
 

 

 

 

 

 

The Influence of High-Power Ion Beams and High-Intensity 

Short-Pulse Implantation of Ions on the Properties of Ceramic 

Silicon Carbide 

A V Kabyshev
1
, F V Konusov

2
, S K Pavlov

3 and G E Remnev
4
 

 
1
 Professor, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 

634050, Tomsk, Russia 
2 
Senior researcher, National Research Tomsk Polytechnic University, 30, Lenin 

Avenue, 634050, Tomsk, Russia 
3
 Engineer, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 

634050, Tomsk, Russia
  

4 
Head of laboratory, National Research Tomsk Polytechnic University, 30, Lenin 

Avenue, 634050, Tomsk, Russia
 

 

E-mail: konusov@hvd.tpu.ru, kabyshev@tpu.ru 

 
Abstract. The paper is focused on the study of the structural, electrical and optical 

characteristics of the ceramic silicon carbide before and after irradiation in the regimes of the 

high-power ion beams (HPIB) and high-intensity short-pulse implantation (HISPI) of carbon 

ions. The dominant mechanism of transport of charge carriers, their type and the energy 

spectrum of localized states (LS) of defects determining the properties of SiC were established. 

Electrical and optical characteristics of ceramic before and after irradiation are determined by 

the biographical and radiation defects whose band gap (BG) energy levels have a continuous 

energetic distribution. A dominant p-type activation component of conduction with 

participation of shallow acceptor levels –eV is complemented by hopping mechanism 

of conduction involving the defects LS with a density of 1.2·10
17

–2.4·10
18

 eV
–1

∙cm
–3

 

distributed near the Fermi level.The effect of radiation defects with deep levels in the BG on 

properties change dominates after HISPI. A new material with the changed electronic structure 

and properties is formed in the near surface layer of SiC after the impact of the HPIB. 

1. Introduction 

Silicon carbide SiC is a wide-band semiconductor material promising for high-power, high-

temperature and radiation-resistant electronic devices. That stimulates study of the influence of the 

various kinds of radiation on the characteristics of SiC and of devices based on it [1–3]. SiC has a high 

chemical and mechanical resistance [3–5]. The band gap (BG) of SiC depending on the polytype 

varies in range 2.83–3.23 eV, and the threshold energy of defect formation it is 25–35 eV, that defines 

the high radiation resistance of the material. The characteristics of localized states in the BG of 

radiation defects (RD) induced by high-energy particles and their effect on properties of material 

depend on the type of particle and on the mode of irradiation [1–3]. The study of the effect on the 

properties of RD in the ceramic SiC is difficult and leads to ambiguous results owing to its complex 

structural hierarchy and high content of impurities and biographical defects (BD). Improvement of 
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electrical characteristics of the epitaxial layers of SiC in devices is achieved by the ion implantation 

and subsequent thermal annealing owing to an annihilation and redistribution of RD and modify of the 

structure of the material surface [4–7]. High-intensity short-pulse implantation (HISPI) of ions 

followed by heating of the surface layer provides simultaneous annealing of RD [8, 9]. 

The aim of the work is to study the structural, electrical and optical characteristics of ceramic SiC 
before and after irradiation in the regimes of high-power ion beams (HPIB) and HISPI of carbon ions 

С
+
 and to establish the reasons of the properties change. 

 

2. Experimental 

The investigations of morphology of the ceramic surface before and after irradiation by methods 

described in [8] were performed by scanning electron microscopy. The elemental composition was 

studied by energy dispersive microanalysis. Raman spectra were studied by using spectrometer 

Nanofinder (=532 nm). The dark surface conduction and photoconduction ph=ph– (ph is 

conduction under lighting), photosensitive K(U, T, h)=ph/were measure data constant voltage on 

the electrodes U=0.01–300 V, at temperature T=300–700 K, and photon energy h=1.5–4.0 eV. The 

temperature dependences of , ph(T) were approximated by the equation for activation mechanism 
)/(

0)(
Tk

a eT


  , (1) 

where0 is a pre–exponential factor,  is an activation energy, k is the Boltzmann constant and by 

the equation for the hopping mechanism of transfer between the localized states (LS) near the Fermi 

level EF in BG in the Mott model 

))/((

0

25.0
0)(

TT

p eT


 , (2) 

where 0 is a pre–exponential factor, T0 is an activation energy [10]. The LS density N(EF) near the 

Fermi level was calculated from T0 according to [10]. The sign of the dominant charge carriers was 

determined by the photo- and thermostimulated current amplitude IPhTSC(ITSC)(T, h U=0) [10]. The 

spectral dependence of the absorption coefficient (h) in the intervalh=1.4–3.6 eV was calculated 

from the spectra of the diffuse reflection [11]. 

 

3. Result and discussion 

Ceramics after irradiation by HPIB (samples SiC1,2) at the energy density J=2.4 J/cm
2
andatthe 

number of pulses n=3, 50is characterized by the presence of cracks and pores on the surface due to the 

high-speed cooling of the melt and peculiarities of structure of SiC. Melting occurs more rapidly and 

in a higher volume of the near surface layer of SiC with growing of n. Melting not fixed after HISPI at 

J=0.2–0.3 J/cm
2
and n=300 (samples SiC 3–5). The inclusions of metals are identified: Fe (0.03–0.31 

at.%), Cr and Ni (≤0.03 at.%). The obvious differences between the unirradiated SiC and SiC, 

irradiated by HPIB and HISPI, is not found according to X-ray analysis. Both modifications of the 

silicon carbide such as cubic SiC-3C and hexagonal presented by the polytypes 2H, 4H and 6H were 

revealed. Raman spectra indicate the presence of impurity of amorphous a–C, existing prior to 

irradiation, or introduced after implantation. The line of silicon at =520 cm
–1

after the HPIB increases 

with n growth and after HISPI this line is suppressed. The lines at 500–1000 cm
-1

fixed after the 

HPIB correspond to a carbide phases. The lines at795 and 972 cm
-1

correspond to optical transverse 

and longitudinal oscillations of the 3C–SiC and line at 778 cm
–1

to optical transverse oscillations of 

the 4H (6H)–SiC. Both polytypes of 4H(6H)–SiC and 3C–SiC were detected after HISPI. Here with 

the ratio of the hexagonal phase to a cubic was higher than after HPIB. 

Current voltage characteristic (CVC) I(U) of the SiC before the irradiation are nonlinear and obeys 

the power IU
s
 (s.5–2) or the polynomial law I=a∙U

2
+b∙U+c (a=(4–20)∙10

–7
A∙V

–2
, b=(2–9)∙10

–7 
S, 

c=(2–40)∙10
–8

 A, a/b=2.5–3.3) (figure 1). It is typical for epitaxial SiC [1, 2]. CVC allows us to 

conclude that the concentration of electrical active defects N', their population by charge carriers n' 

and their degree of population n'/N' increase with depth of level ε in BG. The exponential distribution 

of the LS on energy N'() is realized in analogy with [1, 10, 11]. The coincidence of the CVC at U>0 
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and U<0 indicates a weak influence of the space charge on the dependence (U). Annealing until 

T=700–800 K increases the value of  in 2–3 times due to the redistribution of charge carriers 

between shallow (<0.1 eV) or more deep traps (≥0.1 eV). Ceramics has a weak photosensitivity 

K≤0.01 due to the influence of the BD with a high concentration of N>10
18

 cm
–3

distributed on the 

grain boundaries. Then–type of ph and dominates, as photo and thermostimulated currents 

IPhTSC(ITSC)(T) show. Influence of the donor BD having the impurity or vacancy nature on the transport 

of charge carriers prevails. Temperature dependences of, ph(T) within the intervalT=300–700 K are 

determined by the thermally stimulated electron exchange between shallow donor levels with the 

activationenergies1=0.06–0.061 eV, 2=0.2–0.21 eV,3=0.4–0.43 eV and conduction band (CB) 

(figure 2). Population of traps by charge carriers is redistributed between the single levels of energy 

1–3aftersequential heating owing to low values of their degree of population n'/N'=10
–10

–10
–6

. The 

factor σ0 indicates that (n'/N')3>>(n'/N')2>>(n'/N')1. The values below their values for intrinsic 

defects of SiC [1–3] due to the interaction between BD and a continuous distribution of LS in the BG, 

by analogy with [10, 11]. The shallow donor levels with <(0.1–0.3) eV may be due to impurity 

atoms N and Ti or vacancy VSi
2–

 [1, 2]. Oxygen atoms (content<5.5 at. %) in complexes with BD as 

well as Vatoms have a deep levels (=0.65–1.59 eV [2]), which impact on reduce of values of σ. 

The electrical parameters , 0, K, n'/N' indicate the effect on transport of the hopping conduction 

that is verified by approximation (T) by the Eq. (2) within the interval T=300–700K. LS density with 

the participation of which carried out p(T) is N(EF)=(2–9)∙10
17

eV
–1

∙cm
-3

. The value of the most 

probable jump distance calculated according to [10] with the values N(EF) is R=7–11 nm. The 

electronic structure of materials such as ceramics can be described in frame of the model with the 

function N(), which varies little with depth of LS in BG [10, 11]. The sharp edges of the valence band 

(VB) and CB as in crystals do not exist. Fermi level in SiC is pinned near the middle of the BG at 

=1.5 eV due to the high concentration of defects and impurity atoms O, V, Ti. This is confirmed by 

low values of ≤2∙10
–6

S (figures 1 and 2) and K≤0.01 and by localization of a strong bands at energies 

=1.4 and 1.7 eV in the absorption spectra (h). Despite the dominance of n–type of and ph we 

cannot exclude the influence of acceptor defects on the properties. 

Irradiation of SiC significantly alters the morphology and structure of the surface and thin near 

surface layer (until 200 nm), which is reflected in CVC, (T), in change of the type of (n→p) and in 

parameters 0, T´0,´0, N(EF), R and in spectra (h) (figures 1–3). Influence of HPIB and HISPI 

on properties change is different (figures 1–4). Changes of the elemental composition of SiC after 

HPIB and HISPI showed that increase of the content of silicon from 20 to 40 at. % has the greatest 

effect on the growth of conduction (figure3). At the same time the content of carbon atoms in layers of 

SiC decreases from 80 to 40 at. % and oxygen decreases from 6 to 1 at. % (figure 4). A similar 

correlation between the content of C, Si and concentration of the donors was fixed in 6H–SiC (n–type 

of) [2]. HPIB significantly increases and changes its characteristics (figures 1 and 2). CVC 

becomes almost linear (s=0.99–1.05, a/b=0.01–0.02) (figure 1). The depth of the shallow centers 

decreases from 1=0.06 to 0.034 eV and from 2=0.21 to 0.123 and 0.155 eV and values of (n'/N')1,2 

increases in 10
2
–10

3 
times as shown a factor 0. The deep centers with 3 do not appear. Currents 

ITSC(T) and their indicate the predominance of exchange between holes and VB and LS with 

=v+1,2 (εv is the top of VB).The manifestation of stable defects VC–CSi is more probable in SiC 

with p–type of conduction while the defects VSi
–(2–)

 dominate in case of n–type of [1, 2]. Shallow 

acceptor levels are associated with impurity of Al (≤0.09 at.%) whose energetic levels at =v+(0.1–

0.3) eV activated by interaction with RD[2]. IPhTSC(T)<0 show that deep donor levels with>1.5 eV 

have the effect on parameters also.LS density for hopping conduction increases from N(EF)=(2–

9)∙10
17

to (1.2–2.4)∙10
18

eV
–1

∙cm
–3

,and jump distance decreases from R=7–11 to 5–7 nm, which means 

increasing the role ofp. The surface morphology change occurs due to its melting and the impact of 

nanoparticles of Si, C and metals. Partial annealing of RD and their association in a complex with BD 

occur owing to heating of surface. 
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Figure 1. CVC of SiC before (curve 1) and after 
HPIB (curves 2 and 3) and HISPI (curves 4–6): 

J=2.4 J/cm
2
, n=3 (curve 2), 50 (curve 3); J=0.2–0.3 

J/cm
2
, n=300 (curves 4–6). 

 Figure 2. Temperature dependencies (T) 

of SiC before (curve 1) and after HPIB 

(curves 2 and 3) and HISPI (curves 4–6): 

J=2.4 J/cm
2
, n=3 (curve 2), 50 (curve 3); 

J=0.2–0.3 J/cm
2
, n=300 (curves 4–6).  

 

After HISPI decreases or not changes and nonlinearity of CVC increases (s=1.2–2.3, a/b=2–5) 

(figure1).This is caused by the accumulation of RD with deep LS that are centers of trapping of charge 

carriers. Parameters of RD with1are close to their values prior to irradiation and of centers with 2– 

to parameters levels induced by HPIB. Deep centers with 3 appear also. Effect of donors increases, 

as shown ITSC(T).LS density for realization of p is N(EF)=(1.2–11)∙10
17

eV
–1

∙cm
–3 

at R=6–12 nm. LS 

density decreases with  increasing. Comparison of parameters of p and a shows that the influence 

of BD after HISPI is more greatly than after HPIB. Interrelation between electrical parameters allows 

to clarify mechanism of transport charge (figure 4). 

Value of decreases in 2–5 times after HPIB while not changes or increases in 1.2–1.5 times 

after HISPI. Shape of (h) after HPIB changes similarly as in SiC after a powerful laser 

irradiation[6]. Absorption band at 1.4–2.8 eV induced by BD (concentration N=(2–20)∙10
18

cm
–3

) 

separates from the band of interband absorption at 2.8–3.3 eV characteristic for amorphous and highly  

 

 

 

Figure 3. Effect of the elemental composition 

of SiC on its conduction  before and after 

irradiation in the regimes of HPIB and HISPI. 

 Figure 4. N(EF) vs. in SiC before (x) and 

after irradiation (♦, ◊). 
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defective materials. Average value of BGEg0=3 eV is in limits of the values Eg=2.83–3.23 eV peculiar 

to different polytypes of SiC [6].Conservation of this band after HISPI indicates a negligible change of 

the absorption edge.Accumulation of the RD levels after HISPI strengthens the pinning of EF near the 

middle of BG. There are three groups of bands with centers at 1=1.4 eV; 2=1.72 eV, 3=2.4 eV. The 

concentration of these centers before irradiation is: N1=(2–2.3)∙10
18

cm
–3

, N2=(5–7)∙10
19

cm
–3

, N3=(6–

7.3)∙10
18 

cm
–3

. After HPIB N1=(1–1.2)∙10
18

cm
–3

,N2=(2–2.2)∙10
19

cm
–3

, N3=(2.5–2.7)∙10
18

cm
–3

. Taking 

into account [1, 2] bands with 1–3were identified with vacancy RD VC,Si. Single RD clearly manifest 

after HISPI. Transitions between the LS with a continuous distribution dominate after HPIB. 

Formation after HPIB of a new material with changing electronic structure and properties has an effect 

on dependencies (,) also. Dependency N(EF)() in SiC before and after irradiation is typical for 

materials containing a high concentration of defects (figure4) [10]. Parameters N(EF) and are 

distributed on two arrays for shallow and more deep centers (figure4). Decrease of LS density from 

N(EF)=2.4∙10
18

to 1.2∙10
17

eV
–1

∙cm
–3

correlates with the increasing of absorption coefficient from 

=3∙10
3
to 10

4
cm

–1
and decreasing of by analogy with [10]. The impact of p on transport charge for 

values N(EF) and in band 1 is higher than in band 2 (figure4). 

 

4. Conclusion 

Electrical and optical properties of SiC ceramic before and after irradiation are conditioned by BD and 

RD whose levels are continuously distributed on energy in BG. Defects and impurities with high 

concentration (2–20)∙10
18

cm
–3

are heterogeneously distributed along the boundaries between the 

structural fragments of ceramic. The activation component of the p–type conduction after irradiation is 

realized in the exchange of holes between the VB and shallow acceptor levels with the activation 

energy of <eV and is complemented by the hopping mechanism of transport on LS near the 

Fermi level which localized in the middle of BG. Density of LS for realization of hopping conduction 

is changed after irradiation from (2–9)·10
17 

to (1.2–24)·10
17

eV
–1

∙cm
–3

 and impact of hopping 

component on electrical parameters is amplified. Influence of RD with deep levels on the optical and 

electrical properties of SiC dominates after HISPI. A new material with the changed electronic 

structure and properties is formed in the near surface layer of SiC after the impact of the HPIB. 
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