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Abstract. The spectra of stable optical absorption of BaF2 crystals containing uncontrollable 

impurities after irradiation with 3 MeV electrons are studied at room temperature. The 

dependence of the efficiency of stable color accumulation in the region of emerging cross-

luminescence on the absorption coefficients measured near the fundamental absorption edge in 

unirradiated crystals of various prehistory is traced. 

1. Introduction 

Alkaline-earth metal fluorides are transparent over a wide spectral range, and they are used as an 

optical constructional material to transmit powerful UV and VUV radiation fluxes. BaF2 crystals are of 

special relevance among them since cross-luminescence transitions at 195 and 220 nm and a decay 

time of less than 1 ns has been revealed and interpreted for the first time for these crystals [1]. This 

type of luminescence is also called as core-valence luminescence or Auger-free luminescence. BaF2 

crystals are currently the most widely used material for solid state scintillation detectors of x-ray, 

gamma radiation and other high energy particles. 

The presence of intense inertial (600 ns) luminescence component at 300 nm due to the formed 

self-trapped excitons (STE) [2] restricts application of BaF2 crystals as fast scintillators. Different 

methods are used to suppress the STE luminescence.  

On the one hand, the studies were conducted to change the intensity relationship for the fast and 

slow luminescence components in pure BaF2 crystals in favor of the fast component. For example, in 

[3], a special filter unit was used to reduce the intensity of the slow luminescence component. In [4], a 

gamma detector was developed based on the BaF2 scintillator heated to 220 °C since the intensity and 

the decay time of the slow component are strongly dependent on temperature, whereas those of the 

fast component are not [5]. 

On the other hand, it was found that doping of BaF2 crystals with some types of impurities results 

in suppression of the luminescence intensity of the slow component at 300 nm [6, 7]. Despite a large 

number of papers devoted to this problem, the effect of various impurities on the luminescent 

properties of BaF2 crystals is still not clear. The problems are encountered when choosing the type and 

concentration of the dopant, and the technique for crystal growing. 

The short-lived and unstable STE absorption occurs immediately after exposure of BaF2 crystals to 

ionizing radiation [2, 8]. Pulsed spectroscopy with space-time resolution [9] was used to show that the 

efficiency of STE formation, and hence, the intensity of the slow luminescence component is 
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determined to a large extent by the coordinates of the irradiated sample in the growth region with 

small and large-scale distortion of the crystal lattice periodic potential. 

As the total dose increases, the long-lived or residual absorption is accumulated. There are a 

number of papers describing the effects of radiation damage in scintillators [10, 11]. Earlier studies of 

the BaF2 crystal radiation resistance show conflicting results. The residual absorption is highly 

sensitive to the crystal quality. Doping with impurities (especially heterovalent dopants) increases the 

radiation sensitivity of crystals of a fluorite structure [12]. Most of the differences from sample to 

sample are considered to be associated with different amounts of uncontrollable impurities. 

Compared to pure BaF2 crystal, the presence of uncontrollable impurities is to be followed by 

change in the transmission cutoff in the VUV spectral region. However, so far no attempts have been 

made to relate the changes in BaF2 crystal transmission to their radiation sensitivity. 

The aim of the research is to study the impact of changes in optical transmittance near the 

fundamental absorption edge in BaF2 crystals of various prehistory on their radiation resistance. 

2. Experimental methods 

The objects of study were BaF2 crystals grown by the Bridgeman-Stockbarger technique in 

fluorinating atmosphere in Crystallography Institute of the Russian Academy of Science (Moscow) 

and in State Optical Institute (St. Petersburg).  

The BaF2 crystals of different lots used in this research, designated by numbers in table 1, were not 

intentionally doped. The grown samples were of a cylindrical shape. To eliminate the impact of 

microsegregation of 6 pieces from the central part, 2 plates were cleaved out from each of the pieces. 

One parallel cleavage was analyzed to estimate the impurity content, and the second one was used to 

measure the optical transmittance in the VUV spectral region and radiation-induced optical absorption. 

 

 

Crystals No. 1 have been used previously [8, 9] in the study of the short-lived absorption. It is 

known that hygroscopicity of BaF2 crystals is low. To prevent entry of oxygen into the crystals the so 

called scavenger is added to remove oxygen from the melt. For BaF2 crystals, the scavenger is 

typically PbF2 [10]. When changing the technology of growing, lead and oxygen impurities remain in 

BaF2 crystals, which reduces the transmission in the VUV spectral region. The results of the 

preliminary oxygen impurity proton-activation analysis, as well as the lead impurity spectroscopic 

analysis of BaF2 crystals are shown in table 1. The data of the spectroscopic analysis indicate the 

presence of other impurities (Ca, Sr, Fe, Al, Mg, Mo, Zn, W), the concentration of which varies from 

sample to sample within the range (10
-5

–10
-4

) mol%. 

The transmission spectra of the unirradiated BaF2 crystal in the VUV spectral region were 

measured at room temperature with the spectrophotometer of BMP-2 type in State Optical Institute 

(St. Petersburg) by V.M. Reyterov. 

All samples were irradiated with the dose 10
5
 Gy at room temperature. The radiation source was a 

continuous electron beam accelerator. The accelerated electron energy was equal to 3 MeV. The 

sample thickness was within 2 mm to ensure uniform in-depth coloring. The absorption spectra of the 

irradiated BaF2 crystals were measured at room temperature with the spectrophotometer of SF-256 

type in the spectral range from 6.2 to 1.55 eV. 

