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Abstract. The issue of improving the energy and resource efficiency of advanced petroleum 

processing can be solved by the development of adequate mathematical model based on 

physical and chemical regularities of process reactions with a high predictive potential in the 

advanced petroleum refining. In this work, the development of formalized hydrocarbon 

conversion scheme of catalytic cracking was performed using thermodynamic parameters of 

reaction defined by the Density Functional Theory. The list of reaction was compiled 

according to the results of feedstock structural-group composition definition, which was done 

by the n-d-m-method, the Hazelvuda method, qualitative composition of feedstock defined by 

gas chromatography-mass spectrometry and individual composition of catalytic cracking 

gasoline fraction. Formalized hydrocarbon conversion scheme of catalytic cracking will 

become the basis for the development of the catalytic cracking kinetic model. 

1. Introduction 

At the present stage of fuel chemical technology development the advanced petroleum refining 

processes are the most significant for refining, because the industrial sector is focused on the efficient 

use of natural fuel-power resources and the demand in fuel is increasing every year. 

Currently, the construction of modern technologies for advanced petroleum processing such as 

hydrocracking, catalytic cracking, hydrotreating of heavy hydrocarbon fractions, hydrodewaxing and 

hydroisomerization is organized at the major refinery plants. Modernization of the refinery industry is 

principally connected with the aim to create a competitive refining and petrochemical sector, 

corresponding the high level of modern foreign refineries (oil refining depth – 85-95%). 

Advanced petroleum processing is aimed to the production of light hydrocarbon fractions (mainly 

gasoline and diesel fractions) from the heavy fraction of petroleum feedstock. 

Exploitation of advanced petroleum processing units in the energy and resource-efficient modes 

should be carried out with the application of the mathematical models which are based on the 

hydrocarbon conversion mechanism reflecting the physical and chemical essence of process [1, 2]. 

It is important to take into account factors that influence the quality and quantity of production 

(multi-component of feedstock, catalyst types, process conditions, associativity of flowsheet devices 

and others.) during the development of mathematical model of the reactor. In addition, in petroleum 

fractions with boiling point above 200 °C the cyclic hydrocarbons are of mixed (hybrid) nature. 

Usually cyclic hydrocarbons contain the side paraffinic chains and, simultaneously, a part of 

naphthenic and aromatic rings. 
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In general, the mathematical model of reactor represents a set of hydrodynamic and kinetic 

components supplemented by the material and heat balance equation. 

The aim of this work is to develop the formalized hydrocarbon conversion scheme in advanced 

petroleum processing on the example of the catalytic cracking vacuum distillate on the basis of which 

the mathematical model of the catalytic cracking reactor-regenerator will be further developed. 

Technological aggregation on the certain characteristics is generally applied during the 

development of mathematical description of the refining process. Reaction system components are 

aggregated according to their belonging to the specific hydrocarbon series [3,4] and the least probable 

reaction is excluded from the list in order to simplify schemes. This approach is characterized by the 

reaction mechanism with the average reactivity of hydrocarbon groups. 

Since the difficulty of advanced petroleum processing modeling lies in the determination of group 

composition of heavy hydrocarbon fraction, the most popular approach to the formalization of such 

processing scheme will be the technological aggregation on the fraction boiling point [5–10]. 

However, the chemical composition of the fractions is diverse and the scheme does not take into 

account the different reactivity within the selected groups. 

There are combined models which take into account not only interactions of pseudocomponents on 

the fractional composition but also the chemical conversion of the main hydrocarbon groups of the 

catalytic cracking reaction system [11–14] and also deactivation functions, diffusion effects, chemical 

reaction and etc. [15–22]. 

The selection of the formalization level of hydrocarbon chemical conversions is an important stage 

in the development of mathematical description, which is preceded by the stages of studying of the 

theoretical foundations and experimental data on the hydrocarbon composition of installation streams, 

analysis of technological modes of reactor operation and the identification of features of industrial 

units exploitation, laboratory investigation (such as chromatography mass spectrometry, 

chromatography, n-d-m-method, Hazelvud-method) and thermodynamic analysis of the catalytic 

cracking reactions. 

2. Determination of quality and structural-group composition of catalytic cracking feedstock 

Data concerning quantitative and qualitative group composition of catalytic cracking feedstock and 

individual composition of gasoline fraction is required for the development of the formalized 

hydrocarbon conversion scheme in the catalytic cracking.  

Liquid adsorption chromatographic separation on silica gel ASA with a grain size of 0.2 - 0.3 mm 

was performed according to VNII NP algorithm with the aim to determine the structural-group 

composition of catalytic cracking feedstock. Hydrocarbon fractions were extracted sequentially by 

desorption method with the application of solvents with different polarity (hexane, toluene and 

hexane, ethyl alcohol and toluene). The laboratory investigation results of catalytic cracking feedstock 

showed that paraffinic and naphthenic content equal to 61.20% wt, aromatic content of 35.57% wt. 

and resin content of 3.23% wt.  

