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Abstract. The article considers the effect of porous media on elastic wave field. Based on 

numerical modeling, diffraction pattern of the wave propagating through a single pore in 

carbonates has been produced. Matrix properties (calcite and dolomite) and fluid (water) are 

modeled based on thin core section image. The qualitative comparison with the available 

computational data has been performed. Provided that ensemble of pores is involved, the effect 

of porous medium on seismic field has been studied. For comparison with experimental data 

the model of porous sintered aluminum Al-6061 has been considered. The processing of 

numerical modeling results made it possible to estimate average velocities in the model of 

porous aluminum and compare them with physical modeling data. The provided estimates have 

indicated qualitative (single pore) and quantitative (ensemble of pores) correlation of 

simulation and experiment results. 

1. Introduction 

Porous media and their effect on the elastic wave field has been a current issue for the past few 

decades. This interest is due to both material engineering objectives and hydrocarbon exploration. 

These two different knowledge domains are interrelated in physical modeling. For example, in 

laboratory modeling of seismic waves in porous media several types of solids including aluminum [1, 

2], soda-lime glass [3] can be used as a matrix material. In laboratory experiments both statistical and 

dynamic characteristics are estimated, P- and S- wave velocities being basic types among them. 

Considering porous media, the main disadvantage of laboratory models is that it is difficult to measure 

their primary properties – porosity, while elastic matrix model results in problems associated with 

experiment producibility. 

Computer modeling does not have this disadvantage; however, it requires qualitative calibration 

of results and quantitative wherever it is possible. The analysis of numerical results in wave field 

calculation in porous media implies estimation of the wave velocity change. The comparison of these 

estimates with physical modeling data is referred to as quantitative calibration. For qualitative analysis 

one may refer to diffraction patterns, wavefront comparison, particle-motion polarization and so on.  

In the present research computer modeling of total field of elastic waves (seismic field) has been 

performed. In solving an inverse problem an explicit second-order conditionally stable scheme is 

applied [4], involving a set of modifications [5] to carry out calculations for a large range of 

wavelengths (> 100 λ). 
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2. Problem setting 

Modeling of total wave field is performed for two problems, two different medium models and two 

scenarios. 

Problem one- the model of a single large-size pore filled with fluid and propagation of elastic pores 

is subjected to analysis. In this scenario calculations performed in this model compare the total wave 

field with calculation results (i.e. comparison of qualitative patterns).  

Problem two- plane wave propagation in a porous layer with random pore distribution is 

considered. Calculations performed in this model describe how velocity of P-wave propagation 

changes due to porosity. Calculation involves two porosity values for which laboratory modeling data 

are available.  

If a single pore is being considered, calculation results are compared with finite-difference 

modeling [6]. To calculate wave field induced in the media with ensemble of pores, the model 

equivalent to porous aluminium (sintered Al-6061) has been produced [2].  The choice of the material 

is made due to existing quantitative physical modeling data. 

Linearized finite-difference method proposed by J Wilkinson is used to solve both problems [4, 5]. 

3. Numerical modeling 

The effect of a single pore on propagating seismic wave was considered. One of the recent 

publications [6] is devoted to the calculation of seismic field diffraction induced by a single pore  for 

different frequencies. It involves an image of carbonate rock section and simplified matrix of elastic 

characteristics for analysis. 

The problem of plane wave propagation was solved through the model of medium sample 

introduced from the above -mentioned-research [6]. Figure 1 presents geometry of the first problem, a 

model containing one large-size pore, incident-wave signal. The signal (elastic wave) is represented by 

a damped sinusoid with wavelength which is approximately 10 times less than the characteristic “pore 

thickness” L (shown figure 1). In this case, calculation L is 200 computational cells; wavelength λ=20 

computational cells. 

 

 

Figure 1. P-wave velocity matrix in the sample, m/s (according to [6]), an 

arrow indicates direction of plane-wave propagation represented by 

a damped sinusoid. 
 

In this scenario the main peculiarity of diffraction is dissipation of incident wavefront around a 

pore (figure 2). Pore material (fluid) has substantially lower impedance. Interaction of reflections and 

refractions caused by a single pore results in distinctive local attenuation of wavefront is observed in 

the figure. Figure 2 represents a shadow-graph of wave fields. Black and white colors are extrema of 

PGON2015 IOP Publishing
IOP Conf. Series: Earth and Environmental Science 27 (2015) 012027 doi:10.1088/1755-1315/27/1/012027

2



alternating damped sinusoid. Grey background in figure 2 indicates areas where there are no 

disturbances. 

 

 
Figure 2. Full-waveform seismic data (wave pattern) 

resulting from impulse-pore interaction. An arrow 

indicates direction of P wave incidence representing 

a damped sinusoid. L indicates pore location. 
 

At a later stage (figure 3 a, b) when a wave has travelled through the pore, reflected off the model 

boundary and travelled through the pore again, wave pattern is almost random. Small sections with P-

wave trains can be distinguished (P indicates these areas in figure 3). As we compare our calculations 

with the results given in [6], figure 10 from the mentioned publication is presented in figure 3, b. 

 

 
Figure 3. а – present calculation result, b – calculations from ([6], figure 10). 

P indicates observable P-wave trains in both calculations/ 
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It is obvious that in both cases a pore is affected by short-period vibrations (black and white colors 

in the figures are wave extrema); pore margins are clearly traced in seismic profile. In figure 3, an 

event time corresponds to that of pseudo-random field formation which can be observed in [6]. Thus, 

solution to the first problem has indicated that a single pore can be displayed in a wave field due to 

contrasting properties, with apparent diffraction patterns being a constituent feature of the wave field. 

This is a kind of qualitative test for calculation program which has been further applied to the solution 

of porous layer problem. 

Elastic wave incident in a medium which contains a layer with random arrangement of pores is 

being considered. Two porosity values (9% and 17 %) have been considered, since there were data of 

laboratory modeling for these values in publications [2].  The problem geometry is shown in figure 4. 

 

 
Figure 4. Geometry of wave propagation in 

a porous medium. 

 

A plane compressional wave strikes AB boundary. The medium is homogenous above 

EF line, with aluminum parameters being Al-6061: Vp=6260 m/s, Vs =3080 m/s, ρ=2700 

kg/m
3
. Below EF line there is random porous medium (11% illustrated in the figure), with 

fluid characteristics being Vp=331 m/s, Vs =0 m/s, ρ=1.225 kg/ m
3
 

Contrarily to the previous problem, it is necessary to estimate wave extrema movement along 

the model, therefore, Riker impulse was employed as output signal. 

 

where, f – frequency, t0 – 1/f – impulse period,  -Y-component of drift velocity  

Pore-size distribution is presented in figure 5. Minimum size is 1 computational cell, whereas 

maximum size in case of 17% porosity is 10 cells. 
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Figure 5. Pore-size distribution. 

 
Quantitative testing algorithm for calculating elastic wave propagation in a porous medium has 

involved solving the problem in experimental analysis, results of which are available [2]. The 

mentioned experiment presents data on sintered aluminium mesostructure considering two cases: 9 % 

and 17 % porosity. 

Pore size is about 20x10
-6

 m, acoustic frequency is 5MHz, wavelength  0.1 cm. Thus, pore size is 

merely 50 times less than the wavelength, therefore, such pores can be described by several 

computational cells. According to experimental results in [2] on aluminium medium with 9 % 

porosity, average velocity of compressional wave propagation is VP =5125 m/s, and VP =4120 m/s for 

17% porosity sample. 

Numerical modeling of plane compressional wave propagation has been carried out regarding these 

porosity values. During modeling average velocity of P-wave propagation was determined on the basis 

of the slope of time-distance graph. As matrix is dry in a medium, pores were considered to be filled 

with air k
air

 = 0.00014 hPa, ρ
air

 = 1.2 kg/m
3
.  

The digital images of seismic field throughout the model at two time points can be observed in 

figure 6. The record indicates that at 40 ms time point incident wave front has reached porous section 

of the model, while at the time point of 60 ms the wave has propagated through the calculated area. 

The result of pore ensemble diffraction can be clearly seen around certain pores. 
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Figure 6. The left-hand shot corresponds to 40ms time point; right-hand shot 

– 60 ms time point. 
 

Calculations have shown that in the case of 9% porosity compressional wave velocity is 

VP=5123 m/s, while porosity at 17 %, compressional wave velocity is VP =4074 m/s. 

4. Conclusion 
Thus, the numerical modeling of velocities in porous aluminium, based on the results of above-

mentioned procedures differed from velocities calculated in the experiment (medium porosity 9 %) by 

0.04%; whereas porosity being 17 %, discrepancy is 1.1 %. 

Based on numerical modeling, the effect of porous medium on seismic field has been studied, with 

a single pore and pore ensemble effects being involved. In the case of a single pore simulation, 

calculations correspond to results of researches published by other authors. Model of medium with 

porous layer being produced, analysis of numerical modeling results made it possible to estimate 

average velocities and compare them with the data of physical modeling. It has been shown that 

calculations yield results are sufficiently consistent which, in its turn, is proved by qualitative (single 

pore simulation) and quantitative (pore ensemble simulation) testing. 
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