УДК 621.039:3;621.039.54-73

# ИССЛЕДОВАНИЕ ИЗОТОПНОГО СОСТАВА ПРОДУКТОВ ПЛАЗМОХИМИЧЕСКОЙ КОНВЕРСИИ ГЕКСАФТОРИДА СЕРЫ

Р.В. Сазонов, А.И. Пушкарёв, С.А. Сосновский

Томский политехнический университет E-mail: aipush@mail.ru

Представлены результаты исследования разложения гексафторида серы в смеси с водородом и кислородом в плазме импульсного электронного пучка, формируемого ускорителем ТЭУ-500 (350...500 кВ, 60 нс, плотность тока до 0,4 кА/см<sup>2</sup>). Приведены данные термодинамического моделирования конверсии смеси газов  $SF_6+O_2$  и  $SF_6+H_2+O_2$  в низкотемпературной плазме, и состав смеси газов после воздействия электронного пучка, измеренный масс-спектрометром. Показано, что основное газофазное соединение, синтезируемое в плазме импульсного электронного пучка – дифторид-оксид серы. Выполнен изотопный анализ ионов (SOF) + и (SOF<sub>2</sub>) +. Получено, что содержание изотопа серы <sup>34</sup>S в дифторид-оксиде серы превышает его содержание в исходном гексафториде серы в 1,8±0,1 раза.

## Введение

В последние годы возрос интерес к химическим и физическим свойствам стабильных изотопов веществ. Для их получения используются различные процессы. Основной метод разделения (с помощью центрифуг) дорог и требует длительное время для получения большой степени обогащения. Поэтому актуальна разработка новых методов получения изотопов. В работе [1] экспериментально обнаружено более чем 30-кратное обогащение изотопом <sup>15</sup>N атомов азота в послеразрадной зоне импульсного разряда в потоке азота. Для объяснения этого эффекта предложена модель двухстадийного обогащения изотопом <sup>15</sup>N высоких колебательных уровней электронно-возбужденного состояния  $N_2$ с последующей диссоциацией этого состояния.

Фторидные соединения широко используются в технологических переделах получения редкоземельных металлов, изотопного разделения [2]. Процесс восстановления металла из фторидного соединения осуществляется при нагревании смеси фторида с водородом и является самым энергозатратным этапом получения чистого металла. Процесс водородного восстановления фторидных соединений эффективно протекает и в плазмохимических процессах, позволяющих значительно снизить затраты энергии за счет отсутствия нагрева реактора и газофазной смеси до высокой температуры. Кроме того, условия, реализуемые при импульсном возбуждении газовых смесей электронным пучком, благоприятны для организации цепных химических процессов. В этих условиях на получение требуемых продуктов расходуется энергия не только источника возбуждения, но и химическая энергия исходной реагентной смеси [3, 4]. Эффективное возбуждение колебательных уровней молекул происходит и в плазме импульсного электронного пучка, поэтому при конверсии фторидных соединений возможно проявление изотопического эффекта.

Целью представленной работы является исследование изотопного состава продуктов конверсии фторидных соединений в плазме импульсного электронного пучка. В качестве исходного соединения выбран гексафторид серы. Природная сера состоит из четырех изотопов: <sup>32</sup>S (95,1%), <sup>33</sup>S (0,74%), <sup>34</sup>S (4,16%) и <sup>36</sup>S. Большая концентрация <sup>34</sup>S позволяет проследить изменение изотопного состава при конверсии серосодержащих соединений с помощью универсального масс-спектрометра, имеющего низкое разрешение по массам.

#### 1. Экспериментальная установка

Экспериментальные исследования по разложению гексафторида серы были выполнены на специализированном импульсном электронном ускорителе ТЭУ-500 [5]. Кинетическая энергия электронов составляла 350...500 кэВ, полная энергия электронов за один импульс в данных экспериментах равнялась 90 Дж. Длительность импульса на полувысоте равнялась 60 нс, диаметр пучка – 5 см, плотность электронного тока на входе реактора не превышала 0,4 кА/см<sup>2</sup>. Электронный пучок инжектировался в замкнутый реактор через анодную фольгу (Al, 130 мкм) с торца. Реактор – цилиндр из нержавеющей стали с внутренним диаметром 14 см и объемом 3 л. Состав исходной смеси газов в реакторе и после воздействия импульсного электронного пучка измеряли масс-спектрометром МХ-7403. Выходной сигнал масс-спектрометра передавался на компьютер через АЦП «Лан-7» с гальванической развязкой. Изменение содержания компонент газовой смеси оценивали по изменению площади соответствующего пика масс-спектра.

