УДК 621.373.8

ВИЗУАЛИЗАЦИЯ С ПОМОЩЬЮ ЛАЗЕРНОГО МОНИТОРА ВЗАИМОДЕЙСТВИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ С ПОВЕРХНОСТЬЮ СТЕКЛО- И ПИРОУГЛЕРОДА

Д.В. Абрамов, А.Ф. Галкин, С.В. Жарёнова, И.И. Климовский*, В.Г. Прокошев, Е.Л. Шаманская

Владимирский государственный университет *Объединенный институт высоких температур РАН, г. Москва E-mail: klimovsii@ihed.ras.ru

Впервые с помощью лазерного монитора реализовано наблюдение воздействия лазерного излучения на поверхность стекло- и пироуглерода. Зафиксировано плавление стеклоуглерода. Установлен нижний порог плавления стеклоуглерода по выходной мощности ИАГ-Nd-лазера. Реализован метод наблюдения осаждения продуктов сублимации стекло- и пироуглерода на стеклянную подложку в реальном масштабе времени. Установлено, что для названных материалов в результате осаждения образуются частицы различной морфологии. Причина такого различия неясна и требует проведения дальнейших исследований. С помощью атомно-силового микроскопа восстановлен рельеф дна лазерной каверны на поверхности стеклоуглерода после окончания воздействия лазерного излучения.

Введение

За редким исключением в лазерной технике существует достаточно жесткая конкуренция между различными типами лазеров, применяемых для решения одной и той же технической или научной задачи. Исключения чрезвычайно редки, и одним из них является применение лазеров на самоограниченных переходах [1] (прежде всего, лазера на парах меди) в качестве усилителей яркости в проекционных микроскопах (лазерных мониторах; впервые проекционный микроскоп реализован в работе [2]), используемых для наблюдения объектов, экранированных от наблюдателя ярко светящейся плазмой. Как правило, такими объектами являются зоны взаимодействия мощных потоков энергии (лазерное излучение, электронный пучок и т. д.) с веществом.

Впервые результаты подобных наблюдений были опубликованы в 1988 г. в работах [3, 4]. В первой из них объектами наблюдения служили искровой промежуток (межэлектродное расстояние 0,5 мм) скользящего искрового разряда, формируемого на поверхности стеклотекстолита и зона взаимодействия лазерного луча с кварцевой пластиной, во второй — электроды слаботочной угольной дуги. За прошедшие 19 лет лазерные мониторы применялись для исследований различных объектов. Однако наиболее интересные и значимые результаты получены с их помощью при исследовании зон взаимодействия мощных потоков энергии с графитом и пирографитом.

В работах [5–7] были пересмотрены общепринятые представления (см., например, [8, 9]) о плотности тока и температуре углерода в катодном пятне (КП) слаботочной угольной дуги атмосферного давления. Согласно отмеченным общепринятым представлениям плотность тока в катодном пятне составляет *j_k*≈470 А/см², а температура катода в области КП лежит в пределах 3200...3600 К. При увеличении тока дуги примерно до 400 А плотность тока растет до значения *j_k*≈5·10³ А/см² и при дальнейшем росте тока дуги остается постоянной. При этом температура катода в КП достигает величины *T_k*≈4000 K,

которая традиционно отождествляется с температурой кипения (сублимации) твердого углерода при атмосферном давлении. По данным [5–7], плотность тока и температура в катодном пятне слаботочной угольной дуги такие же, как и в сильноточных угольных дугах. Кроме того, в работе [6] в катодном пятне обнаружены признаки проплавления углерода (пирографита) на глубину в несколько десятком мкм, а в работе [7] делается вывод о том, что фактором, стабилизирующим плотность тока в катодном и анодном пятнах слаботочной угольной дуги, является плавление углерода, одновременно являющееся фазовым переходом металл – диэлектрик.

- В работах [10, 11] предложен способ восстановления рельефа поверхности графитовых образцов и осуществлена реконструкция временной эволюции рельефа поверхности графитовых образцов в зоне лазерного нагрева.
- В работе [12] зафиксировано плавление поверхности графитовых образцов в зоне лазерного нагрева при давлении около 10⁵ Па и температуре, не превышающей 4000 К.

Учитывая уникальные свойства углеродных материалов и не менее уникальные возможности лазерных мониторов, следует ожидать получения новых интересных результатов при исследовании зон взаимодействия мощных потоков энергии с названными материалами с помощью лазерных мониторов.

Основная цель данной работы — исследование взаимодействия мощного лазерного луча с поверхностью стеклоуглерода — материала, сильно отличающегося по некоторым своим характеристикам от ранее исследованных графитовых и пирографитовых материалов.

Углеродные материалы – особый объект исследований

Интерес к углеродным материалам обусловлен их широким применением в самых различных отраслях науки и техники. Пирографит [13] применяется в ракетной технике, ядерных реакторах. Он представляет собой класс материалов, отличающихся структурой и свойствами и объединенных только принципом получения из парогазовой фазы.

Стеклоуглерод [13] — изотропный, газонепроницаемый, твердый и прочный материал, сочетающий свойства графита и стекла, способный выдерживать многократный быстрый нагрев с последующим быстрым охлаждением. Стеклоуглерод применяется в производстве полупроводниковых материалов, оптических монокристаллов, в электрокардиостимуляторах и т. д.

В последнее время интерес к углеродным материалам повысился в связи с перспективами их использования в нанотехнологиях. Согласно [14] к нанотехнологии принято относить процессы и объекты с характерной длиной от 1 до 100 нм. Верхняя граница нанообласти соответствует минимальным элементам в больших интегральных схемах, широко применяемым в полупроводниковой и компьютерной технике.

Фундаментальное значение исследованиям взаимодействия мощных потоков энергии с поверхностями различных углеродных материалов придает проблема фазовой диаграммы углерода. [15-18]. До недавнего времени существовало две альтернативных фазовых диаграммы, принципиально отличающихся друг от друга свойствами тройных точек твердое тело-жидкость-пар и их окрестностей. Первая фазовая диаграмма [15, 16] в диапазоне температур примерно от 2600 до 3800 К содержит область карбина и карбиновую тройную точку с давлением p_{TT} и температурой T_{TT} , равными соответственно ~10⁵ Па и 3800 К. На второй [17] – область карбина отсутствует, а тройная точа является графитовой тройной точкой с $p_{TT} \cong 10^7$ Па и T_{TT} ≈ 5000 К. Относительно недавно в работе [18] предложена фазовая диаграмма, термодинамические параметры которой зависят от скорости нагрева графита. При скоростях нагрева около нескольких град/с эта диаграмма тождественна фазовой диаграмме [15, 16], а при скоростях нагрева около 10⁸ К/с и более — фазовой диаграмме [17].

Теоретические данные, подтверждающие существование карбиновой тройной точки, до сих пор отсутствуют. За период почти столетних исследований проведено значительное число независимых экспериментов, результаты которых свидетельствуют о плавлении углерода при давлениях порядка 10⁵ Па и температурах около 3800 К и тем самым подтверждают реальность существования карбиновой тройной точки. Общим методическим недостатком практически всех названных исследований, позволяющим усомниться в достоверности их результатов, является отсутствие регистрации процесса плавления в реальном масштабе времени за исключением ранее упомянутой работы [11], в которой плавление поверхности графитового образца было зафиксировано с помощью лазерного монитора. Данная работа является в определенной мере продолжением работы [11].

Фундаментальное значение исследований взаимодействия мощных потоков энергии с поверхностями различных углеродных материалов усиливается еще одной проблемой: при нагреве графитовых образцов в диапазоне температур, соответствующих твердофазному переходу графит — карбин, излучательная способность поверхности графитовых и пирографитовых образцов скачкообразно возрастает до значений, близких к единице [19]. Природа этого явления совершенно неясна.

2. Экспериментальная установка

Образцы, в качестве которых использовались стеклоуглерод [13] и пироуглерод [13] с содержанием углерода в обоих материалах не менее 99,9 %, нагревались сфокусированным лучом импульсно-периодического ИАГ-Nd-лазера. Длина волны излучения 1,06 мкм, частота повторения импульсов 150 Гц, длительность 2 мс. Средняя мощность излучения Р изменялась в диапазоне 15...80 Вт. Усилитель яркости на парах меди CVL-10 позволял получить оптические изображения области лазерного воздействия до 16000 изображений в секунду с экспозицией до 20 нс. Для регистрации изображений использовался 1,3 мегапиксельной матричный СМОЅ-сенсор, аналогичный сенсорам, использующимся в высокоскоростных видеокамерах «Motion Pro», выпускаемых фирмой «Redlake», что позволяло обеспечить ввод изображений в перональный компьютер со скоростью 5000 кадров в секунду. Плата контроллера VS 2001 позволила обеспечить передачу информации в виде последовательности кадров с разрешением 1280×1024 пикселей в компьютер для последующей обработки и анализа. После воздействия поверхность материала изучалась как с помощью обычных оптических микроскопов, так и с помощью атомно-силового микроскопа (зондовый сканирующий микроскоп Smena-B).