Hydrocarbons were separated by the refractive index on paraffin-naphthenic and aromatic fraction. 

Measurement accuracy of refractometer IRF-22 was tested by hexane refractive index. Structural-

group composition of paraffin-naphthenic fractions was determined by the n-d-m-method, for aromatic 

hydrocarbon fraction by the Hazelvud-method (table 1). 

Besides, the research in the determination of molecular weight and total sulfur content in catalytic 

cracking feedstock was performed. The devices CRYETTEWR, determining the freezing point of the 

samples and X-ray fluorescence energy-dispersive analyzer of sulfur "SPECTROSCAN SL», were 

applied for this purpose. The sulfur content and molecular weight of the feedstock is 0.0461% wt. and 

382.43 g/mol respectively. 

Mass-spectra of the catalytic cracking feedstock components were obtained in the laboratory by gas 

chromatography-mass spectrometry for determining qualitative composition of raw materials. 

Chromatography-mass spectrometer Hewlett Packard 6890 Gas Chromatograph System with 

5973 Mass Selective Detector with GC Chemstation software was applied as the analytical equipment. 
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Table 1. Structural-group composition of catalytic cracking feedstock. 

Parameter Paraffin-naphthenic fraction Aromatic fraction 

Carbon content in the aromatic structures (Са)  2.59 27.52 

Carbon content in the naphthenic structures (Сn) 31.27 55.73 

Carbon content in paraffinic structures (Сp) 66.14 16.76 

Average number of aromatic rings (Ка) 0.14 1.40 

Average number of naphthenic rings (Кn) 2.05 3.90 

Total number of rings (Ко) 2.19 5.30 

 

According to the structural group composition data of paraffin and naphthenic fraction of catalytic 

cracking feedstock (n-d-m-method), the fraction contains some amount of aromatic structures. It can 

be explained by the fact that the sorption of this structure is substantially similar with the sorption of 

naphthenes and that the small amount of this structure is washed out by the solvent. Content of 

aromatic structure is 2.59 % in catalytic cracking feedstock. Content of carbon quantity in naphthenic 

structures of feedstock is 31.27 %, the average number of naphthenic rings - 2.05 units.  

According to the results of gas chromatography-mass spectrometry, the paraffin hydrocarbons are 

presented by hydrocarbons with the carbon number С13–С40. Naphthenic hydrocarbons are presented 

by mono- and polycycloalkanes with long alkyl substituents of normal and iso-structure with carbon 

atoms in the alkyl substituents alkilnyh С1–С25 (figure 1). 

 

  

 
 

Figure 1. Examples of naphthenic 

hydrocarbons molecular structures 

(methylalkylcyclohexanes, bicycloalkanes, 

dimethylalkylcyclohexanes, etc.) 

 

According to the analysis of aromatic concentrates by the Hazelvude-method the aromatic structure 

is presented by hybrid structures. In aromatic fractions isolated from catalytic cracking feedstock the 

average number of naphthenic rings (3.9 units) is more than the number of aromatic rings (1.4 units). 

The total content of rings in catalytic cracking feedstock is 5.3 units. The carbon content in aromatic 

and naphtenic structures of feedstock is 27.52 and 55.73 % respectively. Carbon content in paraffinic 

fragments of aromatic concentrate indicates the presence of alkyl substituted of aromatic hydrocarbons 

and naphthenes; the content of paraffins fragments – 16.76%. The simplest representatives of aromatic 

hydrocarbons of catalytic cracking feedstock are monoalkylbenzenes, methylalkylbenzenes, methyl 

and substituted naphthalenes, monoaromatic steroids, etc. 

Laboratory investigation by the gas-liquid chromatography was conducted to determine an 

individual composition of catalytic cracking gasoline fraction using a gas chromatograph 

"HROMATEK - CRYSTAL 5000" version 2 with a flame ionization detector and capillary column 

DV -1 100·0.25·0.5. Software "Chromatec analyst" for the management, collection and processing of 

chromatographic information was used. The results of determining the individual composition of 

gasoline fraction was processed using the software developed at the Department of Fuel Engineering 

and Chemical Cybernetics of Tomsk Polytechnic University (table 2). The program is destined for 

processing of chromatographic data to determine the allocation of high-octane components of gasoline 

and aggregation of gasoline hydrocarbons according to the different chemical characteristics 

(molecular structure, reactivity, octane number etc.) 

3. Thermodynamic analysis of the catalytic cracking reactions 

The feedstock of advanced petroleum processing is characterized by the high boiling point of fractions 

(350-570 °C). Thermodynamic parameters of reactions involving the high molecular weight 

hydrocarbons are virtually absent in directory. Furthermore, it is also important to take into account 

the real operating conditions of industrial unit at calculation of reactions thermodynamic parameters, 

as well as the interaction effects of hydrocarbons molecules with the reaction mixture molecules in the 
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Table 2. Individual and combined components of the catalytic cracking gasoline fraction. 

Component % wt Component % wt Component % wt 

propane 0.082 trimethylhexanes 0.633 tetramethylbenzenes 1.303 

n-butane 0.331 isoaraffins С9 1.214 aromatics C10 6.213 

n-pentane 0.504 methylnonanes 0.957 aromatics C11+ 5.416 

n-hexane 0.586 dimethyloctanes 0.835 butene-1 0.483 

n-heptane 0.411 isoaraffins C10 0.438 butene-2 1.422 

n-octane 0.382 isoaraffins C11+ 1.394 isobutylene 0.468 

n-nonane  0.236 cyclopentane 0.114 olefins C4 0.007 

n-decane 0.215 methylcyclopentane 1.939 pentene-2 0.959 

paraffins С11+ 0.284 ethylcyclopentane 0.120 pentene-1 0.327 

i-butane 0.984 dimethylcyclopentanes 0.460 Methylbutenes-1 0.933 

i-pentane 3.900 ethylmethylcyclopentanes 0.133 2-methylbutene-2 1.741 

2-methylpentane 3.149 trimethylcyclopentanes 0.474 cyclopentene 0.243 

3-methylpentane 2.095 n-propylcyclopentane 1.906 olefins C5 0.031 

2,2-dimethylbutane 0.013 cyclohexane 0.706 hexene-1 0.166 

2,3-dimethylbutane 0.713 methylcyclohexane 1.428 hexene-2 0.292 

2-methylhexane 2.537 1,2-dimethylcyclohexanes 0.226 hexene-3 1.003 

3-methylhexane 1.852 1,3-dimethylcyclohexanes 0.302 methylcyclopentenes 0.662 

3-ethylpentane 0.128 naphthenes C8 0.968 methylpentenes-1 0.613 

2,3-dimethylpentane 0.073 naphthenes C9 1.375 methylpentenes-2 2.058 

2,4-dimethylpentane 0.518 naphthenes C10+ 1.148 cyclohexene 0.077 

2,2,3-trimethylbutane 0.019 benzene 0.583 olefins C6 0.896 

2-methylheptane 1.094 toluene 3.295 heptene-1 0.042 

3-methylheptane 1.277 ethylbenzene 1.355 heptene-3 0.323 

3-ethylhexane 0.299 i-propylbenzene 0.063 methylhexenes 0.647 

2,3-dimethylhexane 0.12 n-propylbenzene 0.517 dimethylpentenes-2 0.156 

2,4-dimethylhexane 0.352 1,3,5-trimethylbenzene 0.887 olefins C7 1.632 

2,3,4-trimethylpentane 0.011 1,2,4-trimethylbenzene 2.675 octene-2 0.067 

methylethylpentanes 0.435 1,2,3-trimethylbenzene 0.682 octene-3 0.098 

methyloctanes 1.982 dimethylbenzene= xylols 6.154 olefins C8 0.771 

dimethylheptanes 0.598 methylethylbenzenes 3.251 olefins C9+ 1.705 

 

calculation of the thermodynamic parameters of reactions. 

The software Gaussian which implements the quantum-chemical methods of calculation of the 

molecule electronic structure and provides adequacy and sufficient accuracy of calculations for 

chemical reactions simulation of refinery processing was used to solve these difficulties.The ab initio 

(non-empirical) method DFT – Density Functional Theory was used as a main calculation method. 

Theoretical approximation was B3LYP model (Becke’s density functional theory (B3) with theoretical 

approach using Lee, Yang and Parr electron correlation (LYP), 3-21G basis.  

The list of anticipated catalytic cracking reactions was made on the basis the laboratory 

investigations to determine the structural-group and quality composition of feedstock and individual 

composition of the gasoline fraction.  

The calculation results of the average values of the thermodynamic parameters of the most 

probable catalytic cracking reactions at the process conditions (T = 504 ° C, P = 0.108 MPa).are 

presented in table 3. The values of Gibbs energy reaction (ΔG) characterizes the probability of 

reaction and it value is necessary for formalization of the hydrocarbon chemical transformations 

scheme, which will be the foundation to the catalytic cracking kinetic model. 

