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Abstract. The effect of adding nanocrystalline ZrO2 and submicron TiC to ultrafine Al2O3 on 

mechanical properties and the microstructure of the composites developed by hot pressing was 

investigated. It was shown that by means of hot pressing in an argon atmosphere at a sintering 

temperature of 1500 °C one can obtain the composites Al2O3 - ZrO2 - TiC with a fine structure 

and minimal porosity. It has been shown that in material a multi-scale hierarchical structure is 

formed, which possesses high physical and mechanical properties: the hardness and fracture 

toughness was 21.5 GPa and 5.2 MPa*m
1/2

 respectively, the modulus of elasticity was 500 GPa 

and bending strength was 390 MPa. Tests on composites’ cutting properties were carried out 

on interrupted cutting of hardened steel. All samples had wear of the cutting edge in the form 

of chips of the grain rear working surface of the tool, but the cutting tool which was made by 

Al2O3 - 10% ZrO2 - 10% TiC had a minimum width of wear.  

1. Introduction 

The development of ceramic composites with high hardness and chemical inertness, able to withstand 

prolonged exposure to corrosive environments, high pressure, shock, and temperature, with high 

resistance to brittle fracture and fracture toughness is the main problem of materials science now [1]. 

This problem is very important, for example, in the cutting of high-strength tempered steel due to the 

non-uniform loading of the tool, resulting in the tool life being greatly reduced [2]. Conventional 

cutting tools such as hard-alloys cannot be used in this case due to their lack of toughness and bending 

strength. One of the most promising materials for the role of such cutting tools is ceramic composites 

[3,4]. 

Alumina - TiC composites are widely used as cutting tool inserts due to their ability to machine at 

higher speeds than cemented carbides and their superior hardness, toughness and strength compared to 

alumina [5]. They are commonly known as ‘black ceramics’, having a composition of 70% alumina 

and 30% TiC, has a high hardness of about 22GPa but insufficient toughness - not more than 4 

MPa*m
1/2

[6]. Alumina - zirconia composites are also used as cutting tool inserts where zirconia 

toughens the alumina matrix by stress induced tetragonal to monoclinic martensitic phase 

transformation. The hardness and fracture toughness of Al2O3- ZrO2 composites is only 18 GPa and 5 

MPa*m
1/2

 respectively [7]. It is well known that addition of either oxide or non-oxide additives 

improve mechanical properties of alumina. In this context, addition of both oxide and non-oxide 
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additives may be an attractive option as it may impart the beneficial effects of both the additives in the 

resulting composites. It becomes even more attractive if the oxides and non-oxides are nano sized as 

the majority of the nano particles may remain at grain boundaries and interact with cracks resulting in 

interesting features not observed in conventional composites. 

The purpose of this research is to obtain an oxycarbide composite based on alumina and additives 

of zirconia and titanium carbide, in order to study its structure and physico-mechanical properties and 

test cutting properties. 

2. Materials and experimental procedure 

This study involves commercial Al2O3 powders (USA) with average particle size 4.7 µm and purity 99 

%; TiC powders (Russian manufacture) with particle size 5 µm and purity 98.0% and ZrO2 powders 

(Grade: TZ-3Y-E, Tosoh Corp., Japan) with nominal particle size 30 nm and purity 99.7%. 

 

   
Figure 1. SEM micrograph Al2O3 powders (A), ZrO2 (B), TiC (C). 

 

The mixture of powder was prepared as follows: water suspensions created individual components 

mixed with each other with a magnetic stirrer, followed by suspension sonicated. The deposition of the 

resulting composition was produced by flocculation of particles from the solution by raising the PH 

level, followed by vacuum drying. The resulting composite mixture is shown in table 1.  

 

Table 1. - The ratio of components in composites 

Samples 
Content 

Al2O3, % ZrO2, % TiC, % 

AZT-1 85 10 5 

AZT-2 80 10 10 

AZT-3 70 10 20 

AZT-4 60 10 30 

AZT-5 75 20 5 

AZT-6 70 20 10 

AZT-7 60 20 20 

AZT-8 50 20 30 

 

Ceramic composites were prepared by hot pressing in an argon atmosphere at a sintering 

temperature of 1500°С, with a pressing pressure of 50 MPa. The holding time was 10 minutes. 