Для определения изотопного состава исходной смеси и продуктов обработки использовали газовый хроматограф-масс-спектрометр TRACE DSQ. Он предназначен для исследования молекулярного состава сложных органических и неорганических соединений, имеющих температуру кипения ниже 500 °C. Отличительной особенностью прибора является высокая чувствительность, позволяющая определять вещества с содержанием от 1 мкг/л в диапазоне 1–1050 а.е.м.

#### Термодинамическое моделирование конверсии гексафторида серы

Для контроля изменения изотопного состава при конверсии SF<sub>6</sub> необходимо получить газофазные продукты, которые можно анализировать массспектрометром. Перед проведением экспериментов было выполнено термодинамическое моделирование с целью определения оптимального состава начальной смеси газов, позволяющей синтезировать в заметных количествах газофазные серосодержащие соединения. Наиболее подходящие продукты конверсии SF<sub>6</sub> – диоксид серы и дифторид-оксид серы. Они находятся в газовой фазе при комнатной температуре, имеют низкую реакционную способность, линии их масс-спектра не перекрываются с линиями масс-спектра гексафторида серы.

Расчет низкотемпературной плазмы был проведен на компьютере с использованием автоматизированной системы термодинамических расчетов «TERRA» [6]. Расчеты выполнялись для интервала температур 300...5000 К и давления исходной смеси 0,1 МПа. Конечным результатом расчетов были значения равновесных мольных концентраций химических соединений (в моль на кг исходной смеси газов), образование которых в данных условиях термодинамически возможно. На их основе построены графики зависимостей мольных концентраций образующихся химических соединений исследуемой системы от температуры.

Результаты расчетов конверсии гексафторида серы в смеси с кислородом приведены на рис. 1. Показано, что при термическом разложении смеси  $SF_6+O_2$  при изменении концентрации кислорода в смеси от 2 до 10 % диоксид серы не образуется.



Рис. 1. Зависимость мольных концентраций образующихся веществ в низкотемпературной плазме SF<sub>6</sub> и O<sub>2</sub>. Исходная смесь (в кПа): 90 SF<sub>6</sub>+10 O<sub>2</sub>

Выполненные расчеты показали, что дифторидоксид серы является основным продуктом конверсии гексафторида серы в смеси с кислородом и водородом при содержании кислорода менее 30 об. %. Часть расчётов представлена на рис. 2.



**Рис. 2.** Зависимость мольных концентраций образующихся веществ в низкотемпературной плазме гексафторида серы в смеси с кислородом и водородом. Исходная смесь (в кПа): 50 SF<sub>6</sub>+40 H<sub>2</sub>+10 O<sub>2</sub>

Термодинамические расчеты показали, что при низкой концентрации кислорода в исходной смеси основные продукты разложения гексафторида серы — фтористый водород и дифторид-оксид серы. Диоксид серы формируется при температуре ниже 3500 К и при температуре ниже 2800 К превращается в дифторид-оксид серы. Фтористый водород имеет высокую реакционную способность и реагирует с материалом плазмохимического реактора, поэтому в продуктах конверсии мы его не обнаружили. При содержании кислорода в исходной смеси более 30 об. % основной продукт конверсии гексафторида серы — дифторид-диоксид серы.

# 3. Исследование состава продуктов конверсии SF<sub>6</sub> в плазме электронного пучка

На рис. 3 показан обзорный спектр продуктов конверсии  $SF_6+H_2+O_2$  в плазме импульсного электронного пучка (после 150 импульсов). Приведены данные двух замеров газовой смеси в реакторе. Состав смеси газов в реакторе измеряли масс-спектрометром MX-7403.



