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Abstract. The topography of the surface of the magnesium sample after irradiation by the 

high-intensity pulsed ion beam of a TEMP-4M accelerator was studied. The irradiation causes 

the formation of a regular comb structure and the creation of craters, their depth reaches 1-1.5 

µm. 

1. Introduction 

The structural phase transformations which occur in metals and alloys under the action of high-

intensity pulsed beams (HIPB) of the charged and neutral particles (electrons and ions), as well as the 

plasma and laser irradiation have been studied for over thirty years. Nevertheless, the mechanism of 

formation of topography on the surface and of the defects in the near-surface layer of fusible 

nonferrous materials after the HIPB action is still incomprehensible [1-5]. It especially concerns such 

metals as aluminum and magnesium. In this connection, the study of the high-intensity ion beam 

action on a beam surface layer is of a scientific interest.  

 

2. Experimental setup and characterization techniques 

 
The object of research was samples (30x15x3 mm) of technically pure magnesium which surface was 

mechanically burnished and polished using abrasive paper and diamond suspensions. 
The samples were studied using a TEMP-4M accelerator at an accelerating pulse duration τ =100 ns 

and an energy density J (J/cm
2
) on the surface of the target such as: 0.5 (Δ =100 pulses), 1.5 (Δ = 100 

pulses), and 2.5 (Δ =10 pulses), J/cm
2 
[6]. The particle flux from a self-magnetically insulated vacuum 

diode operating in a two-pulse mode consists of carbon ions Cn
+I 

admixed with protons and 

corresponding neutrals. The topography of the surface was studied using the Nova Nano SEM 650 

ultrahigh-resolution field-emission scanning electron microscope (SEM) and the Quanta 200 3D 

thermal-emission SEM.  
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3. Results and discussion 

 

The process of HIPB interaction with the matter includes the mode of short-pulse implantation of ions 

which are constituents of the beam, and high-speed heating (~100 ns) during the action of the beam 

current pulse. The density of the flux of carbon ions and protons for a pulse is within 10
13

-10
14

 cm
-2 

depending on the beam current density. A high-rate heating of the target can cause the melting of the 

surface layer of the target. In the case of the uniform density of the particle flux density, the micro 

irregularities of the irradiated surface are primarily subjected to melting, because heat removal from 

the area of the micro irregularities is less than that from the flat surface. The melted parts can create a 

continuous field of liquid in the region of the beam action, when J is over 1.5 J/cm
2
. The lifetime of 

melt is of an order of the duration of the beam current pulse [4]. 

When the HIPB action is terminated, the crystallization front in liquid [7] moves towards the surface 

with a rate determined by time of heat removal from the melting zone. In the case of high-speed 

cooling of the surface layer of magnesium, two-phase (porridge-like) region near the crystallization 

front is the place of gas bubble inception. The bubbles with a radius over critical can expand and rising 

to the surface to tear out the liquid shell forming the cavities in the shape of craters when hardening. 

When the state of magnesium is changed from liquid to solid [8], magnesium viscosity is increased by 

over 20 orders, therefore, some of these cavities do not have time to be covered in a quick-hardening 

matter, forming the cavities identified as craters. To our mind, it is one of the reasons of microcrater 

formation under the action of HIPB upon the metallic materials [9]. 

Thus, the action of HIPB on the surface of the sample causes the total or partial (depending on the 

average density of the power of an ion beam and the degree of homogeneity) melting of the near-

surface layer of magnesium. The relief of the modified surface of the target, all other factors being 

equal, will depend on the density of the particle flux power acting on the surface of magnesium 

(J/cm
2
s).  

The crystallization of the melted layer on the surface of magnesium causes the formation of the wave 

(comb) structure (Figure 1, a). The alternation of the combs and cavities is most pronounced in Figures 

1 (c, d). The reason for this alternation can be associated with the formation of shock waves in the 

layer of the liquid metal and the recoil momentum pressure emerging on the surface of the melting at 

the pulsed evaporation of the part of the layer of the metallic melting.  

 

Figure 1. Structure of the surface of magnesium after irradiation (2.5 J/cm
2
, 10 pulses) at a different 

enlargement of one and the same part of the surface under study. 
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As the structure of magnesium is coarse-grained (4-5 grains at the investigated surface with an area of 

1 cm
2
), the comb structure is not distorted with grain boundaries. Magnesium workpieces have been 

produced by a traditional casting technology with a minimum cooling rate. After solidification of 

liquid magnesium the large grains are formed, which have identical crystallographic structure, but 

located at various angles from each other. Consequently after the HPIB treatment of the surface of a 

sample, clipped from a workpiece, the partial ordering of surface occurs by means of the forming of 

periodic comb structure (Figure 1, b-e). It is especially seen in Figure 1, b, d, where the comb structure 

differs from grain to grain. In the top left corner of Figure 1, b, the number of combs per unit area of a 

grain is significantly higher than in the neighbour grain (bottom right corner of Figure 1, b). There are 

also craters (Figure 2) on the irradiated surface (mainly, on the tops of the combs, Figure 1, c). Two 

types of craters are formed during irradiation: craters with a cupola in the centre (Figure 2, a) and 

without a cupola (Figure 2, b). 

 

 

Figure 2. Craters on the surface of magnesium after irradiation (2.5 J/cm
2
, 10 pulses). 

 

The mechanism of crater formation under the action of HIPB differs fundamentally from blister 

formation under the action of the particle flux at a conventional ion implantation [10]. 

 

Conclusions 

 

1. Melting the near-surface layer of magnesium with a high-intensity pulsed ion beam causes the 

formation of a regular wave (comb) structure, which is intermittent. 

2. At the same time, round craters are formed on the tops; the formation mechanism requires 

additional investigation.   
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