X-ray diffraction data were obtained using an X-ray diffractometer with CuK radiation, grain size 

and elemental analysis of the composites were carried out on a LEO EVO 50 (Zeiss, Germany) 

scanning microscope. 

Densities of sintered samples were determined by Archimedes’ method with distilled water. For 

hardness measurements sintered samples were polished by diamond paste up to 1 µm grains and 
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indentations were made using a 5 kg load; an average of ten indents was tested. Vickers hardness was 

determined by using the formula (1).  
2854.1 dPHv      (1) 

where P – load, N; d – diagonal indentation, µm. 

Fracture toughness was determined by the formula (2). 

      5,04,02/1

1 //035.0


 alHEaHK c     (2) 

where Н – hardness, GPa; Е – Young's modulus, MPa; а – half diagonally indentation, µm; l – the 

crack length from the corner indentation, µm; φ - constant. 

Nanoindentation was performed using a G200 nanoindentor, the load was 100 mN. On the curve 

load/displacement of the indenter was calculated the modulus of elasticity of the composites. 

The flexural strength was measured using the testing machine GP-DLC 30 kN, and was calculated 

using the formula (3). 
25.1 hblРbend     (3) 

where: P – load, N; l – distance between supports, mm; b – the width of the sample, mm; h – sample 

height, mm. 

Tests of composites’ cutting properties were carried out on interrupted cutting of hardened steel. 

The material of hardened steel 40X had a diameter of 34mm. Cutting conditions: speed of rotation was 

150 m/s; feed 0.1 mm; removal depth of 0.3 mm. 

3. Results and discussion 

Elemental analysis of the fractured surface of the Al2O3 – 10% ZrO2 – 20% TiC composite (Figure. 

2,a) has shown that all phases are distributed randomly (Fig. 2, b-d), but titanium carbide has a higher 

grain size. Measuring of the average grain size of the individual components has shown that alumina 

has 1.5 microns; zirconia - 0.8 microns; titanium carbide - 2.5 microns, thus the average grain size of 

the individual components in the structure of the composites is not significantly higher than the 

average particle size of the initial powders. 

XRD analysis showed that the alumina in composites is in α- modification (corundum), zirconia is 

cubic and tetragonal modifications and titanium carbide has a NaCl-cubic lattice. 

Mechanical properties of sintered composites are shown in table 2. As one can see from the table 

the best combination of hardness and fracture toughness was achieved in the material containing 10% 

zirconia, thus the optimum combination of properties was achieved in the composite AZT-3, for other 

contents of titanium carbide the hardness and fracture toughness are lower. 

 

 
a 

 
b 

 
c 

 
d 

Figure 2. The fractured surface of nanocomposite Al2O3 - 9% ZrO2 - 20% TiC (a); element 

distributions in ZrL (b) TiK (c) and AlK (d) X-rays. 

 

The results of mechanical properties of AZT 1 - 4 samples are shown in table 3. As one can see that 

the best combination of hardness and fracture toughness is achieved in the compositions comprising 

10% zirconia. The hardness and fracture toughness in the bulk and on its surface of materials differ by 

AMNT 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 116 (2016) 012002 doi:10.1088/1757-899X/116/1/012002

3



about 10%: the hardness at the surface is smaller than in the bulk, and conversely there is higher 

fracture toughness. Thus the optimum combination of properties is achieved in the composite AZT-3. 

The addition of titanium carbide than 20% lowers the fracture toughness and hardness. A typical crack 

indentation for sample AZT-3 is shown in Figure 3. 

Such differences in the properties at the surface and in the volumes are due to contact of the 

mixtures with a graphite mold, whereby additional carbonization of oxides at the surface can occur. 

Figure 4 shows that the optical image of the edges of cutting tools were made from AZT-2, AZT-3, 

AZT-4 materials and a control sample manufactured from silicon-aluminum oxide-nitride (SiAlON) 

with the same sizes. Average widths of wear of the cutting edge, calculated on several optical images 

for each sample, depending on the composition are shown in Table 3.  

As one can see all the samples have wear of the cutting edge in the form of chips of grain on the 

rear working surface of the tool, but the cutting tool which was made from AZT-2 has a minimum 

width of wear. It is shown that the width of the cutting edge of the industrial tool SiAlON greater than 

the same values of AZT-2 and AZT-4 but chipping grains on the cutting surface were not observed.  

