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Abstract. A new method of selective deposition of polycrystalline diamond has been
developed and studied. The diamond coatings with a complex, predetermined geometry and
resolution up to 5 um were obtained. A high density of polycrystallites in the coating area was
reached (up to 32:10" pcs/cm2). The uniformity of the film reached 100%, and the degree of
the surface contamination by parasitic crystals did not exceed 2%. The technology was based
on the application of the standard photolithography with an addition of nanodiamond
suspension into the photoresist that provided the creation of the centers of further nucleation in
the areas which require further overgrowth. The films were deposited onto monocrystalline
silicon substrates using the method of “hot filaments” in the CVD reactor. The properties of the
coating and the impact of the nanodiamond suspension concentration in the photoresist were
also studied. The potential use of the given method includes a high resolution, technological
efficiency, and low labor costs compared to the standard methods (laser treatment, chemical
etching in aggressive environments).

1. Introduction

Nowadays, the interest to the field of application of various new and better materials in semiconductor
electronics is actively growing. One of the promising materials seems to be a diamond. This material
is different from the others by a large number of parameters, which are extreme and necessary for
semiconductor electronics [1], such as the highest thermal conductivity of all solids (900-2300
W/m-K), chemical and radiation resistance, and a wide bandwidth of the optic radiation from the deep
ultraviolet to the far infrared. Pure diamond is a good electrical insulator (specific resistance
~10" Q-cm at room temperature), during doping of diamond its specific resistance can change over a
wide range from 10 to 10° (Q-cm), that turns it into a wide-gap semiconductor with a 5.4 eV band gap.
The coefficient of thermal expansion (CTE) of the diamond is one of the lowest and at room
temperature it can be compared to CTE of invar (0.8-10° K) [1, 2].

Despite these advantages, there are a lot of technological problems in the mass use of diamond in
electronics, which complicate its application and impose restrictions on its use in industrial processes.
Due to the nature of synthesis and high complexity of processing a monocrystalline diamond, it is
difficult and low-tech to create the electronic structures with a complex geometry based on it,
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especially with the size applicable in micro- and nanoelectronics [1, 3]. Therefore, the application of
the diamond in the form of polycrystalline films, which can be deposited onto homo- and getero-
substrates, seems very promising [4].

The main problem for their use is the lack of the advanced technology of their selective deposition,
which is extremely necessary for the construction of microelectronic devices. Most of the existing
methods of creating the necessary topology of semiconductor structures are almost inapplicable for
diamond. Wet etching of structures using direct and lift-off stencils is complicated by the fact that
using highly aggressive etchants at high P-T parameters is unacceptable in semiconductor electronics.
Using the lift-off stencils is limited by the fact that the high density of the diamond does not allow the
diamond layers to delete over the etched material, and only the cavities under the film are etched off
[5]. The surface laser treatment of the diamond films can be more applied to the ablation treatment
(roughness alignment) and cutting, because of high power applied and low controllability of the depth
[6]. lon etching in different atmospheres is hardly applicable because of low efficiency and long
duration of the etching process [7].

The use of high purity natural diamond is very expensive and time consuming, and there only tiny
crystals in small quantities can be obtained. The use of synthetic diamond enables to simplify the
process and to reduce its cost, but its manufacture still requires high-purity diamond substrates, and
crystal growth is very limited in size and geometry. In addition, its further processing is complicated,
because the use of the conventional methods of etching, grinding, etc., is ineffective due to resistance
of diamond to various influences [1]. Using the polycrystalline diamond enables to obtain the films on
the substrates with a similar structure of the crystal lattice that enables to avoid the use of expensive
and small diamond samples. At the same time, this type of diamond, though slightly ranks below
classic diamond, i.e. monocrystalline one, still provides the parameters unapproachable to the other
materials, combining it with a higher technological effectiveness of its production and application [1,
3]

This paper proposes a radically different method of growing polycrystalline diamond films, which
enables the selective deposition of the films with predetermined parameters of geometry and shape.

2. Experimental

Using the conventional method of producing the growth nucleation centers due to the ultrasonic
treatment of silicon wafers in the nanodiamond suspension [8] does not enable to obtaine a required
pattern without using a complex and non-technological further processing. The proposed method of
obtaining a pattern by creating nucleation centers only in the required areas by applying a photoresist
with an addition of nanodiamonds and creation of the required topology using photolithography
enables to determine the film geometry before its growth.

In our work, we studied the films obtained by the conventional method and the films obtained with
photoresist with different concentration of diamond nanoparticles by weight. The photoresist was
prepared by adding 5/10/15 (% by weight) suspension of nanodiamonds (3% by weight). That enabled
to produce photoresists with a concentration of nanodiamonds of 0.15/0.30/0.45 (% by weight),
respectively.

In the technological process we used: silicon wafers (SW) of 76 mm in diameter, 350-400 pm
thick and (111) orientation, photomask (PM) with a suitable pattern, a positive photoresist (SP-051
SU-05) mixed with diamond nanocrystals in the required proportions (0.15, 0.30, and 0.45 % by
weight).