3. Результаты экспериментов

На рис. 1 и 2 приведены изображения, полученные с помощью скоростной цифровой камеры в процессе воздействия лазерного излучения на поверхность стеклоуглерода, представляющие собой отдельные кадры видеозаписи. На рис. 1 для сравнения приведены четыре изображения воздействия лазерного излучения на образец. Диаметр зоны фокусировки составлял $d_{\phi} \sim 0,1$ мм, а зоны наблюдения $- d_n \sim 0,3$ мм. Зона наблюдения — 1 представляет собой светлый круг, образованный отраженным от поверхности стеклоуглерода излучением лазера на парах меди.

В процессе воздействии на поверхности образца было зарегистрировано:

- а) плавление 2 углерода внутри каверны;
- б) перемещение светлого кольца 3 по границе каверны (отмечено белой стрелкой) со скоростью, изменяющейся от 290 до 870 мкм/с, при увеличении мощности от 38 до 50 Вт соответственно;

Рис. 1. Воздействие лазерного излучения на поверхность стеклоуглерода (P=44 BT): а) начало воздействия; б) время воздействия t_{возд}=2 c; в) t_{возд}=4 c; г) после окончания воздействия

в) при длительном воздействии (более 1 с) явным образом регистрируется распространение вокруг каверны области термического влияния – 4 (области уменьшения отражательной способности). Скорость распространения области термического влияния изменялась от 182 мкм/с при мощности 44 Вт до 451 мкм/с при мощности 50 Вт.

Рис. 2. Периодичность светлых колец на поверхности стеклоуглерода (P=44 Bt, t_{возд}=2,64 с)

На рис. 2 зафиксирована периодичность светлых колец в области воздействия (светлые кольца отмечены стрелками). С увеличением мощности P от 38 до 50 Вт количество регистрируемых периодов возрастает от 1,5 до 2,5.

На рис. 3 представлено полученное с помощью оптического микроскопа изображение каверны после окончания воздействия лазерного излучения мощностью 76 Вт, длительность воздействия 6 с. Были определены линейные размеры каверны и области термического воздействия. Глубина каверны при росте мощности в пределах от 38 до 50 Вт увеличивалась от 130 до 220 мкм. Поперечный размер каверны порядка 1 мм. Поперечный размер области термического влияния порядка 2 мм.

Рис. 3. Снимок каверны на поверхности стеклоуглерода после окончания лазерного воздействия

На представленном изображении видны характерные трещины, образовавшиеся при отвердевании расплава стеклоуглерода в каверне. Это обстоятельство косвенным образом указывает на сильное термическое расширение жидкого углерода по сравнению с твердым стеклоуглеродом.

При указанном ранее диаметре зоны фокусировки и мощности *P*, равной 16 Вт и менее, плавление стеклоуглерода не происходило при любом времени воздействия лазерного излучения.

Следует отметить, что в дальнейшем при исследовании плавления углерода весьма привлекательным представляется использование лазерных мониторов, создаваемых на основе лазера на парах меди с неустойчивым резонатором и призмой Глана [20, 21]. В таких мониторах плавление углерода, сопровождающееся приобретением расплавленной поверхностью зеркальных свойств, должно приводить к изменению цвета изображения плавящейся поверхности (за время плавления) с зеленого на желтый.

Для сравнения на рис. 4 представлено изображение каверны на поверхности пироуглерода. Ни при каких режимах воздействия лазерного излучения на пироуглерод плавления не обнаружено. Заметно изменение зернистости материала внутри каверны по сравнению с окружающей областью и появление внутри каверны отдельных областей-»доменов».

