ЛЕГИРОВАНИЕ СТАЛИ АЗОТОМ ПРИ ПРОДУВКЕ В КОВШЕ ЧЕРЕЗ ДОННЫЕ И ПОГРУЖАЕМЫЕ ФУРМЫ

Р.А. Гизатулин *, д.т.н., проф., Н.А. Козырев **, д.т.н., проф., А.А. Сапрыкин*, к.т.н., О.Ю. Шешуков ******, к.т.н., доц., Д.А. Дудихин *, студ.

*Юргинский технологический институт (филиал)

Национального исследовательского Томского политехнического университета 652055, Кемеровская обл., г. Юрга, ул. Ленинградская, 26

** Сибирский государственный индустриальный университет

654007, Кемеровская обл., г. Новокузнецк, ул. Кирова, 42, тел.: (384) 346-35-02 *** Уральский федеральный университет им. Б.Н. Ельцина

620002, Свердловская обл., г. Екатеринбург, ул. Мира 19, тел.: (343) 350-74-01
**** Институт металлургии УрО РАН

620016, Свердловская обл., г. Екатеринбург, ул. Амундсена, 101, тел.: (343) 267-91-24 E-mail: gizatulin@tpu.ru

Использование молекулярного азота для насыщения стали представляет значительный интерес ввиду его низкой стоимости и простоты процесса. Примеры использования газообразного азота для легирования стали [1] в соответствии с теорией взаимодействия азота с жидкими металлами показывают, что скорость растворения азота и достигаемые его концентрации в металле зависят от многих факторов, в частности, от размеров пузыря.

Процесс легирования стали азотом базируется на растворении его в режиме массопереноса из пузыря в жидкий металл, скорость, которой описывается уравнением [2]

$$v_{p} = \frac{dC}{d\tau} = \frac{\beta Sn}{V} (C_{h} - C), \tag{1}$$

где С, Ср – текущая и равновесная концентрации, %;

β – средний эффективный коэффициент массопередачи от пузыря к металлу, см/с;

n – среднестатистическое число пузырей;

V – объем металла, см³;

S – поверхность пузыря, см².

Форма большинства пузырей в условиях продувки близка к грибовидной. Площадь поверхности пузыря можно определить как площадь шарового сегмента и выразить ее через радиус эквивалентного по объему шара

$$S = 18,033 \cdot r_0^2 \,. \tag{2}$$

Среднее число пузырей в металле определили по секундному расходу газа J, приведенному к температуре и среднему давлению в объеме металла, по среднестатистическому объему пузыря, высоте столба металла H над продувочным устройством, средней скорости всплывания пузырей относительно неподвижных координат, которую для стесненного всплывания можно принять равной

$$\mathbf{u} = \xi \sqrt{\mathbf{g}\mathbf{r}_{_{9}}} \,, \tag{3}$$

где ξ – постоянный множитель.

Тогда

$$n = \frac{J}{4/3\pi r_{_{9}}^{3}} \cdot \frac{H}{\sqrt{gr_{_{9}}}} \cdot \frac{T}{273} \left(1 + \frac{H}{290}\right)$$
 (4)

Среднеравновесную концентрацию, достигаемую за время подъема пузыря от продувочного устройства до поверхности металла можно определить, зная константу равновесия и коэффициент активности азота

$$C_{\rm p} = \frac{K_{\rm N}}{2f_{\rm N}} \sqrt{\frac{1+H}{145} + 1} \,. \tag{5}$$

Константу равновесия определили по формуле

$$\lg K_N = -\frac{188}{T} - 1,25$$
, (6)

а коэффициент активности азота – по методу Вагнера [3]

$$lg f_{N} = \sum e_{i}^{j} \left[\% i \right].$$

Средний эффективный коэффициент массопередачи [2, 4]

$$\beta = \frac{D_{N}}{\delta},\tag{7}$$

$$\beta = \frac{D_N}{\delta},$$

$$\delta = D_N^{0.5} v^{0.15} \sqrt{\frac{r}{W}},$$
(8)

где W = 10 см, r = 1,55 см [2];

 $D_N = 3.77 \cdot 10^{-5} \text{ cm}^2/\text{c}, v = 9 \cdot 10^{-3} \text{cm}^2/\text{c} \text{ [4]}.$

Тогда количество растворившегося в металле азота, % [5]

$$N = V_{p} \cdot \tau, \tag{9}$$

где т – время продувки, с.