The first phase was chemical cleaning of the wafers from contamination in ultrasound. Then, the
photoresist was applied using centrifugation, which caused the formation of the photolayer. After that,
SW was dried in an oven at a temperature of 70-90°C for solidification of the photoresist. The wafer
was aligned with PM followed by layer exposure at the AMK 2104.16 by UV with A = (250-440) nm.
The photolayer was developed in alkaline solution (KOH) and then further developed using plasma
treatment in the nitrogen atmosphere. And at the final stage the obtained silicon wafer was finally
dried in the oven at 120-140°C.
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Table 1. The main operating parameters
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Figure 1. Diagram of the diamond deposition

During the film deposition, we used a specialized CVD reactor. The reactor is based on a well-
known method of "hot filaments" [9, 10]. In this method, the gas mixture (H,/CH,) is activated
thermally using hot tungsten filaments. The temperature of tungsten filaments (0.2 mm in diameter)
was 2000+50°C (measured using the infrared pyrometer) in the reactor. The pressure during the film
deposition was 20+1 Torr at a methane concentration in hydrogen 2 %. The distance from the wafer to
the filaments was constant at 10 mm.

3. Results and discussion

The phase composition and the purity degree of the synthesized diamond films were determined using
the most accurate method, i.e. Raman spectroscopy (NanoScan Technology Centaur | HR
spectrometer). Figure 2 shows the Raman spectrum obtained in the area of the solid film. It is close to
the spectrum characteristic to monocrystalline diamond. The line width, which characterizes sp*-
carbon (1333 cm™), is less than 50 cm™, which indicates the absence of amorphous sp*-carbon. The
lines of the parasitic inclusions typical for polycrystalline diamond [11] (lines of trans-PA (1450 cm™)
and G band of graphite (1560 cm™)) are also not observed in the spectrum. Thus, the deposited films
consist of high-quality diamond material and the photoresist does not make any significant impurities
in them.



AMNT 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 116 (2016) 012001 doi:10.1088/1757-899X/116/1/012001

Raman spectra for Diamond

Intensity (a.u.)

Y
o ! o
s ey ’-mhw._um.}ﬁ&'\\w."""" y
R s
!

T T T

1150 1200 1250 1300 1380 1400 1450 1500
Raman Shift (1/cm)
Figure 2. The Raman spectrum of the deposited diamond films

The topology and uniformity of coatings was analyzed using scanning electron microscopy (FEI
Quanta 3D SEM) without adding additional conductive layers. The micrographs in Figure 3 show that
the method enables film selective deposition, despite the presence of a certain number of "parasitic"
crystallites formed in the area, where nanodiamond-containing photoresist was removed before
deposition. The creation of these crystallites can be explained by the fact that when photoresist was
washed off in the non-exposed areas, some nanodiamonds still remain on the silicon and during
deposition they serve as nucleation centers for "parasitic” crystallites. This effect increases with
increasing the concentration of nanodiamonds in the photoresist that is demonstrated by the
comparison in Figure 3 (a, b, and c) (the content of the nanodiamond is 0.15, 0.30, and 0.45 wt.%,
respectively).

Figure 3. SEM micrographs of selectively deposited diamond films on monocrystalline silicon
with different mass content of nanodiamond in the photoresist: a) 0.15%; b) 0.30%; ¢) 0.45%

9
uniformity. Thus, the comparison of the film surfaces on the samples prepared with nanodiamond
content of 0.15 and 0.45 wt.% (Figures 3a and c¢) shows that the average concentration of the
crystallites is significantly different. The samples, where the selective seeding was carried out at a low
content of nanodiamonds, take much more time to form a uniform film, and hence the average
crystallite size in such films is significantly higher, that seriously reduces the resolution of this method
of selective deposition.

Table 2. Diamond film concentration and uniformity versus the amount of nanodiamond particles in
the photoresist

Mass fraction of Average Average Average Average
nanodiamond in concentration of concentration of uniformity of  uniformity of
photoresist, % crystals in film crystals in "clean" film coating "clean" area
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(pcs/cm?®) x 10”7 area (pcs/cm?) x 10° (%) surface (%)
0.15 7.98 1.06 91.73 1.22
0.30 9.88 1.94 94.86 1.86
0.45 31.9 5.71 100 2.01

Table 2 shows the comparative statistical data on the dependences of the film uniformity and the
diamond crystallite concentration on the amount of the nanodiamond particles in the photoresist. As it
is seen, the higher concentration of the nanodiamond produces the films using smaller crystallites and
a more accurate pattern, but the number of "parasitic" crystals in the "clean" area increases
proportionally.

4. Conclusion

During this work the polycrystalline diamond films of high purity were obtained on the
monocrystalline silicon wafers and at the predetermined surface geometry by selective deposition of
photoresistive layers with nanodiamond particles using a conventional industrial photolithography.
The obtained films, already at this stage, can be applied as a protective layer for devices, which require
the coatings with improved properties of strength and chemical resistance. It is possible to simplify the
cutting and processing of the required diamond films through selective pattern. Increase in the
concentration of nanodiamond in the photoresist increases the uniformity of the films and decreases
the average size of the crystallites in them, but also causes an increase in density and "parasitic"
diamond nuclei in the areas, which should be free from films. Thus, we can conclude that this
technique requires further development to completely eliminate the formation of the unwanted
nucleation centers to be widely applied in microelectronics as layers of electronic component of the
device (dielectric, semiconductor, etc.).
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