**Рис. 3.** Обзорный масс-спектр продуктов разложения смеси  $SF_6$ + $H_2$ + $O_2$ 

Исходная смесь газов (в ммоль):  $62SF_6+62H_2+10Ar+2O_2$ . Аргон (m/z=40) был введен для нормирования регистрируемых масс-спектро-грамм. Основные линии, характерные для смеси газов в реакторе после воздействия электронного пучка, соответствуют m/z=2, 67, 86 и 127. На рис. 4 показано изменение интенсивности линий с увеличением поглощенной дозы импульсного электронного пучка.



**Рис. 4.** Зависимость интенсивности линий от числа импульсов электронного пучка: 1) гексафторид серы (m/z=127), 2, 3) дифторид-оксид серы (m/z=86 и 67), 4) H<sub>2</sub><sup>+</sup> (m/z=2)

На рис. 5 приведены эталонные масс-спектры SF<sub>6</sub> и SOF<sub>2</sub> (электронная библиотека NIST).



**Рис. 5.** Эталонные масс-спектры: а) гексафторида серы и б) дифторид-оксида серы

Выполненные исследования показали, что дифторид-оксид серы является основным газофазным соединением серы, синтезируемым при конверсии гексафторида серы (в смеси с кислородом и водородом) в низкотемпературной плазме.

### 4. Измерение изотопного состава газофазных соединений

Разрешающей способности МХ-7403 было недостаточно для анализа изотопного состава серосодержащих соединений, поэтому дальнейшие массспектрометрические измерения гексафторида серы и продуктов его конверсии проводили с помощью хроматографа-масс-спектрометра TRACE DSQ.

Для определения точности измерения изотопного состава газофазных соединений с помощью TRACE DSQ был выполнен анализ масс-спектра исходного гексафторида серы (рис. 6).



IC. 6. Масс-спектр: а) исходного гексафторида серы и б) дифторид-оксида серы, синтезированного в плазме импульсного электронного пучка

Хроматограмма продуктов конверсии гексафторида серы в смеси с кислородом и водородом содержала два пика. На рис. 6 представлены также линии масс-спектра синтезированного дифторидоксида серы. Степень конверсии SF<sub>6</sub> не превышала в данной серии экспериментов нескольких процентов. В таблице представлены интенсивности

| Показатель <i>m/z</i>                   | <sup>32</sup> SF <sub>6</sub> ( <sup>34</sup> SF <sub>6</sub> ) |        |          |          | <sup>32</sup> SOF <sub>2</sub> ( <sup>34</sup> SOF <sub>2</sub> ) |        |
|-----------------------------------------|-----------------------------------------------------------------|--------|----------|----------|-------------------------------------------------------------------|--------|
|                                         | 70(72)                                                          | 89(91) | 108(110) | 127(129) | 67(69)                                                            | 86(88) |
| /32 <sub>5</sub>                        | 5,95                                                            | 21,4   | 6,48     | 100      | 52,7                                                              | 15,8   |
| 134 <sub>5</sub>                        | 0,238                                                           | 1,02   | 0,282    | 4,6      | 4,5                                                               | 1,23   |
| Содержание<br>изотопа с <sup>34</sup> S | 3,9                                                             | 4,5    | 4,2      | 4,4      | 7,9                                                               | 7,2    |

| Таблица. | Интенсивность линий масс-спектра серосодержа    |
|----------|-------------------------------------------------|
|          | щих соединений I, о. е., содержание изотопов, % |

линий масс-спектра осколочных ионов гексафторида серы  $(SF_5)^+$ ,  $(SF_4)^+$ ,  $(SF_3)^+$ и  $(SF_2)^+$ , содержащих изотопы <sup>32</sup>S и <sup>34</sup>S, а также дифторида-оксида серы  $(SOF_2)^+$  и его осколочного иона  $(SOF)^+$ , содержащих изотопы <sup>32</sup>S и <sup>34</sup>S.