В опытах использовали донные огнеупорные фурмы фирмы «Вайчер» («Veitsher»). Длительность продувки через щелевые фурмы изменяли от 5 до 72 мин при давлении в магистрали от 0,6 до 0,8 МПа и расходе азота от 40 до 70 $\text{нм}^3/\text{ч}$. Результаты обработки стали азотом приведены в таблице 1.

Отбор проб для определения содержания азота в стали осуществлялся до обработки стали, а также по ходу и после продувки расплава в ковше. Анализ проводили с использованием метода тигель-вакуумной плавки на газоанализаторе фирмы «Strohlein».

Во время продувки происходит значительное насыщение стали азотом. Прирост азота в сталь связан с общим количеством введенного в ковш газообразного азота (рисунок 1). Из рисунка 1 видно, что концентрация азота в стали значительно возрастает при введении более 20 м³ азота, что при расходе от 45 до 60 нм³/ч соответствует 20 мин продувки через донную фурму. В течение этого времени содержание азота прирастает в среднем на 0,005 % и не превышает 0,015 %.

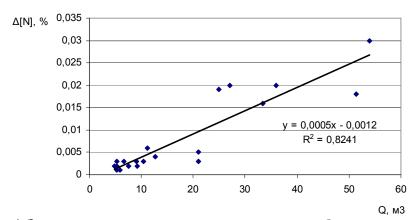


Рис. 1. Зависимость прироста содержания азота в стали и общим количеством введенного газообразного азота

При этом на плавках сравнения (продувка через верхнюю погружаемую фурму) прирост содержания азота за 5 – 15 мин продувки значительно меньше (таблица 2, рисунок 2). При среднем приросте 0,003 % содержание азота после продувки не превышало 0,012 %. В ходе исследования определено, что при введении в сталь в течение 25 - 72 мин более 0,025 % азота наблюдается «рост» слитков, поскольку значительные изменения растворимости азота в железе при фазовых превращениях ж $\to \delta$ и $\gamma \to \alpha$ ведут к образованию пузырей (таблица 3). В связи с этим при любых способах насыщения жидкого металла азотом предельно возможная концентрация его при условии получения плотного слитка определяется равновесием последних объемов закристаллизовавшегося металла с парциальным давлением азота в окружающей среде при температуре конца кристаллизации. Известно, что азот в стали находится в состоянии твердого раствора и в неметаллической фазе (с нитридообразующими элементами: алюминием, титаном, ванадием и др.) [6, 7].

Литературный анализ позволил установить зависимости образования тугоплавких соединений типа MeC и MeN и их влияния на механические характеристики рельсовой стали. Результаты исследований показали, что тугоплавкие наночастицы карбонитридов, карбидов и нитридов ванадия повышают прочностные характеристики металла (таблица 4), и в особенности увеличении стойкости рельсовой стали при пониженных температурах.

