СПИСОК ЛИТЕРАТУРЫ

- Карслоу Г., Егер Д. Теплопроводность твердых тел / Перев. с англ. под ред. А.А. Померанцева. – М.: Наука, 1964. – 488 с.
- Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. – 600 с.
- Пехович А.И., Жидких В.М. Расчеты теплового режима твердых тел. – Л.: Энергия, 1976. – 351 с.
- Гудмен Т. Применение интегральных методов в нелинейных задачах нестационарного теплообмена // Проблемы теплообмена. Перев. с англ. под ред. П.Л. Кириллова. – М.: Атомиздат, 1967. – С. 47–96.
- 5. Вейник А.И. Приближенный расчет процессов теплопроводности. – М.: Госэнергоиздат, 1959. – 184 с.
- Lardner T.J., Pohle F.V. Application of the Heat Balance Integral to Problems of Cylindrical Geometry // Trans of ASME. J. of Appl. Mech. – 1961. – June. – P. 310–312.

- Городов Р.В., Кузьмин А.В. О выборе температурного профиля при решении задач со сферической симметрией методом интеграла теплового баланса на начальной стадии процесса нагрева тела // Энергетика: экология, надежность, безопасность. Матер. XII Всеросс. научно-техн. конф. – Томск, 2006. – С. 186–189.
- Городов Р.В., Кузьмин А.В. О выборе температурного профиля при решении задач со сферической симметрией методом интеграла теплового баланса на квазистационарной стадии процесса нагрева тела // Энергетика: экология, надежность, безопасность. Матер. XII Всерос. научно-техн. конф. – Томск, 2006. – С. 151–153.

Поступила 29.11.2006 г.

УДК 536.46

ДВУХТЕМПЕРАТУРНАЯ МОДЕЛЬ ГОРЕНИЯ ГАЗА В МОДЕЛЬНОМ ГОРЕЛОЧНОМ УСТРОЙСТВЕ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ

А.Г. Князева, Ю.А. Чумаков

Институт физики прочности и материаловедения CO PAH, г. Томск E-mail: vura014@rambler.ru

Предложена и численно проанализирована двухтемпературная модель горения газа в пористом теле цилиндрического теплогенератора. В модели учтены теплообмен между твердым каркасом и газом; взаимодействие продуктов горения с теплообменником; различие скоростей диффузии и теплопроводности в газовой фазе. Исследовано влияние параметров модели на характеристики стационарных режимов горения газа для различных условий теплообмена пористой горелки с теплообменником. Результаты численного исследования не противоречат наблюдаемым закономерностям, что говорит о возможности использования модели для постановки и решения задачи оптимизации работы реального горелочного устройства.

Введение

Явление распространения фронта горения в пористых средах при фильтрации газа привлекает все возрастающее внимание исследователей. Научный интерес к этому классу систем возник в ответ на запросы практики, активно включающей процессы фильтрационного горения в технологические схемы различного производства. К числу объектов фильтрационного горения относятся такие крупномасштабные промышленные процессы, как доменная выплавка чугуна, обжиг и агломерация руд, регенерация катализаторов методом выжигания коксовых отложений, добыча нефти с помощью внутрипластового горения и др.

Под фильтрационным горением газ понимается [1] процесс распространения зоны газофазной экзотермической реакции в инертной пористой среде при фильтрационном подводе газообразных реагентов к зоне химического превращения. Подобные процессы представляют собой разновидность гетерогенного горения вследствие активного участия двух фаз – твердой пористой среды и реагирующего газа – в механизме распространения волн и имеют важное научное и практическое значение. Наличие двух фаз предопределяет многопараметричность процессов, разнообразие межфазных взаимодействий, появление фильтрационных и других эффектов гетерогенности. В результате взаимодействия различных физических процессов реализуются многочисленные стационарные и нестационарные тепловые режимы горения, разнообразные условия протекания режимов превращения, волны горения с необычной структурой, свойствами и механизмами распространения [2, 3].

