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Abstract. The paper presents the results of numerical modelling of the processes 

accompanying movement of drop viscous media (water) in oil under the influence of exterior 

forces of the electric and dynamic nature. Systematic calculations of influence on the electric 

field heterogeneity drops, created by a symmetric and asymmetrical configuration of electrodes 

are carried out both in inter electrode and behind electrode areas taking into account a complex 

operation of dielectrophoresis forces, buoyancies and drag, as well as the variability of 

electrode sizes. The analysis of drop movement trajectories shows that the asymmetrical 

configuration of electrodes can be applied for an electro-coalescence intensification of water-

in-oil emulsion. Correctness of calculations of the mathematical model and numerical methods 

are confirmed by good results if compared with the available data of the other authors. 

1. Introduction 

Nowadays there are two basic physical principles, which are applied during electroseparation of 

water-in-oil emulsions: electrophoresis (the motion of charged particles along the lines of the electric 

field) and dielectrophoresis (motion of polarized substances toward the greatest increase of electric 

field). 

The analysis of literature has shown [2-4] that in recent years the attention of researchers focuses 

on the issues of understanding the nature of the influence of "small-scale" dielectrophoresis effect. It is 

known that this physical mechanism has a number of disadvantages as it functions only at small 

distances between polarized droplets [5, 6]; in the certain range of parameters of the electric field it 

may be a reason for secondary droplets of dispersed phase (which are much smaller size) origination 

[7]; there is a possibility for a short circuit between non-insulated electrodes [8]. 

In an inhomogeneous electric field, water droplets will tend to move in the direction of the greatest 

increase of the electric field [6, 10]. Thus, an additional bonding mechanism emerges. Non-uniform 

electric field can be generated due to the asymmetric, confuser, diffuser or cylindrical configuration of 

the electrodes [9]. 

Considering the abovementioned, the aim of this paper is: 1) to perform the development and 

verification of a mathematical model and numerical algorithm of calculation of dispersed conductive 

phase movement processes in water-oil emulsions under electric field action; 2) to establish the 

efficient algorithm application in systematic researches of an intensification problems of electro 

coalescence process at asymmetrical configurations of electrodes, and in the forecast of the potential 
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changes, electric field intensity and drop movement trajectories of water in emulsions;3) explanation 

and an assessment of influence character of dielectrophoresis forces on drop movement trajectory. 

2. Numerical simulation of the electric field 

Currently the different approaches to the calculation of the non-uniform electric field characteristics 

and its effect on polarized dielectrics are described in detail in the literature. In particular, there is an 

approach in which the potential of the electric field is modeled by implicit analytic function obtained 

by the method of conformal mappings [11]. Another approach, which allows obtaining analytical 

solution on the more general geometry of the electrodes with mixed boundary conditions, is the 

method of Wiener – Hopf [12]. However, its usage is presented in the literature only by cases of 

electric field calculation in the interelectrode space.  

A much more common method of obtaining values of the electric field potential on arbitrary 

geometry of the electrodes and arbitrary distance from them - is the numerical solution of the Laplace 

equation [13, 14]. 

In the assumption of free charges absence in a simulated two-dimensional region, Laplace equation 

can be written in the form [15]: 
2 2

2 2
0

x y
 (1) 

This equation must be supplement by boundary conditions of several types. For the boundaries of 

the computational domain, which should be at a sufficient distance from the plates of the capacitor, the 

potential is zero. For left plate (index "lp") and right plate (index, "rp") of the condenser the potential 

should be known and specified by initial conditions of the calculation. 

Relation to the stationary electric field, based on the determination of this value, could be 

formulated for the two-dimensional case, as a vector [15]: 

;E
x y

 (2) 

Numerical integration of equation (1) is performed with the involvement of implicit finite-

difference schemes and approximation of the derivative with the second order accuracy [O(Δx
2
), 

O(Δy
2
)] regarding the steps for axial and longitudinal variables on a "cross" grid-type pattern.  

Verification of the numerical algorithm was implemented on a two-dimensional flat vertical 

condenser, in the ranges of define parameters, that are presented in table 1. 

 

Table 1. Initial data for verification of the algorithm. 

