Томск: Изд-во ТПУ, 2000. – 83 с.
- Касаткин А.Г. Основные процессы и аппараты химической технологии. – 10-е изд., стереотипное, доработанное. – М.: ООО ТИД «Альянс», 2004. – 753 с.
- Кафаров В.В., Глебов М.Б. Математическое моделирование основных процессов химических производств. – М.: Высшая школа, 1991. – 400 с.

программирования. Модель может быть также использована для исследования других объектов управления в радиохимической технологии противоточных и прямоточных аппаратов с газовыми и дисперсными потоками (например, пламенных реакторов для получения ГФУ, противоточных аппаратов для переработки не прореагировавшего в реакторах фторирования продукта и т. д.).

- Методы моделирования каталитических процессов на аналоговых и цифровых вычислительных машинах / Под ред. А. Ермаковой. – Новосибирск: Наука, 1972. – 150 с.
- Аэров М.Э., Тодес О.М. Гидравлические и тепловые основы работы аппаратов со стационарным и кипящим зернистым слоем. – Л.: Химия, 1968. – 510 с.
- Вержбицкий В.М. Численные методы. М.: Высшая школа, 2001. – 382 с.

Поступила 07.12.2006 г.

УДК 665.12.001.57

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ОТДЕЛЕНИЯ ВОДЫ И МЕТАНОЛА ПРИ ПРОМЫСЛОВОЙ ПОДГОТОВКЕ ГАЗОВОГО КОНДЕНСАТА

А.В. Кравцов, Н.В. Ушева, О.Е. Мойзес, Е.А. Кузьменко

Томский политехнический университет E-mail: moe@tpu.ru

Разработан модуль расчета процессов отделения воды и метанола от газового конденсата. С применением разработанной технологической системы исследовано влияние технологических параметров на процессы отделения воды и метанола. Рекомендованы режимы работы разделителей жидкости, при которых происходит наиболее эффективное отделение водометанольного раствора от нестабильного конденсата.

При добыче и подготовке газового конденсата к транспорту предусматривают подачу в систему метанола повышенной концентрации. При смешивании углеводородного конденсата с водным раствором метанола, образуется смесь, которую необходимо разделить. Нечеткость разделения водометанольной и углеводородной фаз приводит к значительным потерям метанола с нестабильным конденсатом и товарным газом.

Эти и многие другие проблемы достаточно эффективно позволяет решить применение методов математического моделирования и использование компьютерных моделирующих систем (MC).

На основе опыта создания моделирующих систем для различных технологий, нами разработаны математические модели [1–4] процессов промысловой подготовки нефти, газа и газового конденсата, на основе которых создана технологическая моделирующая система (ТМС) для расчета материальных балансов и оперативного анализа технологических режимов установки комплексной подготовки газа (УКПГ).

Основными блоками разработанной TMC технологии комплексной подготовки газа и газового конденсата являются модули расчета процессов сепарации, каплеобразования, разделения жидкостей, дросселирования и теплообмена.

Константы фазового равновесия рассчитывались по методике, предложенной в работах [5, 6], в основе которой лежит известное уравнение Гофмана-Крампа. Для расчета констант фазового равновесия метанола и воды было выбрано уравнение Тека-Стила [7].

Данная корреляция отличается повышенной точностью при расчете давлений паров полярных веществ и веществ с водородными связями при низких температурах. Уравнение Тека-Стила для расчета давления насыщенных паров химических веществ имеет следующий вид [7]: