степень влияния других факторов и выработать совокупный показатель для составления итогового алгоритма расчета потерь в местах тектонических нарушений.

- Литература.
- 1. Постановление Правительства РФ от 03.02.2012 г. №82 «О внесении изменений в правила утверждения нормативов потерь».
- 2. Федеральный закон «О недрах». (В редакции Федерального закона от 3 марта 1995 года № 27-ФЗ с изменениями на 31 декабря 2014 года)
- Кочергин, А.М. Экономические аспекты нормирования потерь угля при добыче открытым способом / А.М. Кочергин, А.А. Ашихмин // Рациональное освоение недр. – М.: НИИЦ «Недра-XXI». – 2012. – №3. – С. 14-23.
- Панфилов, Е.И. О развитии методологии определения и оценки полноты и качества разработки месторождений твердых полезных ископаемых (основные положения) / Рациональное освоение недр. – 2010. – № 2. – С. 7-16.
- 5. Миронов, К.В. Справочник геолога-угольщика. / М.: Недра. 1982. 311 с.
- Хорешок, А.А. Опыт эксплуатации рабочего инструмента исполнительных органов горных машин на шахтах Кузбасса / А.А. Хорешок, А.М. Цехин, В.В. Кузнецов, А.Ю. Борисов, П.Д. Крестовоздвиженский // Горное оборудование и электромеханика. –2011. – № 4. – С. 8-11.
- Герике, Б.Л. Промышленная апробация рабочего органа машины для поверхностного фрезерования крепких горных пород / Б.Л. Герике, П.Б. Герике // Кемерово. Вестник КузГТУ. 2005. № 4.1. С. 16-20.
- Стрельников, А.В. Опыт применения обратных гидравлических лопат на разрезах ОАО «УК «Кузбассразрезуголь» / А.В. Стрельников, М.А. Тюленев // Кемерово. – Вестник КузГТУ. – 2011. – № 2. – С. 8-12.
- Тюленев, М.А. Определение числа слоев при разработке породоугольных панелей обратными гидравлическими лопатами / М.А. Тюленев, В.Г. Проноза, А.В. Стрельников // Горный информационно-аналитический бюллетень (научно-технический журнал). – М.: Горная книга. – 2012. – № S7. – С. 112-118.
- Тюленев, М.А. Разработка схем забоев для послойной проходки траншей и отработки заходок обратными гидравлическими лопатами / М.А. Тюленев, В.Г. Проноза, А.В. Стрельников // Горный информационно-аналитический бюллетень (научно-технический журнал). – М.: Горная книга. – 2011. – № S10. – С. 23-33.

РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ В СОПРЯГАЕМЫХ ЭЛЕМЕНТАХ ДИСКОВЫХ ИНСТРУМЕНТОВ ИСПОЛНИТЕЛЬНЫХ ОРГАНОВ ПРОХОДЧЕСКИХ КОМБАЙНОВ

А.А. Хорешок*, д.т.н., проф., Л.Е. Маметьев*, д.т.н., проф., А.Ю. Борисов*, ст. преп.,

А.В. Воробьев**, к.т.н, доц.

* Кузбасский государственный технический университет имени Т.Ф. Горбачева

650000, г. Кемерово, ул. Весенняя, 28

*,** Юргинский технологический институт (филиал) Национального исследовательского

Томского политехнического университета

652055, Кемеровская обл., г. Юрга, ул. Ленинградская, 26

E-mail: haa.omit@kuzstu.ru, bau.asp@rambler.ru, vorob@tpu.ru

Введение

В мировой практике проведения подземных горных выработок значительное распространение получили резцовые, дисковые и шарошечные инструменты для оснащения рабочих органов проходческих комбайнов, щитовых проходческих комплексов и агрегатов [1–10]. На кафедре горных машин и комплексов КузГТУ им. Т.Ф. Горбачева совместно с кафедрой горно-шахтного оборудования ЮТИ (филиал) НИ ТПУ проводятся исследования, направленные на разработку конструктивных модулей узлов крепления дискового инструмента, обеспечивающего расширение области применения исполнительных органов проходческих комбайнов избирательного действия на разрушение структурно-неоднородных углепородных забойных массивов. Оценка эффективности разрабатываемых технических решений осуществляется по результатам моделирования напряженно-деформированного состояния с использованием метода конечных элементов.

Распределение эквивалентных напряжений в сопряженных конструктивных элементах узлов крепления дискового инструмента к многогранным призмам. При моделировании напряженного состояния конструкций трехгранных призм с узлами крепления по трем вариантам (рис. 1, а, б, в) и четырехгранных призм (рис. 1, г, д) использованы четыре конструкции дискового инструмента диаметром D = 160 мм (три биконических с углами заострения: $1 - \varphi = \varphi_1 + \varphi_2 = 5^\circ + 25^\circ = 30^\circ$; $2 - 10^\circ + 20^\circ = 30^\circ$; $3 - 15^\circ + 15^\circ = 30^\circ$ и один конический $4 - \varphi = 0^\circ + 30^\circ$). Следует отметить, что угол заострения φ_1 биконического дискового инструмента обращен к поверхности обнажения забоя проходческой выработки.

В табл. 1 и на рис. 2 представлены зависимости распределения эквивалентных напряжений $\sigma_{_{3KB}}$ от диаметров D сопряженных конструктивных элементов узлов крепления дискового инструмента к трехгранным призмам для прогнозируемого разрушения забойного массива горных пород с $\sigma_{_{CK}} = 70$ МПа. При этом характерные сечения проходят через кромку диска и пересекают следующие сопрягаемые элементы: - для первого варианта на рис. 1, а (1 – диск, 2 – ось-цапфа), - для второго и третьего вариантов на рис. 1, б, в (1 – диск, 2 – цапфа, 3 – ось с упорным буртиком).

Рис. 1. Конструкции сопрягаемых элементов узлов крепления дискового инструмента к многогранным призмам: а – с планкой-замком, б – с винтом; в – с гайкой; г – с раздельными узлами крепления дисков; д – со спаренными узлами крепления дисков

Таблица 1

Варианты	Углы заострения		Полиномиальные зависимости	Коэффициенты
узлов	дисков			достоверности
крепления	$\phi = \phi_1 + \phi_2$, град			аппроксимации R ²
Ι	1	5°+25°	$\sigma_{_{\!\! 3\!R\!B}} = -4E - 10D^6 + 2E - 07D^5 - 4E - 05D^4 + \\ +0,0036D^3 - 0,13D^2 + 2,1824D - 3,364$	0,9116
	2	10°+20°	$\sigma_{_{3KB}} = -2E - 10D^6 + 1E - 07D^5 - 3E - 05D^4 + +0,0028D^30,1138D^2 + 1,8771D - 2,6505$	0,9
	3	15°+15°	$\sigma_{_{\!\! 3\!K\!B}}\!=\!-\!4\!E\!\!\cdot\!\!10D^6\!\!+\!2\!E\!\!\cdot\!\!07D^5\!\!\cdot\!\!5\!E\!\!\cdot\!\!05D^4\!\!+\!0,\!0044D^3\!\!\cdot\!\!$ -0,1686D ² +2,5206D-4,4542	0,875
	4	0°+30°	$\sigma_{_{\rm 3KB}} = 2E - 10D^6 - 1E - 07D^5 + 2E - 05D^4 - 0,0011D^3 + 0,0297D^2 + 0,0692D + 0,8159$	0,8987
II	1	5°+25°	$\sigma_{_{\!\! 3\!R\!B}} = -1E - 10D^6 + 8E - 08D^5 - 2E - 05D^4 + \\ +0,002D^3 - 0,0932D^2 + 1,8159D - 3,217$	0,9143
	2	10°+20°	$\sigma_{_{\rm 3KB}} = 2E - 10D^6 - 2E - 08D^5 - 4E - 06D^4 + + 0,0011D^3 - 0,0686D^2 + 1,5676D - 2,8298$	0,8901

