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Abstract. The paper presents the results of an complex study of structural and mechanical 

properties of zirconia ceramics sintered using different techniques. The samples were sintered 

via the conventional method of heating, in the field of microwave radiation and spark plasma. 

The experimental data indicates that a microwave field and spark plasma have a stimulating 

effect on zirconia ceramics sintering. In contrast to the microwave sintering, spark plasma 

sintering provides ceramics with improved properties at similar time-temperature annealing 

modes. Moreover, the properties of the ceramics under spark plasma sintering at T=1300 °C 

are similar to the properties of the ceramics sintered in a microwave field at T=1400 °C. 

1.  Introduction 

Zirconia ceramics is a promising material that has been widely used in various fields of science and 

technology. Ultrafine powders (UFP) used in its manufacturing provide high-density ceramics of fine 

structure with unique physical and chemical properties. This expands the scope of its application, for 

construction and instrumental purposes in particular. 

It is well known that both structural characteristics and physical properties of ceramics are 

primarily determined by the characteristics of the ultrafine powder medium such as particle size 

distribution, morphology of particles, their size and degree of agglomeration. Depending on the 

technique used to synthesize zirconium oxide powder, these characteristics can vary greatly. 

Investigations conducted over the years [1–6] aimed at producing zirconia ceramics from UFP 

synthesized by the plasma chemistry method. This method is based on thermal decomposition of 

aqueous solutions of yttrium and zirconium nitrates in high-frequency discharge plasma. It features 

high performance [7, 8]. 

However, the studies showed that the properties of the ceramics sintered from these powders via 

conventional technological techniques are not as good as those of the ceramics produced from 

commercial UFP, the well-proven powder by Tosoh Corporation (Japan) in particular [9,10]. This is 

due to the reduced efficiency of plasma chemical powders (PCP) sintering which is caused by the 

presence of a large number of hard particle agglomerates in PHP. 

This paper aims to study activation of sintering compacts from PCP through nonconventional 

techniques such as microwave radiation and spark plasma. 

2.  Experimental procedure 

Zirconia ceramics was sintered from PCP of stabilized zirconium dioxide (in mol%) ZrO2– 3 Y2O3. 

The compacts were prepared through static compression. Thermal sintering of the compacts was 

carried in a resistance furnace SNOL. The rate of sample heating and cooling was 10 °С/min. 
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Microwave (MW) sintering and spark plasma (SP) sintering of ceramics was performed at the 

Research Center in Karlsruhe (Germany). MW sintering was carried out in a microwave oven made by 

Gycom (Russia). The setting parameters were as follows: frequency of 30 GHz; power of 15 kW. The 

sintering mode: the rate of the temperature rise was 50 °C/min; the exposure time was 10 min. For SP 

sintering, a sintering furnace (HPD 10, FST Systeme Gmbh, Germany) was used.  The heating rate 

was 200 °C/min and the pressure applied was 32 MPa. The bulk density of the ceramic samples was 

measured through hydrostatic weighing in distilled water using Shimadzu analytical balance supplied 

with special attachment for this purpose. An X-ray diffraction analysis of the powders and sintered 

-rays. The 

obtaioned X-ray diffraction regularities were processed by full-profile analysis with the software 

package Powder Cell 2.4. The microstructure of the ceramic samples was investigated using scanning 

electron microscopy (SEM) with the Hitachi TM-3000 electron microscope. The microhardness was 

determined with the ZHV1 micro Vickers hardness tester (Germany). The indentation load was 200 g, 

and the time of exposure under load was 10 s. The sample surface was subjected to 10 indentations. 

3.  Experimental results 

The X-ray analysis showed that the phase composition of the zirconia ceramics obtained in different 

sintering techniques was similar. In all the cases, the diffraction pattern of the samples indicated the 

lines corresponding to tetragonal zirconium dioxide only. 

Studies have been conducted aimed at establishing the optimal regime of thermal firing of 

ceramics, which results are presented in Table 1. 

Table 1. Characteristics of zirconia ceramics sintered at different firing regimes 

 

Т (С) t  

(min) 
rel Нv 

(Гпа) 
Т (С) t  

(min) 
rel Нv 

(Гпа) 

1300 

0 0.79 5.9 

1500 

 

0 0.91 9.7 

30 0.84 7.6 30 0.92 10.4 

60 086 8.1 60 0.92 10.4 

180 0.88 8.4 180 0.91 10.2 

1400 

 

0 0.86 8.1 

1600 

 

0 0.92 10.4 

30 0.91 9.2 30 0.89 10.0 

60 0.92 9.8 60 0.88 9.2 

180 0.93 10.4 180 0.85 9.1 

Note: Т is the sintering temperature; t is duration of the isothermal stage; rel is relative density; Нv 

is microhardness. 

