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Abstract. Mathematical modeling of unsteady heat transfer in a closed rectangular area with a 

local heat supply object in a conjugate formulation in working conditions of radiation source of 

energy is passed. Fields of temperatures and stream functions, illustrating the influence of a 

local typical object on thermal regime are received. The effect of Grashof number on 

dimensionless heat transfer coefficient - Nusselt number is investigated. The influence of 

nonconducted heat supply object on heat transfer rate in solution domain is showed. 

1.Introduction 
For modeling of temperature fields of local heat supply objects located in large industrial premises and 

heated by gas infrared radiators (GIR) was developed an approach [1], which is based on natural 

convection model in air-filled cavity with solid enclosing walls of finite thickness [2]. Heat sink to the 

enclosure structures and accumulation of heat in them was allowed at problem formulation [1], but 

was assumed that the radiation coming from GIR evenly distributed only on the lower horizontal 

boundary of the heating region. In addition, specific working area (heat supply object) was not 

considered as an obstruction for the movement from the lower boundary of the heated air in 

formulation problem [1]. 

It should be noted that the results of experimental researches analogically considered in [1] of 

conjugate convective – conductive heat transfer processes still haven’t been published.  Also the 

results of theoretical studies of fundamental mechanisms of heat conduction, convection and radiation 

processes jointly progressing with the work of gas infrared radiators haven't been published as well. 

The aim of this study is the numerical simulation of unsteady heating process of a typical 

manufacturing object in the gas cavity of a closed rectangular area in conjugate formulation. 

2.Problem formulation 
The boundary value problem of convective – conductive heat transfer in a closed rectangular area 

consisting of six rectangular subdomains (Fig. 1) was solved. Heat insulation conditions were adopted 

at its external borders. At internal borders "air – enclosure structures" are the fourth type boundary 

conditions. 

Assumptions that thermal properties of air and enclosure structures don’t depend on temperature 

are introduced. Flow regime is laminar. The air is considered as a Newtonian fluid, incompressible, 

satisfies the Boussinesq approximation and absolutely transparent for thermal radiation. Total radiant 

flux coming from the GIR can be represented as the sum of heat fluxes values of which were 

determined by zonal method as shown in [3]. Investigated heat transfer process is described by the 

unsteady Navier - Stokes equations and the energy for the air and the heat conduction equation for 
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enclosure structures within the adopted model. Dimensionless equations of Navier - Stokes and energy   

in variables "vorticity   - stream function   - temperature " are as follows [1, 2]: 
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Figure 1. Solution domain: 1) air; 2) enclosure structures; 3) heat supply object; 4) gas infrared 

radiator (symbolic notation). 

 

The initial conditions for the system of equations (1) – (5) are as follows: 
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The boundary conditions at the outer boundaries of the solution domain are as follows: 
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at internal  interfaces “heat supply object – air”, “solid wall – air”, parallel to the axis OX:  
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 at internal  interfaces “heat supply object – air”, "solid wall - air", parallel to the axis OY:  
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where Fo  Fourier number; Gr  Grashof number; Ki , Kirpichev number; Pr Prandtl number; 

X,Y – dimensionless Cartesian coordinates; U, V– dimensionless velocities along X,Y directions 
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correspondingly;   dimensionless Laplace operator. Indexes: 1,2,3 - design elements; for Ki: - heat 

flow values. Indexes: 1, 2, 3 – element number; for Ki:
1 2 3q ,q ,q  – heat flux values. 

Equations (1)–(4) with the corresponding initial and boundary conditions were solved by applying 

the finite difference method, as in [4]. Locally one scheme of A.A. Samarskiy was used for 

approximation of equations (1), (3) – (4) [5]. Approximation of Poisson's equation was done by the 

scheme of variable directions [5]. Woods condition [5] was used to determine the boundary conditions 

for the vortex velocity. One - dimensional difference analogues were solved by the sweep method [5]. 

To evaluate the reliability of results of the computational modeling, the conservatism of the difference 

scheme was checked analogously to [6]. 

 

3.The results of the numerical simulation 

Numerical investigation was performed for the following values of dimensionless criteria: 7Gr=10 , 

Pr=0,71, 
1 2 3

Ki =42, Ki =25,Ki =5.  The results of solving boundary value problem for three possible 

variants of the heated air flow  are shown in Figures 2, 3 and 4. 

 

 
Figure 2. Fields of temperature (a) and the stream function (b) (  = 3600) in the absence of an heat 

supply object in the gas cavity. 

 

 
Figure 3. Fields of temperature (a) and the stream function (b) ( = 3600) in the presence of an 

nonconducted heat supply object in the gas cavity (symmetric variant). 

 

 
Figure 4. Fields of temperature (a) and the stream function (b) ( = 3600) in the presence of an 

nonconducted heat supply object in the gas cavity (asymmetric variant). 
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Comparing the results of numerical simulations, it can be concluded that the nonconducted object 

in the gas cavity significantly effects the character of heat transfer in this solution domain. If the heat 

supply object is located under GIR (Fig. 3) and coincides with it in size, a significant proportion of the 

energy comes to the border in y= h3, l2 <x<l3, what is well illustrated by the position of the isotherms. 

Heated air flows around the object and rises in the result of natural convection then cools down due to 

heat sink to the enclosure structures and descends along the vertical walls. As the result a symmetrical 

circulation flow is formed relatively to the section X = 0.5, which clearly demonstrates the field of the 

stream function (Fig. 3 b). Movement along the stream lines with the sign "-" is oriented clockwise, 

with the "+" counterclockwise. 

For the purpose of analyzing the possible asymmetric flow, the variant with offset of nonconducted 

object larger lateral dimension to the left is considered (Fig. 4). In this case, an intense air heating 

occurs at the border = h1, l2 <x <l3. In the section X = 0.39 of the solution domain above the heat 

supply object an ascending heated air is formed. Besides the two main vortices additional one (under 

the object) is formed. 

By analogy with [7, 8] the influence of the Grashof number at the average Nusselt number was 

analyzed. At the interface "enclosure structures - air» (y = h1, l1 <x <l4) average dimensionless heat 

transfer coefficient is defined [8] as: 
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Dependences  Nu  from Gr are presented in Figure 5. 

 

 
Figure 5. Dependences   from Gr ( = 3600): 1 – heat supply object is absent; 2 – nonconducted object 

in the gas cavity (asymmetric variant); 3 – nonconducted object in the gas cavity (symmetric variant). 

  
Figure 5 shows that   is increased with rising Gr. Also nonconducted object in the gas cavity (and 

its location) significantly effects the intensity of convective heat transfer. If the heat supply object is 

absent, the average dimensionless heat transfer coefficient in section Y = 0,12 of the solution domain 

4.5 times greater compared with the case of its presence. It can be concluded that with placement of 

the GIR the location of the workplace in order to optimize heat transfer conditions must be allowed.  
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4.Conclusion 

Numerical simulation results show that the presence of the heat supply objects in the gas cavity 

significantly changes the temperature field and the intensity of the air movement  in the working area 

of industrial premises. 
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