Характер распределения эквивалентных напряжений при разрушении забоя дисковым инструментом на трехгранных призмах коронок проходческих комбайнов

Варианты узлов крепления	Углы заострения дисков $\phi = \phi_1 + \phi_2$ град		Полиномиальные зависимости	Коэффициенты достоверности аппроксимации R ²
	3	15°+15°	$\sigma_{3KB} = 5E - 10D^{6} - 2E - 07D^{5} + 2E - 05D^{4} - 0,0008D^{3} - 0,0002D^{2} + 0,6508D - 1,3489$	0,8752
	4	0°+30°	$\sigma_{xx3} = 6E - 10D^{6} - 3E - 07D^{5} + 4E - 05D^{4} - 0,0031D^{3} + 0,0984D^{2} - 0,7694D + 2,4977$	0,9467
III	1	5°+25°	$\sigma_{_{3KB}} = -1E - 10D^{6} + 6E - 08D^{5} - 1E - 05D^{4} + 0,0014D^{3} - 0,0648D^{2} + 1,5159D - 3,3668$	0,9004
	2	10°+20°	$\sigma_{\text{xs}} = -3E - 11D^6 + 6E - 08D^5 - 2E - 05D^4 + 0,0022D^3 - 0,1041D^2 + 2,0006D - 4,0917$	0,9003
	3	15°+15°	$\sigma_{sss} = 4E - 10D^{6} - 1E - 07D^{5} + 1E - 05D^{4} - 4E - 05D^{3} - 0,0253D^{2} + 0,921D - 1,7204$	0,9011
	4	0°+30°	$\sigma_{_{3KB}} = -3E - 10D^{6} + 1E - 07D^{5} - 2E - 05D^{4} + 0.0012D^{3} - 0.0291D^{2} + 0.4971D + 0.2927$	0,8799

VI Международная научно-практическая конференция с элементами научной школы «Инновационные технологии и экономика в машиностроении»

Рис. 2. Зависимости распределения эквивалентных напряжений $\sigma_{3\kappa B}$ от диаметра D сопрягаемых конструктивных элементов в сечении, проходящем через клиновую реборду дискового инструмента для *первого варианта* узла крепления к трехгранной призме (рис. 1, а): 1, 2, 3, 4 – углы заострения дисков $\phi = \phi_1 + \phi_2$ (см. табл. 1)

На рис. 3, 4 и в табл. 2 представлены картина и зависимости по распределению эквивалентных напряжений $\sigma_{_{3KB}}$ от диаметров D сопряженных конструктивных элементов узлов крепления с раздельными дисковыми инструментами к четырехгранной призме (рис. 1, е) для прогнозируемого разрушения забойного массива: уголь (1 – σ_{cx} = 12,4 МПа), порода (2 – σ_{cx} = 51 МПа; 3 – σ_{cx} = 60,6 МПа; 4 – σ_{cx} = 78,9 МПа). При этом сопрягаемыми конструктивными элементами в характерном сечении являются (рис. 1, г): 1 – диск, 2 – цапфа, 3 – ось с упорным буртиком.

Рис. 3. Картина распределения эквивалентных напряжений $\sigma_{3\kappa B}$ по критерию Мизеса в узлах крепления к четырехгранной призме при разрушении породного массива $\sigma_{c\pi} = 60,6$ МПа раздельными дисковыми инструментами с углами заострения: $a - \phi = 5^{\circ}+25^{\circ}$; $6 - \phi = 10^{\circ}+20^{\circ}$; $B - \phi = 15^{\circ}+15^{\circ}$; $r - \phi = 0^{\circ}+30^{\circ}$

Секция 5: Передовые технологии и техника для агропромышленного комплекса (АПК) и разработки недр

руктивных элементов в сечении, проходящем через клиновую реборду дискового инструмента $\varphi = 5^{\circ}+25^{\circ}$ узла крепления к четырехгранной призме (табл. 2): $1 - \sigma_{cm} = 12,4$ МПа; $2 - \sigma_{cm} = 51$ МПа; $3 - \sigma_{cm} = 60,6$ МПа; $4 - \sigma_{cm} = 78,9$ МПа

Таблица 2

Углы заострения двух дисков $\phi = \phi_1 + \phi_2$ град	Забойные массивы, о _{сж} , МПа		Полиномиальные зависимости	Коэффициенты достоверности аппроксимации R ²
T 12 12, 177	1	12,4	$\sigma_{_{3KB}} = 9E - 10D^6 - 4E - 07D^5 + 7E - 05 D^4 - 0,005D^3 + 0,1473D^2 - 0,4312D + 3,5697$	0,8307
	2	51	$\sigma_{_{3KB}} = 5E - 10D^6 - 3E - 07D^5 + 5E - 05D^4 - 0,0034D^3 + 0,0955D^2 + 0,236D + 2,227$	0,9124
3 723	3	60,6	$\sigma_{_{3KB}} = 6E - 10D^6 - 3E - 07D^5 + 5E - 05D^4 - 0,0041D^3 + 0,1219D^2 - 0,0698D + 2,6707$	0,9093
	4	78,9	$\sigma_{_{3KB}} = 2E - 09D^6 - 8E - 07D^5 + 0,0001D^4 - 0,0115D^3 + 0,3972D^2 - 3,802D + 11,028$	0,9305
10°+20°	1	12,4	$\sigma_{_{9KB}} = 9E - 10D^6 - 4E - 07D^5 + 7E - 05D^4 - 0,0051D^3 + 0,1618D^2 - 0,792D + 4,5062$	0,8155
	2	51	$\sigma_{_{3KB}} = 4E - 10D^6 - 1E - 07D^5 + 2E - 05D^4 - 0,0011D^3 - 0,0011D^2 + 1,5566D - 0,5273$	0,8962
	3	60,6	$\sigma_{_{3KB}} = 7E - 10D^6 - 3E - 07D^5 + 5E - 05D^4 - 0,0033D^3 + 0,0822D^2 + 0,4756D + 1,7038$	0,8832
	4	78,9	$\sigma_{_{3KB}} = 5E - 10D^6 - 2E - 07D^5 + 4E - 05D^4 - 0,003D^3 + 0,0857D^2 + 0,3425D + 1,9343$	0,8462
15°+15°	1	12,4	$\sigma_{_{9KB}} = 1E - 09D^6 - 5E - 07D^5 + 9E - 05D^4 - 0,0071D^3 + 0,2323D^2 - 1,9484D + 4,5644$	0,704
	2	51	$\sigma_{_{9KB}} = 7E - 10D^6 - 3E - 07D^5 + 4E - 05D^4 - 0,0025D^3 + 0,045D^2 + 0,8656D - 0,1547$	0,8645
	3	60,6	$\sigma_{_{9KB}} = 6E - 10D^6 - 2E - 07D^5 + 3E - 05D^4 - 0,0017D^3 + 0,0208D^2 + 1,1856D - 0,8734$	0,8712
	4	78,9	$\sigma_{_{9KB}} = 8E - 10D^6 - 3E - 07D^5 + 5E - 05D^4 - 0,0031D^3 + 0,0604D^2 + 0,9739D - 0,1622$	0,763
0°+30°	1	12,4	$\sigma_{_{3KB}} = 8E - 10D^6 - 4E - 07D^5 + 8E - 05D^4 - 0,0059D^3 + 0,1813D^2 - 0,9435D + 1,7707$	0,8275
	2	51	$\sigma_{_{3KB}} = 1E-09D^6-7E-07D^5+0,0001D^4-0,0099D^3+0,3281D^2-2,8843D+6,5965$	0,8627
	3	60,6	$\sigma_{_{3KB}} = 2E - 09D^6 - 8E - 07D^5 + 0,0001D^4 - 0,0108D^3 + 0,3579D^2 - 3,1909D + 6,9559$	0,8572
	4	78,9	$\sigma_{_{9KB}} = 2E - 09D^6 - 9E - 07D^5 + 0,0002D^4 - 0,0125D^3 + 0,4166D^2 - 3,8895D + 7,5362$	0,8501

Характер распределения эквивалентных напряжений при разрушении забоя раздельным дисковым инструментом на четырехгранных призмах проходческих комбайнов

В табл. 3 и на рис. 5 представлены зависимости распределения величины эквивалентных напряжений $\sigma_{_{3KB}}$ по критерию Мизеса в сопрягаемых конструктивных элементах узла крепления дискового инструмента на четырехгранной призме при разрушении горного массива $\sigma_{_{CK}}$. Характеристики горного массива: уголь ($\sigma_{_{CK}} = 12,4$ МПа; 13,5 МПа; 14,8 МПа) и порода ($\sigma_{_{CK}} = 51$ МПа; 60,6 МПа; 78,9 МПа). Произведен анализ зависимостей по сечению, проходящему через режущую кромку каждого из четырех дисков диаметром D = 160 мм с учетом углов заострения: (биконические: $\phi = \phi_1 + \phi_2 = 5^\circ + 25^\circ = 30^\circ$; $10^\circ + 20^\circ = 30^\circ$; $15^\circ + 15^\circ = 30^\circ$ и конический $\phi = 0^\circ + 30^\circ$).

Таблица 3

к четырехгранным призмам							
Углы заострения двух дисков $\phi = \phi_1 + \phi_2$		Поверхности моделирования сопрягаемых конструктивных элементов	Зависимости	Коэффициенты достоверности аппроксимации			
град		1.2		R ²			
- Pad	1	по кромке диска	$\sigma_{3KB} = 1,0115 \sigma_{CK} + 105,44$	0,9711			
	2	по ступице диска	$\sigma_{_{3KB}} = 1,1923 \sigma_{_{CK}} + 49,771$	0,9519			
501750	3	по наружной поверхности цапфы	$\sigma_{_{3KB}} = 0,5683 \sigma_{_{CK}} + 38,424$	0,685			
5*+25*	4	по внутренней поверхности цапфы	$\sigma_{3KB} = 0,1728 \sigma_{CK} + 59,486$	0,8121			
	5	по наружной поверхности оси	$\sigma_{3KB} = 0,1645 \sigma_{CK} + 57,655$	0,819			
	6	в центре оси	$\sigma_{_{3KB}} = 0,0997 \sigma_{_{CK}} + 17,194$	0,5241			
10°+20°	1	по кромке диска	$\sigma_{3KB} = 1,153 \sigma_{CK} + 94,515$	0,963			
	2	по ступице диска	$\sigma_{_{3KB}} = 0,7837 \sigma_{_{CK}} + 59,495$	0,9911			
	3	по наружной поверхности цапфы	$\sigma_{3KB} = 0,4563 \sigma_{CK} + 23,353$	0,9969			
	4	по внутренней поверхности цапфы	$\sigma_{3KB} = 0,273 \sigma_{CK} + 49,9$	0,851			
	5	по наружной поверхности оси	$\sigma_{_{3KB}} = 0,921 \sigma_{_{CK}} + 35,783$	0,5218			
	6	в центре оси	$\sigma_{_{3KB}} = 0,2206 \sigma_{_{CK}} + 22,06$	0,7235			
	1	по кромке диска	$\sigma_{3KB} = 0,9396 \sigma_{CK} + 103,59$	0,9442			
	2	по ступице диска	$\sigma_{_{3KB}} = 0,5622 \sigma_{_{CK}} + 53,984$	0,5191			
15°±15°	3	по наружной поверхности цапфы	$\sigma_{3KB} = 0,3284 \sigma_{CK} + 16,344$	0,9024			
15 +15	4	по внутренней поверхности цапфы	$\sigma_{_{3KB}} = 0,1354 \sigma_{_{CK}} + 56,883$	0,4664			
	5	по наружной поверхности оси	$\sigma_{3KB} = 0,5446 \sigma_{CK} + 47,124$	0,4087			
	6	в центре оси	$\sigma_{_{3KB}} = 0,3868 \sigma_{_{CK}} + 9,6287$	0,9629			
0°+30°	1	по кромке диска	$\sigma_{3KB} = 0,9328 \sigma_{CK} + 116,43$	0,8789			
	2	по ступице диска	$\sigma_{3KB} = 0,4487 \sigma_{CK} + 115,99$	0,9884			
	3	по наружной поверхности цапфы	$\sigma_{_{3KB}} = 0,4338 \sigma_{_{CK}} + 38,498$	0,8523			
	4	по внутренней поверхности цапфы	σ _{экв} =1,2391 σ _{сж} +38,897	0,9435			
	5	по наружной поверхности оси	$\sigma_{3KB} = 0,4039 \sigma_{CK} + 98,013$	0,6492			
	6	в центре оси	$\sigma_{3KB} = 0.0282 \sigma_{CK} + 9.5708$	0.9368			

Характер распределения эквивалентных напряжений $\sigma_{_{3KB}}$ в сопряженных конструктивных элементах узлов крепления дисковых инструментов к четырехгланным призмам

Рис. 5. Зависимости эквивалентных напряжений $\sigma_{_{3KB}}$ от предела прочности разрушаемого горного массива на сжатие $\sigma_{_{CK}}$ в диаметральном сечении по клиновой реборде диска ($\phi = 5^{\circ}+25^{\circ} = 30^{\circ}$) для сопрягаемых конструктивных элементов 1–6 (табл. 3) узла крепления к четырехгранной призме (рис. 1, г)

Перемещения в сопряженных конструктивных элементах узлов крепления дискового инструмента к многогранным призмам. Для сопрягаемых конструктивных элементов узлов крепления каждого из четырех дисковых инструментов к трехгранным (рис. 1, а, б, в) и четырехгранным призмам (рис. 1, г) произведено моделирование перемещений (рис. 6, 7). Результаты моделирования перемещений позволяют оценить жесткость сопрягаемых конструктивных элементов узлов крепления дискового инструмента с учетом зазоров, допусков и посадок, линейных и диаметральных размеров при разрушении забойных массивов проходческих горных выработок. При моделировании перемещений исключается заклинивание в работе конструктивных элементов узла крепления, которое может произойти из-за упругих деформаций конструкции под нагрузкой.

Рис. 6. Перемещения конструктивных элементов в узлах крепления биконического дискового инструмента (φ = 25°+5° = 30°) к трехгранным призмам при разрушении породного забойного массива с σ_{сж} = 70 МПа: а – с планкой-замком; б – с винтом; в – с гайкой

Рис. 7. Перемещения конструктивных элементов раздельных узлов крепления биконического дискового инструмента (φ = 25°+5° = 30°) к четырехгранным призмам при разрушении забойных массивов: a – угольного σ_{сж} = 12,4 МПа; б – породного σ_{сж} = 60,6 МПа

Следует отметить, что моделирование перемещений двух раздельных дисковых инструментов с узлами крепления на четырехгранных призмах на рис. 7 представлено через половинное изображение картин распределения перемещений при разрушении соответственно угольного забойного массива (рис. 7, а) и породного забойного массива (рис. 7, б).

Заключение

а

Анализ представленных выше результатов по распределению эквивалентных напряжений $\sigma_{_{3KB}}$ от диаметров D сопряженных конструктивных элементов узлов крепления дискового инструмента к трехгранным и четырехгранным призмам показал наличие зон с максимальными величинами в периферийной забойной части дисков с различными углами заострения и в зонах сопряжения ступиц дисков с поверхностями цапф или осей, относительно которых диски могут свободно вращаться.

Минимальный уровень эквивалентных напряжений $\sigma_{_{3KB}}$ и перемещений при разрушении забойных массивов ($\sigma_{cw} = 12,4-78,9$ МПа) отмечен установкой биконического дискового инструмента ($\phi = 5^{\circ}+25^{\circ} = 30^{\circ}$; $10^{\circ}+20^{\circ} = 30^{\circ}$; $15^{\circ}+15^{\circ} = 30^{\circ}$), а максимальный уровень эквивалентных напряжений $\sigma_{_{3KB}}$ и перемещений отмечен при использовании конического дискового инструмента ($\phi = 0^{\circ}+30^{\circ}$).

В конструкциях биконического дискового инструмента при изменении углов заострения от асимметричного ($\varphi = 5^{\circ}+25^{\circ}$; $10^{\circ}+20^{\circ}$) до симметричного ($\varphi = 15^{\circ}+15^{\circ}$) фиксируется снижение расчетного уровня максимальных эквивалентных напряжений $\sigma_{_{3KB}}$ и перемещений у симметричного диска для всех вариантов нагружения.

Зависимости распределения эквивалентных напряжений $\sigma_{_{3KB}}$ по критерию Мизеса от диаметра D сопрягаемых конструктивных элементов в сечении, проходящем через клиновую реборду дискового инструмента к многогранным призмам описывается полиномиальными зависимостями шестой степени. При этом зависимости распределения эквивалентных напряжений $\sigma_{_{3KB}}$ по критерию Мизеса на кромках дисковых инструментов консольных узлов крепления к четырехгранной призме от показателей разрушаемого горного массива σ_{cx} описываются линейными зависимостями.

Отмечено снижение размеров зон максимальных эквивалентных напряжений $\sigma_{3\kappa B}$ и перемещений на забойной грани трехгранной призмы (рис. 1, в), обращенной к забою в третьем варианте узла крепления дискового инструмента, по сравнению со вторым вариантом (рис. 1, б), что характеризует повышение жесткости крепления гайкой по сравнению с винтом.

Результаты проведенных исследований позволили разработать спаренный узел крепления двухдискового инструмента на четырехгранной призме по патенту РФ 146845 (рис. 1, д). Здесь сопрягаемыми конструктивными элементами в характерном сечении являются: диск, цапфа, ось с упорным буртиком. Отличительными особенностями данного технического решения является то, что условие совместного свободного вращения двух дисков относительно соосных цапф-втулок достигается наличием единого сборно-разборного конструктивного блока, который выполнен в виде жестко прикрепленных друг другу двух осей с упорными буртиками, одна из которых содержит шлицевой хвостовик, а другая содержит шлицевую втулку. Такое конструктивное исполнение предполагает уменьшение процесса заклинивания и износа спаренных дисковых инструментов, рациональное перераспределение эквивалентных напряжений о_{экв} при зарубке исполнительного органа проходческого комбайна с аксиальными коронками.

Рекомендована комбинированная схема набора дискового инструмента на корпусе раздаточного редуктора между аксиальными коронками исполнительного органа проходческого комбайна с размещением конических дисков в центральной зоне, а биконических дисков в остальных зонах по ширине межкорончатого пространства.

В дальнейшем планируются исследования, направленные на моделирование и оценку напряженно-деформированного состояния сопрягаемых конструктивных элементов узлов крепления спаренных дисковых инструментов на четырехгранных призмах (по патенту РФ 146845).

Технические решения и результаты исследований получены в рамках выполнения базовой части государственного задания Минобрнауки России по проекту № 632 "Исследование параметров технологий и техники для выбора и разработки инновационных технических решений по повышению эффективности эксплуатации выемочно-проходческих горных машин в Кузбассе".

Литература.

- 1. V.V. Aksenov, A.B. Efremenkov, V.Yu. Beglyakov, The influence of relative distance between ledges on the stress-strain state of the rock at a face, Applied Mechanics and Materials, 2013, Vol. 379, pp. 16-19.
- V.V. Aksenov, A.A. Khoreshok, V.Yu. Beglyakov, Justification of creation of an external propulsor for multipurpose shield-type heading machine – GEO-WALKER, Applied Mechanics and Materials, 2013, Vol. 379, pp. 20-23.
- K. R. Hong, R. H. Yang, The Major Problems and Countermeasures on the Shield Machine Tunneling in the Hard Rock Stratum, Applied Mechanics and Materials, 2011, Vols 105-107, pp. 1438-1442.
- S. A. Prokopenko, Multiple Service Life Extension of Mining and Road Machines' Cutters, Applied Mechanics and Materials, 2014, Vol 682, pp. 319-323.
- X. H. Li, W. Du, Z. L. Huang, W. L. Fu, Simulation of Disc Cutter Loads Based on ANSYS/LS-DYNA, Applied Mechanics and Materials, 2011, Vol 127, pp. 385-389.
- B. Zhao, X. M. Zong, B. He, L. J. Zhang, Multi Variable Multi Objective Optimization for the Cutting Head of Roadheader, Applied Mechanics and Materials, 2014, Vols 635-637, pp. 358-364