Рис. 4. Снимок каверны на поверхности пироуглерода после окончания лазерного воздействия (Р=54 Вт)

4. Получение наноструктур на поверхности углеродосодержащих материалов

Как уже отмечалось во введении, особый интерес представляет образование наноструктур при лазерном воздействии. В качестве примера на рис. 5 представлен рельеф поверхности стеклоуглерода внутри каверны после окончания лазерного воздействия, восстановленный с помощью атомно-силового микроскопа (время воздействия лазерного излучения 2 с при мощности *P*=76 Вт). Видны «нанопики» с характерными размерами десятки нм.

Рис. 5. Рельеф дна каверны на поверхности стеклоуглерода после воздействия лазерного излучения

5. Осаждение продуктов сублимации на стеклянной подложке

Эксперимент по осаждению паров стеклоуглерода на поверхность стеклянной подложки (предметное стекло от оптического микроскопа), предварительно протертой спиртом, был проведен с целью регистрации данного процесса в реальном времени. В эксперименте использовалась скоростная цифровая камера. Устанавливались следующие параметры лазерного излучения: *P*=71 Вт, длительность воздействия — 25 с. Зазор между стеклом и образцом составлял 0,8 мм.

Осаждения на стекле появляются в виде овала, размером 0,5×1 см, поэтому для получения записи процесса необходимо было сместить точку фокуса Си-лазера относительно точки фокуса ИАГ-Nd-лазера на 6...7 мм. Си-лазер настраивался на нижнюю поверхность стекла.

Изображения, полученные в ходе эксперимента, представлены на рис. 6.

На изображениях отчетливо видно появление напыления (отмечено стрелкой) в виде капель. Для

СПИСОК ЛИТЕРАТУРЫ

- Батенин В.М., Бучанов В.В., Казарян М.А., Климовский И.И., Молодых Э.И. Лазеры на самоограниченных переходах атомов металлов. – М.: Научная книга, 1998. – 544 с.
- Земсков К.И., Исаев А.А., Казарян М.А., Петраш Г.Г. Лазерный проекционный микроскоп // Квантовая электроника. – 1974. – № 1. – С. 14–15.

пироуглерода напыление имеет вид овала, но в отличие от стеклоуглерода не капель, а мелкодисперсных частиц. К сожалению, в рамках данной работы не удалось детально изучить морфологию осажденных частиц и причины, ее определяющие. Это задача дальнейших экспериментов.

Рис. 6. Осаждение продуктов сублимации стеклоуглерода на поверхности стекла на момент съемки, с: а) 0,1; 6) 5; в) 10; г) 15

Выводы

- Впервые зафиксировано плавление стеклоуглерода под воздействием сконцентрированного излучения ИАГ-Nd-лазера мощностью более 16 Вт при диаметре зоны фокусировки примерно 0,1 мм.
- Пироуглерод не плавится вплоть до максимально достижимой в данной работе мощности лазерного излучения – 80 Вт.
- Обнаружено, что в результате лазерного воздействия на стеклоуглерод на дне каверны образуются наноструктуры высотой до сотни нм.
- 4. Реализован метод наблюдения осаждения продуктов сублимации стекло- и пироуглерода на стеклянную подложку в реальном масштабе времени. Установлено, что для названных материалов в результате осаждения образуются частицы различной морфологии. Причина такого различия неясна и требует проведения дальнейших исследований.

Работа выполнена при поддержке гранта РФФИ № 05-08-33410a.

Работа доложена на VIII Международной конференции «Atomic and Molecular Pulsed lasers», Tomsk, 10–14 September, 2007.

- Абросимов Г.В., Польский М.М., Саенко В.Б. Использование лазерной среды для фотографирования поверхности, закрытой слоем плазмы // Квантовая электроника. – 1988. – Т. 15. – № 4. – С. 850–852.
- Батенин В.М., Климовский И.И., Селезнева Л.А. Исследование поверхностей электродов угольной дуги во время ее горения // Доклады АН СССР. – 1988. – Т. 303. – № 4. – С. 857–860.