 

Table 2. - Mechanical properties of the composites 

Samples 
Density,  

g/cm
3
 

Relative  

density 

Hv,  

GPa 

K1с,  

MPa*m
1/2

 

AZT-1 4.03 0.97 18.6 5.04 

AZT-2 4.16 0.99 19.8 5.44 

AZT-3 4.26 0.99 21.4 5.68 

AZT-4 4.36 0.99 19.3 5.16 

AZT-5 4.32 0.99 13.3 5.82 

AZT-6 4.35 0.99 17.7 5.44 

AZT-7 4.44 0.99 16.0 5.41 

AZT-8 4.55 0.99 16.5 5.83 

 

Table 3. Hardness and fracture toughness of the composites on the surface and in the bulk. Bending 

strength. 

Samples 

Hv, GPa 

Vikers 
Nanohardness K1с, MPa*m

1/2
 

σbend, MPa 

Width of edge wear, 

µm 

Surface Bulk Hv, GPa E, GPa Surface Bulk 

AZT-1 18.6 20.6 24.9 460 5.04 4.42 438 - 

AZT-2 19.8 21.3 28.3 503 5.44 5.12 393 80 

AZT-3 21.4 19.0 25.8 502 5.68 4.29 407 140 

AZT-4 19.3 21.6 27.9 479 5.16 5.08 365 115 

SiAlON 19.6 - - 345 5.82 - - 127 

 

  
Figure 3. Optical micrograph of crack from indentation at 5 kgf for 70Al2O3-10ZrO2-20TiC  

AMNT 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 116 (2016) 012002 doi:10.1088/1757-899X/116/1/012002

4



 
 

AZT-2 

 
 

AZT-3 

 

AZT-4 

 

SiAlON 

Figure 4. The optical images of the cutting edges for AZT 1 - 4 and SiAlON. 

4. Conclusion 

1. It was shown that by hot pressing in an argon atmosphere at a sintering temperature of 1500 °C 

can be obtained the composites Al2O3 - ZrO2 - TiC with a fine structure and minimal porosity.  

2. XRD analysis has shown that in the sintered composites phase the content is the same as in 

initial mixtures. Scanning electron microscopy shows a uniform distribution of the components in a 

matrix of alumina. 

3. The best combination of mechanical properties is shown in the composite Al2O3 - 10% ZrO2 - 

20% TiC; its hardness and fracture toughness was 21.3 GPa and 5.12 MPa*m
1/2

 respectively; the 

elastic modulus was 500 GPa and the bending strength was 390 MPa. 

Acknowledgement 
This research was conducted with partial financial support by the project #14.607.21.0056- 

RFMEFI60714X0056. Elemental analysis and images composite structure obtained on a LEO EVO 50 

(Zeiss, Germany) in the "NANOTECH" ISPMS SB RAS. 

References 

[1] Ercin Cura M, Kim S H, Muukkonen T, Varjus S, Vaajoki A, Soderberg O, Suhonen T and 

Hannula S P 2013 Ceram Int. 39 2093-2105  

[2] Kumar A S, Durai A R, Sornakumar T 2003 Machinability of hardened steel using alumina based 

ceramic cutting tools Int. J Refract Met Hard Mater 21109-117  

[3] Shaw M C 2005 Tool materials metal cutting principles. 2nd ed. (New Delhi: Oxford University 

Press) pp. 307–348 

[4] Grigoryev M V, Buyakova S P and Kul'kov S N 2013 Refractories and Industrial Ceramics 11/12  

20-25 

[5] Grigoryev M V, Molchunova L M, Buyakova S P and Kul'kov S N 2013 Russian Physics Journal 

7 2 206-210. 

[6] Zhang Y, Wang L, Jiang W, Chen L and Bai G 2006 J. Eur. Ceram Soc. 26 3393-3397. 

[7] Savchenko N L, Korolev P V, Melnikov A G, Sablina T Y and Kul'kov S N 2008 Fundamental 

problems of modern materials science pp. 94-99 [in Russian] 

AMNT 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 116 (2016) 012002 doi:10.1088/1757-899X/116/1/012002

5

http://elibrary.ru/contents.asp?titleid=1836