Parameter, designation, measurement unit Value 
Length of the left capacitor plate, Llp, 10

-2
 m 1 ÷ 10 

Length of the right capacitor plate, Lrp, 10
-2

 m 10 ÷ 1 

Voltage on the left capacitor plate, Ulp, V 0 ÷ 5000 

Voltage on the right capacitor plate, Urp, В 0 

Distance between capacitor plates, d, 10
-2

 m 1 ÷ 20 

Discretization step along the longitudinal coordinate, ∆x, 10
-3

 m 1 ÷ 0,05 

Discretization step along the transverse coordinate, ∆y, 10
-3

 m 1 ÷ 0,05 

 

Individual results of the calculation are shown on figures 1-2, which illustrate combined field 

potential φ and the electric field strength E in the study area at fixed ∆x = ∆y = 10
-4

 m, Ulp = 5000 V, 

Upp = 0 V, d = 0,5·10
-2

 m. Variety of the scalar field potential φ(x,y) is illustrated by the background 

color of figures 1-2, the vector electric field E (x, y) is indicated by arrows. 
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Figure 1. The change in the potential φ(x,y) 

and electric field E (x,y) at Llp = 5·10
-2

 м, 

Lrp = 1·10
-2

 m 

 Figure 2. The change in the potential φ(x,y) 

and electric field E (x,y) at Llp = 1·10
-2

 м, 

Lrp = 5·10
-2

 m 

 

To validate and assess the accuracy of calculations graphical comparison of power distribution 

dielectrophoresis (8) obtained using the described algorithm and obtained by other researchers (for 

example, [13]) was carried out. The comparison of results is shown on figure 3. Graphical field 

mapping shows that the features associated with the predominant direction of the field vectors to the 

edges of the capacitor plates are forecasted quite accurately. 

 

  
The results of the present calculation Results of Zhenqian Chen, Xiaozhong Shen [13] 

Figure 3. Graphical comparison of the dielectrophoretic force spatial distribution at Ulp = 0 V, 

Urp = 70 V, d = 200·10
-6

 m, Lлп = 1000·10
-6

 m, Lпп = 200·10
-6

 m. 
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3. Numerical modeling of water droplets motion 

For modeling the motion of single spherical incompressible water droplets in oil under the influence of 

an inhomogeneous electric field, it is necessary to determine the forces which influence such a drop. 

They are: gravity force, the force of Archimedes, drag force, the dielectrophoretic force. 

The effect of gravity and Archimedes force is modeled by the ratio for buoyancy force Fbuoyancy [16]: 

( )buoyancy gravity Archiimedes drop oil dropF F F g V  (3) 

The effect of drag force Fdrag for liquid particles, moving with a slight acceleration (taking into 

account the internal fluid circulation inside the droplet), is modeled by Hadamard – Rybczynski ratio [16]: 

2

33 ,
1

water
drag dropoil drop

oil

F d where  
(4) 

The effect of dielectrophoretic force FDEP on conducting drop of water, that dissolved in a non-

conductive oil environment and being under the influence of an inhomogeneous electric field is 

modeled by the ratio [11]: 

3
22

8 2

water oi l
DEP oil

water oi l

F
d

E  (5) 

Thus, the equations of motion in projections on coordinate axes for a water drop could be written 

as follows:  

2

2
,  y y

drop y buoyancy drag DEP y

d y
m a F F F a

dt
 (6) 

2

2
,x x

d rop x d rag D EP x

d x
m a F F a

dt
 (7) 

4. The discussion of research results 

Application of numerical integration methods, in the computer algebra system “Mathematica”, the 

trajectory of single water droplets were simulated in the computational domain H = 0.125 × 0.125 m 

with initial coordinates: y0=0.125 m (upper edge of computational domain), 0 {0.015;0.045}x  m 

with a step. The range of varying physical parameters of the simulated environment is presented in 

table 2. 

Table 2. The values of physical quantities in the simulated water drop movement. 

Parameter, designation, measurement unit Value 

Length of the left capacitor plate, Llp, 10-2 m 2 ÷ 5 

Length of the right capacitor plate, Lrp, 10-2 m 5 ÷ 2 

Voltage on the left capacitor plate, Ulp, V 5000 

Voltage on the right capacitor plate, Urp, В 0 

Distance between capacitor plates, d, 10-2 m 1 

Discretization step along the longitudinal coordinate, ∆x, 10-3 m 0,05 

Discretization step along the transverse coordinate, ∆y, 10-3 m 0,05 

Droplet diameter, ddrop, 10-6 m 50 

Density of water, water , kg/m3 1000 

Density of oil, oil, kg/m3 850 

Dynamic viscosity of water, water, 10-3 Pa·sec 1,002 

Dynamic viscosity of oil, oil , 10-3 Pa·sec 7 

Dielectric permittivity of water, εwater, 10-12 F/m  81  

Dielectric permittivity of oil, εoil, 10-12 F/m 2,5 

Step of varying the initial droplet position, x0, 10-4 m 2,483 

PGON2015 IOP Publishing
IOP Conf. Series: Earth and Environmental Science 27 (2015) 012067 doi:10.1088/1755-1315/27/1/012067

4



It should be noted that the above model doesn't consider the coalescence of water droplets – the 

trajectory of each droplet is considered separately, as if it was moving in the absence of other drops. 

The trajectories of water droplets with different initial position x0 are placed on a single figure in order 

to provide a more effective visualization of the non-uniform electric field effect. 

To study the dependence of the trajectory of water droplets from the ratio of plates dimensions and, 

consequently, influence of inhomogeneity of the electric field generated by the asymmetric 

configuration of the plates, various calculations were carried out with changing of the parameters Llp, 

Lrp in the range (2 ÷ 5) 10
-2

 m. Some results of numerical simulation are presented in figures 4-5. 

In particular, these results allow us to conclude that the configuration of the electrodes had a major 

influence on water droplets trajectories. 

In the case of asymmetrical flat capacitor and the prevalence of the length of a charged plate over 

the length of the grounded plate (figure 4), there was a proportional deviation of one half of the drops 

in the direction of a charged plate, the other half – towards the grounded plate. This is a consequence 

of large-scale inhomogeneity of the electric field in the interelectrode space. In this case, due to the 

large number of horizontal deviations, the length of the path of water droplets in this field increases. 

The number of drops that slipped between zones of influence, with this configuration of electrodes, 

visually is about 3%, and the zone of influence of a grounded electrode in the “right” outer space is 

slightly less than the zone of influence of a charged electrode in the “left” outer space. 

 

 

Figure 4. Water droplets trajectories in oil with the asymmetric configuration 

of the electrodes, Lлп = 5·10
-2

 m, Lпп = 2·10
-2

 m, Uлп = 5000 V, Uлп = 0 V. 

 

Figure 5. Water droplets trajectories in oil with the asymmetric configuration 

of the electrodes, Lлп = 2·10
-2

 m, Lпп = 5·10
-2

 m, Uлп = 5000 V, Uлп = 0 V. 
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In case when the length of the grounded plate is more than the length of a charged plate (figure 5), 

almost all particles in the interelectrode space are attracted to a charged plate. However, about 15% of 

the particles do not reach the boundary of the zone of attraction, which is much greater than for the 

case when the charged plate length is more than the length of the grounded one. The distance between 

the "slipped out" drops increases if compared to the original, which creates an even greater negative 

effect. 

The overall effect after treating the plane capacitor by asymmetrical vertical electric field, in both 

cases, is expressed in reduction in the number of drops in the interelectrode space and some distance 

behind the electrodes, due to their attraction to the edges of the plates.  

5. Conclusion 

The paper presents the results of mathematical modeling and numerical calculation of the movement 

process of water droplets in oil, as well as the efficiency of the algorithm in the range of investigated 

parameters. Verification of the model and algorithm is performed by comparison with the known 

results of other authors and with high degree of agreement in the prediction of the effects of power 

dielectrophoresis on the motion of the dispersed phase. For the single incompressible spherical water 

drops in oil, the calculation of the trajectories of water droplets in an inhomogeneous electric field, 

created by different configurations of electrodes, was performed. Detailed calculations have shown, 

that the capacitors configuration with prevalence of a charged plate length over the grounded plate 

length provides the least amount of "slipped" drops, greater path length of drops in the interelectrode 

space and a greater area of outer space impact on the drops trajectories. 
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