 

The regularities of sintering zirconia ceramics from UFP PCP in thermal heating were studied in 

[1]. The dilatometric analysis of the densification kinetics of the samples revealed that during 

isothermal exposure at high temperatures T1400 С, they are observed to expand and their density 

decreases. 

This effect can be attributed to the formation of a large number of gas-filled closed pores, which 

are very difficult to remove even at high temperatures and long isothermal exposure. At higher 

sintering temperatures, gas pressure in the closed pores increases. Since zirconium dioxide is 

characterized by high-temperature superplasticity, this factor may contribute to sample swelling during 

isothermal exposure, which negatively affects its properties. An optimum mode of thermal sintering of 

zirconia ceramics (T=1400 C, 3 hour annealing) was found. The characteristics of the ceramics 

obtained under these conditions are presented in Table 1. 

As seen from Table 1, zirconia ceramics is characterized by high porosity. As is known [11], 

increased porosity typically reduces the ceramic hardness. Therefore, the sintered ceramic samples 

were of insufficiently high microhardness. Thus, thermal sintering zirconia ceramics from PCP does 
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not allow production of the material that satisfies the requirements of the product for constructional 

and instrumental purposes.  

The results of the complex study of structural and mechanical properties of the zirconia ceramics 

sintered by different techniques are summarized in Table 2. 

Table 2. Structural and mechanical properties of zirconia ceramics produced by thermal (T), 

microwave (MW) and spark plasma (SP) sintering 

Sintering 

technique 

Sintering 

mode 

L 

(nm) 
d/d 

10
3
 

 
(g/cm

3
) 

 
(%) 

Rз 

(nm) 

НV 

(GPa) 

Т Т=1400С, 

t= 180 min 

101 0.2 5.6 7–8 340 9.5 

MW Т=1200С, 

t=10 min 

- - 5.26 13–14 148 8.3 

MW Т=1300С, 

t=10 min 

15.5 0.7 5.65 6–7 206 10–11 

MW Т=1400С, 

t=10 min 

44 0.7 5.86 3–4 220 12.6 

MW Т=1500С, 

t=10 min 

108 0.8 5.3 12–13 455 8.4 

SP Т=1100С, 

t=10 min 

64 0.8 4.3 30 - 4.0 

SP Т=1200С, 

t=10 min 

38 1.0 5.52 9–10 - 10.5 

SP Т=1300С, 

t=10 min 

50 0.6 5.8 4–5 200 11.8 

Т 

(Tosoh) 
Т=1400С, 

t= 180 min 

95 0.3 6.03 1.0 270 13 

Note: L is the size of the coherent X-ray scattering region; d/d is the value of the crystal lattice 

microstrain;  is pycnometric density;  is porosity; НV is microhardness; Rз is the mean value of the 

grain size. 

A comparative analysis of the results presented in Table 2 indicates the following. MW heating of 

the samples does not change the optimum temperature of sintering; however, it essentially reduces the 

duration of the annealing process. This forms the ceramic structure of increased density, hardness and 

smaller grain size. 

In contrast to MW sintering, SP sintering allows production of ceramics with improved properties 

at the same temperature-time annealing modes (Table 2). Moreover, the properties of the ceramics in 

SP sintering at T=1300 °C are similar to the properties of the ceramics sintered in the MW field at 

T=1400 °C. 

The obtained experimental data shows that the microwave field and spark plasma have a 

stimulating effect on zirconia ceramics sintering. A theoretical basis of the activation of the oxide 

powder sintering under above heating conditions is reported in [12,13]. According to the concepts 

developed in these studies, high-energy action activates the diffusion mass transfer in heterogeneous 

structures. This is due to the formation of temperature gradients in the region of particle-particle 

contacts, which in turn causes thermal diffusion flows of the substance. 

The data in Table 2 show that non-conventional sources of material heating such as microwave 

radiation and plasma spark provide the properties of the zirconia ceramics sintered from PCP close to 

those of the ceramics thermally sintered from the commercial powder by Tosoh Corporation. 
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4.  Conclusion 

The results obtained indicate the use perspectiveness of the considered techniques of activated PCP 

sintering to produce ceramics with improved properties compared to those obtained in thermal 

sintering. 
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