3. Results 

Figure 1 shows the spectra of the induced optical absorption for BaF2 crystals subjected to irradiation, 

which contained uncontrollable impurities. The spectra were measured at room temperature within 1 

Table 1. Impurity contents in samples. 

Element  

(10
-4

 mol%) 
No.1 No.2 No.3 No.4 No.5 No.6 

O 1 0,5 0,7 0,7 1 0,9 

Pb 3 3 3 4 7 10 
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hour after the end of irradiation. The analysis of the data presented in figure 1 reveals the following 

patterns. 

In irradiated BaF2 crystals, the induced absorption is of complex spectral distribution in the range 

from 6.2 to 1.55 eV. 

In all the irradiated crystals, the induced optical absorption is found to grow in the spectral region 

of the detected cross-luminescence at 5.64 eV. The greatest increase in absorption at 5.64 eV occurs in 

sample No. 4.  

In the spectral position, the observed bands do not fit the absorption bands F (2.03 eV) and F2 

centers (1.71 eV) in the BaF2 crystal reported in [13]. 

 

 

Figure 1. Optical absorption spectra of BaF2 crystals of various prehistory at irradiation to the same 

dose. 

 
The spectra of the induced absorption in samples No. 2, No. 3 and No. 4 contain bands in the 

region of  4.3 eV, as well as a broad structureless band at 2.48 eV. Apparently, these bands are due to 

formation of metal colloidal nanoparticles [14] which are to be more stable defects than the aggregates 

of F centers. The spectra of the induced absorption in samples No. 5 and No. 6 contain absorption 

bands in the region of 2.25 eV and about 1.77 eV. An extremely large width of the absorption bands, 

and the shift of the maxima to longer wavelengths can be due to the distribution of the colloidal 

particle in size and/or due to nonspherical particle shape [15].  

The concentration of impurities in BaF2 crystals of various prehistory changes within a rather narrow 

range (table 1). Nevertheless, the data in figure 1 shows that the crystal colorability varies dramatically 

from sample to sample. 

Oxygen, lead, yttrium, and sodium ions are commonly referred to uncontrollable or "biographical" 

impurities in crystals of a fluorite structure. The presence of these impurities leads, firstly, to the shift 

of the transmission cut-off of fluorite crystals to longer wavelengths, and secondly, to occurrence of 

selective absorption bands in the VUV spectral region [10, 11, 16-18]. 

At higher concentration of the doped, for example, oxygen impurity, the colorability of fluorite 

crystals is determined by the intensity of the selective absorption in the VUV spectral region of 
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unirradiated samples [10, 11]. At low concentration of the doped impurity this dependence cannot be 

typically traced. 

The area under the absorption curve of an individual sample was assumed to be the crystal 

colorability efficiency.  

Figure 2 shows the dependence of the colorability for BaF2 crystals of various prehistory on the 

absorption coefficients, measured in unirradiated samples near the fundamental absorption edge at 150 

nm, as well as in the region of the oxygen impurity selective absorption at 190 nm. These results 

indicate that the greater the absorption coefficients in the VUV spectral region in unirradiated crystals, 

the higher the colorability of BaF2 crystals by high-energy electrons. 

 

 

Figure 2. Influence of absorption coefficients of BaF2 crystals in the fundamental absorption edge of 

unirradiated sample on coloring efficiency (curve 1 - 190 nm, curve 2 - 150 nm). 

 

It is well known that imperfection of the anion sublattice, mainly determines the radiation 

sensitivity of crystals of a fluorite structure. One of the techniques to control the number of excess 

anionic vacancies or interstitial fluoride ions is co-doping of crystals [17].  

For example, doping of the CaF2 crystal with yttrium or sodium leads to a long-wavelength shift of 

the transmission cutoff in the VUV spectral region and increase in the radiation sensitivity, as 

compared to those in an undoped crystal [16–18]. If the concentration ratio of these impurities is 

optimum, the transmission cutoff in the VUV spectral region of the crystal is comparable to that of a 

pure crystal, the radiation resistance of the co-doped crystal increases [17]. 

When oxygen enters the crystal through substituting fluorine ions, the compensation of an excess 

charge is followed by occurrence of anion vacancies [13]. We can assume that in BaF2 crystals the 

compensation of the impurity oxygen (O
2–

) excess charge occurs in substituting the barium ions in the 

lattice by positively charged ions of other impurities (R
3+

). Ions of rare earth elements or transition 

metals can be regarded as these impurities. If the concentration ratio of these impurities is optimum, 

dipoles of (O
2–

 – R
3+

) type are formed. The anion vacancies are not formed and the radiation resistance 

of the co-doped BaF2 crystal increases. In BaF2 crystals of various prehistory not intentionally doped, 

the concentration ratio of the uncontrollable impurities compensating the electroneutrality breakdown 
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can be random. Therefore, the effect of the impurities on radiation resistance of the crystals is 

unpredictable. 

4. Conclusion 

The spectra of the stable absorption of BaF2 crystals of various prehistory are measured after 

irradiation with high-energy electrons at room temperature. 

It was found that in the spectral region of the detected cross-luminescence, the colorability 

efficiency of BaF2 crystals of various prehistory can be determined by the absorption coefficient near 

the fundamental absorption edge of the unirradiated crystal. 

The results can be the basis for a method to perform the in-process control of the radiation 

resistance of materials of a fluorite structure. 
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