Одно из возможных практических приложений фильтрационного горения непосредственно относится к разработке экологически чистых пористых горелок, работающих на бедных смесях и обеспечивающих экономию газового топлива; практически полное сгорание газа в объеме пористого тела и высокий КПД.

Для оптимизации работы существующих горелок требуется исследовать возможные режимы горения газа при варьировании технологических параметров. В экспериментальных исследованиях варьирование параметров в широкой области их изменения весьма затруднительно. Поэтому для изучения режимов горения прибегают к математическому моделированию. Известные в настоящее время теоретические работы по фильтрационному горению газов ограничены либо аналитическим обзором данных эксперимента, описанием физических явлений и формулировкой проблемы [4]; либо отдельными частными расчетами на основе достаточно сложных моделей и алгоритмов [5–7], либо условиями, реализуемыми в лабораторном эксперименте [8].

Ниже предложена и исследована модель горения газа в пористой цилиндрической горелке, геометрия и свойства которой соответствуют горелке, описанной в [9], в одномерном двухтемпературном приближении.

Математическая постановка задачи

Предположим, что горелка, представляющая собой полый цилиндр, изготовленный из материала с заданной пористостью ε , имеет большие размеры: заданные внутренний R_1 и внешний R_2 радиусы, так что изменением плотности газа ρ_g по толщине рабочей части горелки $R_1 \le r \le R_2$ можно пренебречь. Во внутреннюю область цилиндра поступает горючий газ, который затем перераспределяется с помощью специальных устройств так, чтобы скорость его поступления в пористое тело V_g по всей длине горелки (вдоль цилиндра) была приблизительно одинаковой в соответствии с законом Дарси

$$V_g = -k_f \nabla P$$
,

где k_f — коэффициент фильтрации; P — давление. При заданном перепаде давления ∇P на входе газа в пористое тело и на выходе из него в первом приближении скорость газа также можно считать постоянной. Более строго, в стационарных условиях в газе будет выполняться условие неразрывности, в соответствии с которым и с учетом V_g =const имеем $\rho_g \sim R_1 \cdot \rho_{g,1}/r$, где $\rho_{g,1}$ — плотность газа на входе в пористое тело. Давление газа в порах и его температура однозначно связаны уравнением состояния

$$P = \rho_g R T_g m_g^{-1}$$

где m_g – молярная масса смеси реагентов и продуктов реакции, R – универсальная газовая постоянная Дж/(моль·K).

Как правило, при изучении моделей фильтрационного горения преследуют цель определения скорости горения, давления в газе и температуры фаз в зависимости от скорости подачи газа и условий межфазного теплообмена [1]. В этом случае скорость горения определяют для бесконечно большого объема газа при переходе в систему координат, связанную с движущимся фронтом реакции. С практической точки зрения интерес представляют стационарные режимы горения в горелочном устройстве конечного размера. Такие режимы реализуются при выходе горелочного устройства на стационарный режим работы. Определение скорости горения в этом случае традиционным способом теряет смысл.

Математическая постановка стационарной задачи в цилиндрической системе координат включает уравнение теплопроводности для газа и твердого тела и уравнение диффузии с конвективными слагаемыми и источниками тепла и массы вследствие химической реакции:

$$V_{g} \frac{dT_{g}}{dr} = \kappa_{g} \frac{1}{r} \frac{d}{dr} \left(r \frac{dT_{g}}{dr} \right) - \frac{\alpha}{c_{g} \rho_{g}} \frac{1}{\varepsilon} (T_{g} - T_{s}) + \frac{Q_{0}}{c_{g} \rho_{g}} k \cdot \eta^{n} \exp \left(-\frac{E_{a}}{RT_{g}} \right);$$
(1)

$$\kappa_s \frac{1}{r} \frac{d}{dr} \left(r \frac{dT_s}{dr} \right) + \frac{\alpha}{c_s \rho_s} \frac{1}{1 - \varepsilon} (T_g - T_s) = 0; \qquad (2)$$

$$V_{g}\frac{d\eta}{dr} = D\frac{1}{r}\frac{d}{dr}\left(r\frac{d\eta}{dr}\right) - k\cdot\eta^{n}\exp\left(-\frac{E_{a}}{RT_{g}}\right),\qquad(3)$$

где T_{g} – температура газовой смеси, K; T_{s} – температура пористого каркаса, К; t – время, с; r – пространственная координата, м; κ_s , κ_s – эффективные коэффициенты температуропроводности газа и твердого тела соответственно м²/с; α – коэффициент межфазного теплообмена, $BT/(K \cdot M^2)$; c_e , c_s – удельная теплоемкость газа при постоянном объеме и теплоемкость твердого каркаса, Дж/(К·кг); ρ_{g} , ρ_s – плотность газа и твердого каркаса, кг/м³; Q_0 – тепловой эффект суммарной реакции в газовой фазе, Дж/м³; k – константа скорости реакции, с⁻¹; n – порядок реакции; Е_а – энергия активации, Дж/моль; η – концентрация (массовая доля) реагентов; $(1-\eta)$ – степень превращения, V_{g} – скорость газа, м/с; D – коэффициент диффузии, м²/с, который, в отличие от известных моделей фильтрационного горения и моделей горения газов, считаем отличным от коэффициента температуропроводности κ_g , $D \neq \kappa_g$.

Система уравнений (1)–(3) замыкается граничными условиями на внутренней ($r=R_1$) и внешней ($r=R_2$) поверхностях горелки. В качестве граничного условия на внутренней поверхности используем условие постоянства температуры, равной температуре холодного газа T_0 , и степени превращения, равной нулю (или концентрации реагента, равной единице), т. е.

$$r = R_1$$
: $T_g = T_s = T_0$, $\eta = 1$; (4)

$$r = R_2$$
: $T_g = T_{g,1}$; $\frac{dT_s}{dr} = 0$; $\eta = \eta_b$, (5)

где $T_{g,1}$ – температура газа на выходе из пористого тела (или температура теплообменника); η_b – доля реагента, оставшаяся неизрасходованной.

«Скорость горения» определим следующим образом. Предположим, что во фронте реакции, положение которого $r=r_f$ заранее неизвестно, выполняется условие непрерывности, что записывается так

$$\left(\lambda_g \frac{dT_g}{dr}\right)_{r=r_f+0} - \left(\lambda_g \frac{dT_g}{dr}\right)_{r=r_f-0} = Q_0 u_T , \quad (6)$$

где u_T — «скорость горения» или скорость сгорания, м/с. Очевидно, что температура газа справа и слева от $r=r_f$ одинакова.

Тогда *и* может быть рассчитана из решения задачи (1)–(5), где за координату реакционного фронта принята координата максимальной температуры в газе. Если максимальная температура находится на внешней поверхности горелки, то $[\lambda_g(dT_g/dr)]_{r=\gamma_{e0}}=0.$

Более общая формулировка задачи, представленная ниже, учитывает в условии (5) теплообмен твердого каркаса с теплообменником излучением по закону Стефана-Больцмана.

Безразмерные параметры

Для проведения подробного параметрического исследования, позволяющего выявить возможные режимы стационарного горения, перейдем к безразмерным переменным

$$\theta_1 = \frac{T_g - T_0}{T_* - T_0}, \quad \theta_2 = \frac{T_s - T_0}{T_* - T_0}, \quad x = \frac{r}{R_2},$$

где $T_*=T_0+Q_0/c_g\rho_g=T_{g,1}$ – характерный масштаб температуры (адиабатическая температура горения газа). Тогда задача (1)–(5) примет вид:

$$w\delta \frac{d\theta_1}{dx} = \frac{1}{x} \frac{d}{dx} \left(x \frac{d\theta_1}{dx} \right) - \frac{\text{Bi}\delta}{\varepsilon} (\theta_1 - \theta_2) + \delta\varphi(\theta_1, \eta); (7)$$

$$\frac{1}{x}\frac{d}{dx}\left(x\frac{d\theta_2}{dx}\right) + \frac{\operatorname{Bi}\delta}{K_{\lambda}}\frac{1}{1-\varepsilon}(\theta_1 - \theta_2) = 0; \quad (8)$$

$$w\delta \frac{d\eta}{dx} = \operatorname{Le} \frac{1}{x} \frac{d}{dx} \left(x \frac{d\eta}{dx} \right) - \delta \varphi(\theta_1, \eta); \qquad (9)$$

$$x = x_1$$
: $\theta_1 = 0$, $\theta_2 = 0$, $\eta = 1$; (10)

$$x = 1: \quad \theta_1 = 1, \quad \frac{d\theta_2}{dx} = 0, \quad \eta = \eta_e,$$
 (11)

где $\varphi(\eta, \theta) = \eta^n \exp((\theta - 1)/(\theta + (1 - \sigma)/\sigma)/\beta); \delta = R_2^2/(\kappa t_*) - \theta$ параметр Франк-Каменецкого (отношение внешнего радиуса к величине зоны прогрева, которая формируется за некоторое характерное время $t_* = k_0^{-1} \exp(1/\beta)$ – время химического превращения при $T=T_*$); $w=t_*V/R_2$ – безразмерная скорость газа; Bi= $\alpha t_*/(c_*\rho_*)$ – параметр Био; $\phi(\eta, \theta)$ – функция химического тепловыделения; Le= D/κ_{e} – число Льюиса; σ = $(T_{*}-T_{0})/T_{*}$ – малый безразмерный параметр; $x_1 = R_1/R_2 < 1$ – внутренний безразмерный радиус цилиндра; $K_1 = \lambda_s / \lambda_s$; $\beta = RT_* / E_a - па$ раметр, характеризующий чувствительность скорости реакции изменению температуры, Κ $\sigma = (T_* - T_0) / T_* = \beta \theta_0, \ \theta_0 = (T_* - T_0) E / (RT_*^2) - \text{температур-}$ ный напор или число Зельдовича.

Условие (6) выглядит теперь так

$$\left(\frac{d\theta_1}{dx}\right)_{x_{f+0}} - \left(\frac{d\theta_1}{dx}\right)_{x_{f-0}} = \sqrt{\delta} \ w_b, \qquad (12)$$

где $w_b = u_T t_* / R_2, x_f = r_f / r.$

Стационарная задача (8)–(11) решена численно методом прогонки по следующему алгоритму: сначала находим распределение температуры и степени превращения (θ_1, η_1), используя «пробную» функцию тепловыделения $\varphi(\theta, \eta)$; далее находим следующее приближение (θ_2, η_2), рассчитывая функцию тепловыделения с помощью (θ_1, η_1). Алгоритм повторяем до тех пор, пока среднеквадратичное отклонение двух приближений по температуре и по степени превращения не станет меньше 1 %.

В расчетах определяли поля температуры газа и твердого каркаса, концентрацию реагента, а также ширину зоны химической реакции (координату зоны реакции ξ_{η} определяли по значению концентрации $\eta < 0.99$) и «скорость горения» w_b в зависимости от параметров модели. Далее по тексту кавычки опускаем.

Полагая, что твердый каркас изготовлен из Al₂O₃+Fe+Cr, а газ представляет собой смесь 10 % метана и 90 % воздуха, оценим безразмерные параметры, входящие в модель. В соответствии с [10, 11], имеем: $c_s=1250 \text{ Дж/(кг-K)}; c_g=2600 \text{ Дж/(кг-K)}; \rho_s=3750 \text{ кг/м}^3; \rho_g=0,717 \text{ кг/м}^3, \lambda_s=8 \text{ Br/(м-K)}, \lambda_g=0,0821 \text{ Br/(м-K)}; E_a=103800 \text{ Дж/моль}; Q=1,26\cdot10^6 \text{ Дж/м}^3; R_1=0,225 \text{ м}; R_2=0,3 \text{ м}; D_g=0,2717\cdot10^{-4} \text{ м}^2/\text{c}; k_0=10^{-9} \text{ c}^{-1}; T_0=300 \text{ K}; V_g=0,01...2 \text{ м/с}, \alpha=82,1...10^4 \text{ Br/(м^2-K)}. В результате получим <math>t=5\cdot10^{-3} \text{ c}; T_*=900 \text{ K}; K_{\lambda}=97,76; \sigma=0,66; Le=0,6175; \beta=0,1; Bi=10^{-5}...0,2; \delta=4\cdot10^5; w=0,001...0,2.$

Режимы горения в условиях низкого теплообмена газа с внешней поверхностью

При численном решении задачи (7)-(11) для набора параметров, характеризующих опытную горелку [9], и при условии низкого теплообмена между газом и твердым каркасом (Bi<<1) найдено, что в рамках данной модели при варьировании скорости подачи газа могут реализоваться два принципиально различных режима горения (рис. 1). Первый характеризуется практически линейным распределением температуры (рис. 1, а) и концентрации (рис. 1, δ) газа от внутреннего до внешнего радиуса рабочей части горелки. В этом случае вся рабочая часть может считаться зоной реакции. Такой режим не представляет практического интереса. Второй режим наблюдается при w>0,05 и характеризуется зоной реакции, прилегающей к внешней поверхности горелки (кривые 4-7, рис. 1).

Твердый каркас за счет внутреннего теплообмена практически не прогревается, так что говорить о теплообмене с окружающей средой излучением не приходится: температура твердого каркаса при данном наборе параметров и условиях на внешней поверхности (11) не превышает (2...7)·10⁻⁶.

Изменение координаты границы зоны реакции при варьировании разных параметров в условиях низкого теплообмена с каркасом иллюстрирует рис. 2, *а*. В некоторой области изменения параметров подачи газа положение границы ξ_{η} меняется существенно, затем зависимость $\xi_{\eta}(w)$ качественно не изменяется.

Рис. 1. Распределение: а) температуры газа; б) концентрации реагента вдоль радиуса горелки при различных скоростях подачи газа и x_1 =0,75; β =0,1; K_2 =97,56; ε =0,5; σ =0,66; η_b =0; Le=0,6175; δ =300; Bi=3·10⁻⁵. Скорость подачи газа w: 1) 3,75·10⁻⁴; 2) 0,005; 3) 0,01; 4) 0,05; 5) 0,1; 6) 0,3; 7) 1

Рис. 2. Зависимость от скорости подачи газа w: а) координаты зоны реакции ξ_n; б) скорости горения w_b, при x₁=0,75; β=0,1; K_λ=97,56; ε=0,5; σ=0,66; η_b=0; Le=0,6175; Bi=3·10⁻⁵. 1 − δ=100; 2 − δ=200; 3 − δ=400

С увеличением δ интервал скорости *w*, где реализуются режимы горения, интересные с практической точки зрения, расширяется. Скорость горения *w*_b, определенная в соответствии с условием (12), увеличивается с ростом *w* и при увеличении радиуса горелки δ (рис. 2, δ).

Прогрев каркаса при изменении Ві в интервале 0,001...0,1 для набора параметров, характеризующих горелку [9], в целом в рамках модели (7)–(11) оказывается несущественным.

Рис. 3. Зависимость координаты зоны реакции ξ_η от числа Льюиса Le при различных скоростях подачи газа w: 1) 0,01; 2) 0,1; 3) 1; x₁=0,75. β=0,1; K₁=97,56; ε=0,5; σ=0,66; η_b=0; Le=0,6175; Bi=3·10⁻⁵; δ=400

Интерес представляет влияние числа Льюиса Le на режимы горения. При выбранном наборе параметров (x_1 =0,75; β =0,1; K_{λ} >1; ε =0,5; σ =0,66; η_b =0; Le=0,6175; Bi=0,001...1,0) отношение коэффициент диффузии к коэффициенту температуропроводности на форме температурного профиля сказывается слабо, но на распределении концентрации реагента и, следовательно, на положении координаты зоны реакции ξ_{η} , – существенно. Это иллюстрирует рис. 3: с увеличением скорости подачи газа координата зоны реакции приближается к внешнему радиусу горелки.

Возможные режимы превращения реагентов реакции

При варьировании параметров модели обнаружены иные режимы превращения продуктов реакции, которые могут представлять практический интерес. Для иллюстрации намеренно выбраны значения числа Льюиса, существенно отличные (как в большую, так и в меньшую сторону) от реальных значений. Несмотря на то, что вид функции тепловыделения (рис. 4, *a*, пунктирные линии) существенно меняется при изменении Le вследствие различного характера зоны реакции (рис. 4, в), распределение температуры в твердом каркасе и ее численное значение (сплошные кривые рис. 4, б) практически не отличаются друг от друга. С увеличением Le при скорости подачи газа *w*=0,1 максимальное тепловыделение в реакции уменьшается, зоной реакции становится практически вся рабочая часть горелки, поэтому уменьшается и тепло, идущее на прогрев твердого каркаса. Вследствие высокой теплопроводности каркаса,

его температура выравнивается, и в центральной части горелки каркас становится источником тепла для газа, что видно из сравнения сплошных и пунктирных кривых на рис. 4.

При низкой скорости подачи газа ярко выраженный максимум функции тепловыделения находится в средней части горелки (рис. 4, справа), что приводит к появлению максимума тепловыделения при Le<1 в области, далекой от внешней поверхности x=1. Максимальная температура существенно превышает адиабатическую температуру $\theta_{g,1}=1$ при x=1. С увеличением Le вследствие диффузионного перемешивания зона реакции расширяется, максимум в температуре газа исчезает (пунктирные кривые 1 и 2 на рис. 4, δ , справа). Твердый каркас является «источником тепла» для газа вблизи внешней поверхности вследствие его высокой теплопроводности, $K_{\lambda} >> 1$.

Различным оказывается влияние числа Le на скорость горения w_b , определенную по ур. (12). Например, при высокой скорости подачи газа w=0,1 изменение Le на два порядка (от 0,01 до 10) привело к изменению скорости w_b от 6,82 до 8,83 (рис. 4, δ , слева). Но при w=0,03 скорость горения увеличилась значительно (см. рис. 4, δ , справа).

Расчеты показали, что уменьшение теплопроводности твердого каркаса при постоянстве всех остальных параметров приводит к смещению зоны реакции к внешней поверхности горелки, как при *w*=0,1, так и

Рис. 4. Распределение вдоль радиуса горелки: а) тепловыделения вследствие химической реакции (пунктирная кривая) и потерь тепла на прогрев каркаса (сплошная); б) температуры газа (пунктирная кривая) и каркаса (сплошная); в) концентрации реагента при различных значениях скорости подвода газа и числа Льюиса, при х₁=0,75; β=0,5; K_λ=97,56; ε=0,5; σ=0,66; η_b=0; Bi=0,2; δ=200; 1 - Le=0,01; 2 - Le=10; w=0,1 (слева); w=0,03 (справа)

при *w*=0,03 (на рисунках не показано). Узкая зона реакции (со сложной структурой), много меньшая рабочей части горелки, требует использование другого алгоритма с выделением области существенного изменения температуры и концентрации реагента.

Режимы горения в условиях высокого внешнего теплообмена газа с поверхностью

В реальном горелочном устройстве внешняя поверхность твердого каркаса прогревается до высоких температур и начинает излучать, чем обеспечивается обмен теплом с теплообменником. Нагрев внешней поверхности ($r=R_2$) может быть связан как с хорошим теплообменом внутри пористого горелочного устройства, так и с теплообменом с газом (продуктами сгорания), который турбулизуется при выходе из рабочего тела. Представленные параметры говорят о низком межфазном теплообмене. Условие внешнего теплообмена в математической модели можно выразить с помощью граничного условия вида

$$-\lambda_s \frac{dT_s}{dr} = \alpha_e (T_s - T_{g,1}) - \sigma \varepsilon_0 (T_s^4 - T_t^4), \qquad (16)$$

Рис. 5. Зависимость концентрации реагента от пространственной координаты при различных значениях числа Льюиса: 1 – 0,01; 2 – 0,5; 3 – 1; 4 – 2; 5 – 3; 6 – 5; $x_1=0,75; \beta=0,17; K_{\lambda}=50; \varepsilon=0,5; \sigma=0,66; \eta_b=0; Bi=3\cdot10^{-5}; \delta=400 \, \theta_e=0,14; Nu=87,5; B_2=36,25; a) w=0,1; 6) w=0,5$

где $T_{g,l}$, как и выше, температура горячего газа на выходе из горелочного устройства; α_e – коэффициент внешнего теплообмена ($\alpha_e >> \alpha$), зависящий от характера течения газа, скорости внешнего потока; σ – постоянная Стефана-Больцмана; ε_0 – показатель черноты; T_i – температура теплообменника. В безразмерных переменных при x=1 имеем

$$-K_{\lambda} \frac{d\theta_2}{dx} = \operatorname{Nu}(\theta_2 - 1) - B_2((\theta_2 - \frac{1 - \sigma}{\sigma})^4 - (\theta_e + \frac{1 - \sigma}{\sigma})^4) = q_{\text{conv}} - q_{\text{rad}},$$

где Nu – $\alpha_e R_2 / \lambda_g$ число Нуссельта, $\theta_e = (T_i - T_0) / (T_e - T_0)$, $B_2 = \sigma \varepsilon R_2 (T_e - T_0)^3 / \lambda_g$, $q_{\text{conv}} = \text{Nu}(\theta_2 - 1)$ – конвективный поток, $q_{\text{rad}} = B_2 ((\theta_2 - (1 - \sigma)/\sigma)^4 - (\theta_e + (1 - \sigma)/\sigma)^4)$ – поток теплового излучения каркаса.

Для керамического каркаса из Al₂O₃+Fe+Cr и газа – смеси метана с воздухом оценим параметры Nu=2,25...220,5, B_2 =38,25, θ_e =0,14 (температура те-плообменника T_t принята равной 373 K).

Как видно из рис. 5, при изменении числа Le качественное распределение кривых не меняется.

По сравнению с предыдущим, с увеличением Le зона реакции существенно расширяется, что, очевидно, сказывается на функции тепловыделения. Но хороший теплообмен на границе x=1 (при выбранных значениях параметров) и высокая теплопроводность каркаса приводят к «нечувствительности» температуры газа и каркаса к изменению числа Льюиса даже при малых скоростях фильтрации, в отличие от того, что описано выше.

В условиях хорошего внешнего теплообмена Nu>>1 температура внешней поверхности твердого каркаса становится высокой, что приводит к обмену теплом с теплообменником посредством излучения. Температура внешней поверхности твердого каркаса в этих условиях зависит практически от всех параметров модели, например, уменьшается с ростом скорости подачи газа (рис. 6, δ). В последнем случае уменьшение $\theta_2(x=1)$ связано с отводом тепла теплопроводностью вглубь горелки. Температура газа на выходе из горелки задана (θ_1 =1, x=1). При увеличении скорости подачи газа, как и выше, область существенного изменения температуры газа и зона реакции сужаются (не показано на рисунках).

С увеличением радиуса горелки и скорости подачи газа скорость горения w_b возрастает (рис. 6, *a*), что связано с увеличением градиента температуры в зоне реакции, это, в свою очередь, приводит к снижению радиационного потока (рис. 6, *в*), что в целом согласуется с известными представлениями. Постоянство Nu при варьировании скорости газа не совсем корректно с физической точки зрения — коэффициент внешнего теплообмена является функцией многих величин, характеризующих данную технологию и зависящих, как от *w*, так и от δ . В рамках данной модели не рассматриваются процессы на выходе из горелочного устройства, поэтому учесть это пока не представляется возможным.