## СПИСОК ЛИТЕРАТУРЫ

- Горшунов Н.М., Гуденко С.В. О возможности разделения изотопов за счет неравновесного колебательного обмена в послеразрядной зоне // Физико-химические процессы при селекции атомов и молекул: Сб. докл. 8-ой Всеросс. научн. конф. – М.: ЦНИИатоминформ, 2003. – С. 133–136.
- Туманов Ю.Н. Низкотемпературная плазма и высокочастотные электромагнитные поля в процессах получения материалов для ядерной энергетики. – М.: Энергоатомиздат, 1989. – 279 с.
- Пушкарев А.И., Новоселов Ю.Н., Ремнев Г.Е. Цепные процессы в низкотемпературной плазме. – Новосибирск: Наука, 2006. – 226 с.
- Власов В.А., Пушкарёв А.И., Ремнёв Г.Е., Сосновский С.А., Ежов В.В., Гузеева Т.И. Экспериментальное исследование и

#### Заключение

Показано, что при конверсии гексафторида серы в плазме импульсного электронного пучка реализуется изотопический эффект. Содержание <sup>34</sup>S в продуктах реакции превышает исходное значение в 1,8 раза, что значительно выше погрешности измерения. Термодинамическое моделирование конверсии гексафторида серы удовлетворительно описывает состав конечных продуктов разложения  $SF_6$  в плазме импульсного электронного пучка.

Авторы выражают благодарность сотрудникам НАЦ ТПУ за помощь в измерении и анализе масс-спектров исследованных соединений.

Работа выполнена при поддержке РФФИ, грант 06-08-00147.

математическое моделирование восстановления фторидных соединений импульсным электронным пучком // Известия Томского политехнического университета. – 2004. – Т. 307. – № 5. – С. 89–93.

- Ремнев Г.Е., Фурман Э.Г., Пушкарев А.И., Карпузов С.Б., Кондратьев Н.А., Гончаров Д.В. Импульсный сильноточный ускоритель с согласующим трансформатором // Приборы и техника эксперимента. – 2004. – № 3. – С. 130–134.
- Трусов Б.Г. Программный комплекс TERRA для расчёта плазмохимических процессов // Матер. 3 Междунар. симп. по теоретической и прикладной плазмохимии. – Плес, 2002. – С. 217–218.

Поступила 07.12.2006 г.

УДК 621.039.337

## СЕЛЕКЦИЯ ИЗОТОПОВ МАГНИЯ ПРИ ПЕРЕКРИСТАЛЛИЗАЦИИ MgCl<sub>2</sub>·6H<sub>2</sub>O

О.С. Андриенко\*, Н.Б. Егоров, И.И. Жерин, Д.В. Индык, Е.А. Цепенко, А.С. Дьяченко

\*Институт оптики атмосферы СО РАН Томский политехнический университет E-mail: ego@phtd.tpu.ru

Исследовано изменение изотопного состава Mg при зонной перекристаллизации MgCl<sub>2</sub>·6H<sub>2</sub>O. Показано, что обогащение по легкому изотопу <sup>24</sup>Mg происходит на том конце кристалла, к которому двигается зона перекристаллизации. Изотопы <sup>25</sup>Mg, <sup>26</sup>Mg концентрируются в начальной зоне кристаллизации. При воздействии на зону расплава постоянного магнитного поля или постоянного электрического тока коэффициент разделения увеличивается. Проведено сравнение полученных данных с данными по разделению изотопов магния другими физико-химическими методами.

#### Введение

Зонная перекристаллизация, часто называемая зонной плавкой, применяется для глубокой очистки веществ и получения их в монокристаллическом виде. Так как зонной перекристаллизацией можно разделять вещества с очень близкими свойствами, а изотопы с низким содержанием можно с известной долей приближения рассматривать как своеобразную примесь к основному изотопу, то существует возможность изменения соотношения стабильных изотопов в солях и металлах под влиянием зонной перекристаллизации [1].

В качестве основного объекта исследования был выбран гексагидрат хлорида магния (MgCl<sub>2</sub>·6H<sub>2</sub>O). Такой выбор обусловлен тремя факторами. Во-первых, MgCl<sub>2</sub>·6H<sub>2</sub>O плавится при низ-