Таблица 1

Результаты продувки через донную фурму

;	Усвоение [N], %	25,00	66,80	12,60	19,19	36,67	13,70	29,30	23,50	33,50	16,80	50,30	48,89	30,86	42,23	62,19	48,89	39,60	46,90	27,60	21,00
	SiO_2	18,99	19,44	18,49	21,66	18,91	22,21	25,00	20,13	20,97	19,27	19,02	19,45	17,69	21,70	18,34	18,37	19,88	19,33	18,34	21,92
ка, % масс.	MnO	4,39	1,54	4,63	3,62	3,80	3,70	1,70	2,39	1,96	5,97	5,86	3,70	4,74	1,82	0,60	2,56	2,97	4,39	5,00	2,61
Химический состав шлака, % масс.	$\frac{\text{CaO}}{\text{SiO}_2}$	2,45	2,45	2,79	2,41	2,39	2,34	1,61	2,32	2,58	2,15	2,10	2,76	2,95	2,25	3,12	2,69	2,56	2,27	2,35	2,37
Химическ	CaO	46,52	47,62	51,60	52,20	45,20	51,98	40,26	46,71	54,11	41,44	39,95	53,69	52,20	48,82	57,22	49,42	50,90	43,90	43,11	51,95
	FeO	3,93	5,25	4,77	3,06	4,16	3,07	3,67	4,58	1,48	6,75	6,64	3,03	6,84	3,38	1,05	2,39	2,72	6,25	99,5	2,27
	Δ[N],%	0,003	0,019	0,003	0,002	0,002	0,001	0,003	0,002	0,002	0,001	0,003	0,020	0,018	0,016	0,020	0,030	0,003	900,0	0,004	0,005
	\mathbb{Z}_{κ}	0,010	0,026	0,012	600,0	800,0	600,0	0,010	0,010	0,010	0,010	0,010	0,026	0,025	0,023	0,034	0,035	0,012	0,013	0,012	0,014
	[N] %	0,007	0,007	600,0	0,007	900'0	800,0	0,007	800,0	800,0	600,0	0,007	90000	0,007	0,007	0,014	0,005	600,0	0,007	0,008	600.0
	Температура, °С	1565	1570	1545	1545	1555	1535	1550	1550	1525	1560	1550	1550	1560	1545	1555	1560	1580	1560	1555	1555
;	Количество вдуваемого азота, нм³	10,50	25,00	21,00	9,17	4,80	5,83	9,00	7,50	5,25	5,25	5,25	36,00	51,33	33,34	27,00	54,00	6,67	11,25	12,75	21,00
	Расход, нм ³ /ч	45	09	45	50	48	50	45	45	45	45	45	09	55	90	45	45	90	45	45	45
ŀ	Длительность продувки, мин	14	25	28	11	9	7	12	10	7	7	7	36	99	40	36	72	8	15	17	28
	Марка стали	$C_{T}20$	Cr20	5пс	5пс	5пс	5пс	40X	Зпс	159	Зпс	5пс	Cr45	Зпс	Cr50	40X	Cr35	5пс	Зпс	Зпс	Зпс

Таблица 2

				Pe	Результаты продувки через погружаемую фурму	увки через	погружа	емую фур					-	=
			1						^	лмическі	Химический состав шлака,	шлака, % масс.	iacc.	
Марка стали	Длительность продувки, мин	Расход, нм ³ /ч	Количество вдуваемого азота, нм ³		Температура,°С	$N_{\mathrm{H},}$	N_{κ}	Δ[N],%	FeO	CaO	$\frac{\text{CaO}}{\text{SiO}_2}$	MnO	SiO ₂	Усвоение [N], %
5сп	10	45	7,50		1600	900,0	0,01	0,004	2,22	53,62	2,60	1,97	20,62	46,90
5сп	7	40	4,67		1600	0,008	0,011	0,003	4,41	45,25	2,29	3,47	19,76	36,50
5сп	10	40	6,67		1585	0,008	0,011	0,003	2,99	50,56	2,41	2,43	20,98	39,58
Зпс	8	45	6,00		1555	0,007	800,0	0,001	2,33	35,56	2,05	3,45	17,35	14,67
Зпс	7	45	5,25		1560	0,009	0,01	0,001	4,23	48,92	2,89	1,96	16,93	16,76
5пс	7	45	5,25		1545	0,009	0,01	0,001	3,67	45,87	2,58	4,00	17,78	16,76
5пс	10	45	7,50		1545	900,0	800,0	0,002	2,98	53,34	2,87	2,49	18,59	23,47
5пс	16	47	12,53		1560	-	600,0	0,003	1,73	52,10	2,31	1,27	22,55	21,07
5пс	12	40	8,00		1550	0,009	0,012	0,003	1,90	52,11	2,30	2,08	22,66	33,00
5пс	6	42	6,30		1540	0,007	0,000	0,002	7,43	45,83	2,56	4,61	17,90	27,94
					Раство	Растворимость азота в стали	та в стал	И						Гаолица
Фаза	a	Темі	Температура, °C				0	одержан	ле азота 1	три давле	Содержание азота при давлении 10 ⁵ Па,	a, %		
жидкая	ая		1536						0	0,0348				
Ø		15	1536 - 1391						0,012	0,0126 - 0,0106				
λ		1	1391 - 910						0,022	0,0222 - 0,0310				
α			910						0	0,0043				
														Таблипа
					Физико-механические свойства рельсов	анические с	войства	рельсов						=
			После зака	После закалки и отпуска	ска			1,7	11	22	/0 s	/0	KCU^{+20}	KCU^{-60} ,
	HB_{10}	HB_{22}	$\mathrm{HB}_{\scriptscriptstyle \mathrm{III}}$	${ m HB}_{\pi 1}$	$\mathrm{HB}_{\mathrm{n}2}$	$\mathrm{HB}_{\scriptscriptstyle{\Pi K \Gamma}}$	O _D , I	O _r , ⊓/MM	Ов, п/мм	MM	0, 70	ψ, 70	Дж/см 2	Дж/см 2
С обработкой	эй 363	341	352	363	363	363	6	931	1284	34	11	34	39	37
азотом	341 - 388	321 - 363	321 - 375	341 - 375	341–388	341 - 388	862 -	862 – 1019	245 - 133	1333	9 - 13	31 - 40	25 - 49	25 - 45
Без обработки	ки 362	346	350	361	361	367	6	931	1254	54	11	35	38,8	31,3
азотом	341 – 388	321 - 375	331-388	331 - 388	341 - 375	341 - 388	862	862 – 999	1225 - 1313	1313	10 - 13	31 - 40	25 - 53	10 - 49
						Требования	_	OCT 51685-2000	00					
	≥ 341	\geq 321	≤ 388	1 3	≥ 388	341-401	ΛΙ	> 800	. 1 . 1	1176	8 ∧I	≥ 25	≥ 2.5	\geq 2,5
Числитель -	Числитель – средние значения, знаменатель – минимальные и максимальные значения	ия, знамена	тель – мини	мальные и м	лаксимальные	значения								
		,												