According to the calculated thermodynamic values, the reactions of high molecular weight 

paraffins cracking (ΔG = –76.26 kJ/mol), hydrogen transfer (ΔG = –140.24 kJ/mol), dehydrogenation 

of naphthenes (ΔG= –114.33 kJ/mol), dealkylation of aromatic hydrocarbons (ΔG= –76.39 kJ/mol) 

and naphthenes (ΔG= –107.65 kJ/mol) as well as coke formation reactions (ΔG= –597.2 kJ/mol) are 

having the most thermodynamic probability. 
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Table 3. The average values of the thermodynamic parameters of catalytic cracking reactions  

Hydrocarbon groups 
ΔH, 

kJ / mol 

ΔG, 

kJ / mol 

Cracking of high molecular weight n-paraffins С13–С40 69.46 –76.26 

Cracking of high molecular weight n-paraffins with formation of isoparafins  66.96 – 66.28 

Cracking of medium weight n-paraffins and C5–C12  73.60 – 55.63 

Isomerization of medium weight paraffins С5-С12 –1.78 – 0.56 

Cracking of olefins; 92.72 –32.36 

Dealkylation of naphthenes; 118.14 –107.65 

Hydrogen transfer; 74.26 –140.24 

Dealkylation of aromatic hydrocarbons; 109.68 –76.39 

Dehydrogenation of naphthenes; 210.68 –114.33 

Cyclization of olefins to naphthenes –53.8 –7.54 

Polycondensation and coke formation 104.89 –597.20 

4. Development of formalized hydrocarbon conversions scheme in the catalytic cracking 

Formalized hydrocarbon conversions scheme in the catalytic cracking was composed according to the 

results of thermodynamic analysis taking into account the reversibility of reaction. Detailed 

hydrocarbon conversion scheme with taking into account the feedstock components, light and heavy 

gasoil are presented in figure 2. 

 

 

Figure 2. 

Formalized 

hydrocarbon 

conversion scheme 

in the catalytic 

cracking: 

kj and k-j – reaction 

rate constants in 

forward and reverse 

direction. 

 

Paraffinic hydrocarbons are represented by two groups in the formalized hydrocarbon conversion 

scheme: "Paraffins MMW" group contains the normal paraffins of gasoline fraction C5-C12 and 

"Paraffins HMW" group contains paraffinic hydrocarbons of vacuum distillate С13–С40. Such 

distribution of paraffinic hydrocarbons on groups was based on the analysis results of catalytic 

cracking feedstock by gas chromatography-mass spectrometry, analysis of the gasoline fraction by gas 

chromatography and also according to the detailed thermodynamic analysis of the cracking reactions. 

Separation of the paraffinic hydrocarbon feedstock on iso-paraffins and normal paraffins within the 

group "Paraffins HMW" is not provided due to the complexity of their quantitative determination. 

However, formalized hydrocarbon conversion scheme takes into account the formation possibility of 

isoparaffins of gasoline fractions from the feedstock that is connected with the carbonium ion 

mechanism of hydrocarbon conversion. 

Unsaturated hydrocarbons was combined in "Olefins" group due to the difficulty of olefinic and 

diene hydrocarbon identification in the heavy fractions of petroleum feedstock. Olefin hydrocarbons 

of gasoline fraction are represented by C3–C13 hydrocarbons according to the chromatographic 

analysis results.  

Aromatic hydrocarbons according to conversion scheme are divided in two groups: the "MAH" 

group includes aromatic hydrocarbons of gasoline fraction C6–C13; the "AH HMW" group is presented 

by the more complex aromatic hydrocarbon of feedstock, light and heavy gasoil with long alkyl 

substituents of normal and iso-structure. 

PGON2015 IOP Publishing
IOP Conf. Series: Earth and Environmental Science 27 (2015) 012062 doi:10.1088/1755-1315/27/1/012062

5



According to conversion scheme, naphthenic hydrocarbons are divided in two groups: 

«Naphthenes» group contains the naphthenic hydrocarbons of gasoline fraction C5–C11; "Naphthenes 

HMW" group is presented by the more complex naphthenic hydrocarbon of feedstock, light and heavy 

gasoil (mono- and polycykloalkanes with long alkyl substituents of normal and iso-structure) with 

carbon number in alkyl substituents C1–C25. 

According to the developed conversion scheme, reaction of coke formation occurs through 

successive conversion of complex naphthene-aromatic structures with further condensation of resins. 

5. Conclusion 

Compiling the formalized hydrocarbon conversion scheme and evaluation of their reactivity are an 

important stage in mathematical description development as the accuracy of the model calculations 

depends on the level of detail of the chemical reactions mechanism. Selected level of the catalytic 

cracking reaction mechanism formalization provides the recording of feedstock hydrocarbon groups to 

hydrocarbons of gasoline fraction conversions, light and heavy gasoil and coke in the kinetic model. 

Thus, the kinetic model remains sensitive to the changes of feedstock composition and at the same 

time allows estimating the yield and group composition of the main cracking product.  
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