- Батенин В.М., Глина В.Ю., Климовский И.И., Селезнева Л.А. Применение оптических систем с усилителями яркости для исследования поверхностей электродов из графита и пирографита во время горения дуги // Техника высоких температур. – 1991. – Т. 29. – № 6. – С. 1204–1210.
- Асиновский Э.И., Батенин В.М., Климовский И.И., Марковец В.В. Наблюдение образования оплава углерода на поверхности пирографитового катода во время горения угольной дуги атмосферного давления // Доклады РАН. 1999. Т. 369. № 5. С. 614–616.
- Асиновский Э.И., Батенин В.М., Климовский И.И., Марковец В.В. Исследование областей замыкания тока на электродах слаботочной угольной дуги атмосферного давления с помощью лазерного монитора // Техника высоких температур. 2001. Т. 39. № 5. С. 794–809.
- Финкельбург В., Меккер Г. Электрические дуги и термическая плазма / Под ред. В.А. Фабриканта. – М.: Изд-во иностр. лит., 1961. – 370 с.
- 9. Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 592 с.
- Абрамов Д.В., Аракелян С.М., Климовский И.И., Кучерик А.О., Прокошев В.Г. Способ и результаты восстановления рельефа поверхности, эволюционирующей под действием лазерного излучения // Оптика атмосферы и океана. 2006. Т. 19. № 2–3. С. 206–209.
- Абрамов Д.В., Аракелян С.М., Галкин А.Ф., Климовский И.И., Кучерик А.О., Прокошев В.Г. О возможности исследования временной эволюции рельефа поверхностей, подвергающихся воздействию мощных потоков энергии, непосредственно во время воздействия // Квантовая электроника. – 2006. – Т. 36. – № 6. – С. 569–575.
- Абрамов Д.В., Аракелян С.М., Галкин А.Ф., Квачева Л.Д., Климовский И.И., Кононов М.А., Михалицын Л.А., Кучерик А.О., Прокошев В.Г., Савранский В.В. Плавление углерода, нагреваемого сконцентрированным лазерным излучением в воздухе при атмосферном давлении и температуре, не превышающей 4000 К // Письма в ЖЭТФ. – 2006. – Т. 84. – № 5. – С. 315–319.

- Фиалков А.С. Углерод, межслоевые соединения и композиты на его основе. – М.: Аспект пресс, 1997. – 718 с.
- Кобаяси Н. Введение в нанотехнологию. М.: Бином, 2005. 134 с.
- Whittaker A.G. Carbon: A New View of Its High-Temperature Behavior // Science. – 1978. – V. 200. – № 4343. – P. 763–764.
- Whittaker A.G. The controversial carbon solid-liquid-vapour triple point // Nature. – 1978. – V. 276. – № 5689. – P. 695–696.
- Bundy F.P., Basset W.A., Weathers M.S., Hemley R.J., Mao H.K., Goncharov A.F. The Pressure-Temperature Phase and Transformation Diagram for Carbon; Updated Through 1994 // Carbon. – 1996. – V. 34. – № 2. – P. 141–153.
- Климовский И.И., Марковец В.В. Фазовая диаграмма углерода в окрестности тройной точки твердое тело-жидкость-пар // В сб.: Научные труды Института теплофизики экстремальных состояний ОИВТ РАН. Вып. 6. – 2003 / Под ред. В.Е. Фортова и А.П. Лихачева. – М.: ОИВТ РАН, 2006. – 478 с. – С. 73–80.
- Климовский И.И., Марковец В.В. К вопросу о несоответствии излучательной и поглощательной способностей поверхности графитовых образцов, нагреваемых со скоростями более 10² К/с // В сб.: Научные труды Института теплофизики экстремальных состояний ОИВТ РАН. Вып. 7. – 2004 / Под ред. В.Е. Фортова и А.П. Лихачева. – М.: ОИВТ РАН, 2006. – 439 с. – С. 71–75.
- Карпухин В.Т., Климовский И.И., Маликов М.М., Марковец В.В. Особенности работы генератора на парах меди и системы «Генератор на парах меди УФ-преобразователь» в режиме лазерного монитора // Оптика атмосферы и океана. 1999. Т. 12. № 11. С. 1064–1069.
- Карпухин В.Т., Климовский И.И., Маликов М.М., Менделеев В.Я., Сковородько С.Н. Особенности формирования цвета изображения в проекционном микроскопе на основе лазера на парах меди с неустойчивым резонатором и призмой Глана // Квантовая электроника. – 2004. – Т. 34. – № 6. – С. 583–588.

Поступила 14.11.2007 г.