- 7. Y. Zhang, X. W. Wang, H. F. Liu, Numerical Simulation of Rock-Breaking Process by Disc Cutter in Tunnel Boring Machine, Applied Mechanics and Materials, 2014, Vol 487, pp. 513-516.
- F. H. Li, Z. X. Cai, Y. L. Kang, A Theoretical Model for Estimating the Wear of the Disc Cutter, Applied Mechanics and Materials, 2011, Vols 90-93, pp. 2232-2236.
- Z. L. Zhou, X. B. Li, G. Y. Zhao, Z. X. Liu, G. J. Xu, Excavation of High-Stressed Hard Rock with Roadheader, Applied Mechanics and Materials, 2011, Vols 52-54, pp. 905-908.
- X. D. Wang, M. Q. Shi, S. J. Gao, Y. C. Guo, Design of Transverse Boom-Type Roadheader Remote Control System, Applied Mechanics and Materials, 2014, Vols 701-702, pp. 679-683.

МОДЕЛИРОВАНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ КОНСТРУКТИВНЫХ МОДУЛЕЙ С ДИСКОВЫМ ИНСТРУМЕНТОМ ПРИ РАЗРУШЕНИИ ПРОХОДЧЕСКИХ ЗАБОЕВ

А.А. Хорешок*, д.т.н., проф., Л.Е. Маметьев*, д.т.н., проф., А.Ю. Борисов*,ст. преп.,

А.В. Воробьев**, к.т.н, доц.

* Кузбасский государственный технический университет имени Т.Ф. Горбачева

650000, г. Кемерово, ул. Весенняя, 28

*, ** Юргинский технологический институт (филиал) Национального исследовательского

Томского политехнического университета

652055, Кемеровская обл., г. Юрга, ул. Ленинградская, 26

E-mail: haa.omit@kuzstu.ru, bau.asp@rambler.ru, vorob@tpu.ru

При моделировании напряженного состояния конструкций трехгранных призм с узлами крепления по трем вариантам (рис. 1, а, б, в) и четырехгранных призм (рис. 1, г, д) использованы четыре конструкции дискового инструмента диаметром D = 160 мм (три биконических с углами заострения: $1 - \varphi = \varphi_1 + \varphi_2 = 5^\circ + 25^\circ = 30^\circ$; $2 - 10^\circ + 20^\circ = 30^\circ$; $3 - 15^\circ + 15^\circ = 30^\circ$ и один конический $4 - \varphi = 0^\circ + 30^\circ$) [1–12]. Следует отметить, что угол заострения φ_1 биконического дискового инструмента обращен к поверхности обнажения забоя проходческой выработки.

Например, в табл. 1 и на рис. 2–4 представлены зависимости распределения эквивалентных напряжений $\sigma_{3\kappa B}$ от диаметров D сопряженных конструктивных элементов узлов крепления дискового инструмента к трехгранным призмам для прогнозируемого разрушения забойного массива горных пород с $\sigma_{cw} = 70$ МПа. При этом сопрягаемыми конструктивными элементами в характерном сечении являются: - для первого варианта на рис. 1, а (1 – диск, 2 – ось-цапфа), - для второго и третьего вариантов на рис. 1, б, в (1 – диск, 2 – цапфа, 3 – ось с упорным буртиком).

Рис. 1. Конструкции сопрягаемых элементов узлов крепления дискового инструмента к многогранным призмам: а – с планкой-замком [1], б – с винтом [2]; в – с гайкой [5]; г – с раздельными узлами крепления дисков [11]; д – со спаренными узлами крепления дисков [12]