Рис. 2. Зависимость между приростом азота в стали и общим количеством введенного газообразного азота (погружаемая фурма)

Литература.

- 1. Свяжин А.Г. Легирование стали азотом //Черная металлургия. Бюллетень ЦНИИИ и ТЭИ ЧМ. 1990. Вып. 6. c.23 32.
- 2. Свяжин А.Г., Халек М.А., Шевченко А.Д. Массообмен при продувке жидкой стали в ковше азотом //Известия вузов. Черная металлургия. 1984. №9. с 37 42.
- 3. Григорян В.А., Белянчиков Л.Н., Стомахин А.Я. Теоретические основы электросталеплавильных процессов. М.: Металлургия, 1987. 272 с.
- 4. Свяжин А.Г., Шевченко А.Д. Определение времени выравнивания состава и температуры жидкой стали в ковше при продувке нейтральным газом //Известия АН СССР. Металлы. − 1986. №1. − с. 10 − 14.
- 5. Обработка конвертерной стали аргоном /Колпаков С.В., Шалимов А.Г., Поживанов А.М. и др. //Сталь. 1979. №3. с. 177 179.
- 6. Аверин В.В., Ревякин А.В., Федорченко В.И., Козина Л.Н. Азот в металлах. М.: Металлургия, 1976. 224 с.
- 7. Морозов А.Н. Водород и азот в стали. М.: Металлургия, 1968. 281 с.
- Valuev D. V., Danilov V. I., Serikbol A. -., Valueva A. V. Research into the Causes of the Cracking of Large Workpieces Low Carbon Steel by Pressure Treatment // Advanced Materials Research. - 2014 -Vol. 1040. - p. 250-255
- Valuev D. V., Danilov V. I. Reasons for Negative Formation of Structures in Carbon Steel Processing of Pressure // 7th International Forum on Strategic Technology (IFOST - 2012): Proceedings: in 2 vol., Tomsk, September 18-21, 2012. - Tomsk: TPU Press, 2012 - Vol. 2 - p. 151-154

ИССЛЕДОВАНИЕ ПОВЫШЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ СВАРКИ И СНИЖЕНИИ ЭНЕРГОЗАТРАТ НА ФОРМИРОВАНИЕ СВАРНЫХ ШВОВ РАВНОГО СЕЧЕНИЯ

В.Г. Добровольский, аспирант, И.В. Смирнов, к.т.н., доц,. Тольяттинский государственный университет 445667, г. Тольятти, ул. Белорусская, 14, тел. (8482)-53-92-45 E-mail: aquaweld@yandex.ru

Повышение энергоэффективности промышленных предприятий, снижение потребления ими электроэнергии является приоритетной задачей в развитии науки и техники.

В существующей практике сварочного производства применяются способы дуговой сварки основанные, преимущественно, на передаче тепла от сварочной дуги к свариваемому изделию через слой жидкого металла сварочной ванны. При этом жидкий металл сварочной ванны, располагающийся под сварочной дугой выступает в качестве теплового демпфера, в котором непроизводительно теряется часть тепловой энергии сварочной дуги. Непроизводительность потерь обусловлена тем, что