СПИСОК ЛИТЕРАТУРЫ

- Лаевский Ю.М., Бабкин В.С. Фильтрационное горение // Распространение тепловых волн в гетерогенных средах / Под ред. Ю.Ш. Матроса. – Новосибирск: Наука, 1988. – С. 108–145.
- Dae Ki Min, Hyun Dong Shin. Laminar premixed flame stabilized inside a honeycomb ceramic // Int. J. Heat mass transfer. – 1991. – V. 34. – № 2. – P. 341–356.
- Алдушин А.П., Мержанов А.Г. Теория фильтрационного горения: Общие представления и состояние исследований // Распространение тепловых волн в гетерогенных средах / Под ред. Ю.Ш. Матроса. – Новосибирск: Наука, 1988. – С. 9–52.
- Oliveira A.A.M., Kaviany M. Nonequilibrium in the transport of heat and reactants in combustion in porous media // Progress in Energy and Combustion Science. – 2001. – V. 27. – № 5. – P. 523–545.
- Martynenko V.V., Echingo R., Yoshida R. Mathematical model of self-sustaining combustion inert porous medium with phase change under complex heat transfer // Int. J. Heat mass transfer. – 1998. – V. 41. – № 1. – Р. 117–226.

Заключение

Предложена и численно проанализирована двухтемпературная модель горения газа в пористом теле цилиндрического теплогенератора. Подробно исследовано влияние параметров модели на характеристики стационарных режимов горения газа при варьировании условий теплообмена пористой горелки с теплообменником.

На основе сформулированной модели выявлены закономерности, качественно согласующиеся с известными представлениями, что говорит об адекватности модели данным эксперимента. Численно показано, что увеличение внешнего радиуса горелки и скорости подачи газа приводит к смещению зоны реакции к внешней поверхности горелки и падению скорости горения для любого набора теплофизических параметров. Изменение числа Le оказывает значительное влияние на ширину зоны реакции, а при уменьшении энергии активации, влекущей увеличение параметра β , и уменьшении теплопроводности каркаса - на температуру каркаса и газа. Увеличение скорости подачи газа при постоянстве коэффициентов внутреннего и внешнего теплообмена приводит к уменьшению температуры каркаса и потока тепла излучением. К сожалению, во многих теоретических работах эти явления не анализируются.

Поскольку подробное исследование при проведении экспериментальных исследований затруднено, предложенная модель может быть использована для получения предварительных оценок при изучении работы реальных горелочных устройств и постановки задачи их оптимизации.

Работа выполнена при финансовой поддержке РФФИ, грант № 05-03-98000, программы «Энергосбережение» СО РАН-06.

- Henneke M.R., Ellzey J.L. Modeling of filtration combustion in a packed bed // Combustion and flame. – 1999. – V. 117. – № 4. – P. 832–840.
- Barra A.J., Diepvens G., Ellzey J.L., Henneke M.R. Numerical study of the effects on flame stabilization in a porous burner // Combustion and Flame. – 2003. – V. 134. – № 4. – P. 369–379.
- Trimis D., Durst F., Pickencker O., Pickencker K. Porous medium combustion versus combustion systems with free flames // In: Advances in Heat Transfer Enhancement and Energy Conservation [C]. – Guangzhou: South China University of Technology Press, 1998. – P. 339–345.
- Кирдяшкин А.И., Максимов Ю.М. Инфракрасная горелка на основе пористой керамики // Энергосбережение и энергоэффективность: Матер. докл. VIII Междунар. выставки-конгресса. – Томск, 2005. – С. 24–25.
- Иссерлин А.С. Основы сжигания газового топлива: Справочное пособие. Л.: Недра, 1987. 336 с.
- 11. Ксандопуло Г.И. Химия пламени. М.: Химия, 1980. 256 с.

Поступила 20.12.2006 г.