РЕАЛИЗАЦИЯ БЕСПРОВОДНЫХ СНСОРНЫХ СЕТЕЙ НА МИКРОКОНТРОЛЛЕРАХ СЕРИИ NXP JN51XX

Ускин М.С.

Научный руководитель: Гончаров В.И. Томский политехнический университет wurty@mail.ru

Введение

Концепция беспроводных сенсорных сетей, нашедшая применение в задачах сбора первичной информации о состоянии объектов, параметры которых существенно распределены в пространстве.

Своевременный сбор такой информации может быть ориентирован на задачи предсказания аварийных ситуаций, мониторинга состояния, управления объектами, так как позволяет разместить датчики в необходимом и труднодоступном месте для получения наиболее точного информационного образа объекта. Таким образом можно выделить ряд областей, где применение беспроводных сенсорных сетей наиболее актуально:

- 1) автоматизированные системы управления технологическими процессами;
- 2) автоматизированные системы телеметрии и телемеханики;
- 3) автоматизированных информационно-измерительных систем контроля.

Подобные сети состоят из множества миниатюрных узлов, оснащенных маломощным приемо-передатчиком, универсальным, либо интегрированным беспроводным микроконтроллером, необходимым набором сенсоров, системой питания, а также могут включать устройства пользовательского интерфейса. Обычно, сенсорные узлы представляют собой однотипные устройства с определенным набором функций. Все компоненты должны иметь низкое энергопотребление в рабочем и энергосберегающем режимах, низкую стоимость всех компонентов, малые габариты. Несмотря на малую мощность радиоканала область покрытия сети может достигать нескольких километров, так как передача данных по сети происходит от одного устройства

Программно-аппаратная платформа

Основой беспроводной передачи в сенсорных сетях на сегодняшний день де-факто стал стандарт IEEE 802.15.4, который, если следовать модели OSI, определяет физический слой (PHY) и управление доступом к среде (MAC) для беспроводных персональных сетей с низким уровнем скорости. Стандарт используется в промышленных сетях мониторинга и управления совместно с протоколами верхнего уровня WirelessHART и ZigBee.

Большинство крупных компанийпроизводителей создают свои решения на основе этого стандарта, однако особый интерес представляют компактные беспроводные модули высокой степени интеграции серии jn5148-001-М0х и новые jn5168-001-М0х (Рис. 1), которые построены на микроконтроллерах jn5148 и jn5168 соответственно. Таким образом модуль интегрирует на одной печатной плате приёмопередатчик, 32-разрядный RISC процессор, ПЗУ Flash, ОЗУ, а также все необходимые для работы модуля аналоговые и цифровые цепи и периферию, кроме того, в новых модулях присутствует EEPROM. Приёмопередатчик использует нелицензируемые диапазоны частот 2400–2483.5 МГц (диапазон разделён на 16 каналов).

Рис. 1. Беспроводные модули серии in5168-001-M0x

Протоколы верхних уровней, в виде спецификаций JenNet и JenNet-IP, которая является расширением, позволяющим узлам работать, непосредственно, с IP-пакетами, разработанных производителем, используют сервисы, предоставляемые протоколами нижележащих уровней для организации процессов внутрисетевой маршрутизации, самовосстановления, самоорганизации, управления безопасностью. Основная часть проектирования беспроводной сенсорной сети приходится на программный уровень и требует настройки параметров стека протоколов JenNet/JenNet-IP и написание прикладного программного кода, обеспечивающего функциональность устройств.

Таким образом наиболее комплексная часть всех узлов заключена внутри беспроводного модуля, причём основная его часть, в виде аппаратно-программного обеспечения предоставлена разработчику сети в готовом виде.

ЈепNet поддерживает 2 вида топологий (Рис. 2). Древовидная топология, обеспечивает масшта-бируемость сети и расширение зоны покрытия, не требуя дополнительных затрат на инфраструктуру. Для координатора и маршрутизаторов JenNet накладывает ограничение в виде 10 дочерних устройств. Ограничение в рамках всей сети составляет до 500 устройств.

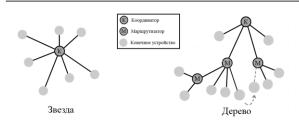


Рис. 2. Поддерживаемые топологии

В соответствии с используемым стеком сетевых протоколов сеть организована 3 классами устройств:

- 1) Координатор проводит инициализацию сети, контролирует параметры каждого узла и сети в целом. Является шлюзовым устройством между сетью предприятия и сенсорной сетью. Требует наибольшее количество памяти и стационарный источник питания;
- 2) Маршрутизаторы решают проблему ограниченного радиуса связи между устройствами и могут выполнять функции ретрансляторов между узлами сети, расположенными далеко друг от друга. Так как маршрутизаторы выполняют служебные задачи по обеспечению работоспособности сети, то они могут работать как от автономных, так и стационарных источников питания;
- 3) Конечные устройства (узлы-измерители) всегда являются дочерними устройствами либо координатора, либо маршрутизатора и обеспечивают сенсорную сеть данными измерения. В управлении сетью участия не принимают. Обязаны обладать низким энергопотреблением, работать автономно продолжительное время.

Архитектура программного обеспечения

Программное обеспечение организовано в виде 3-х основных уровней:

- 1) Уровень приложений содержит прикладной код. Программный проект устройств реализует именно этот уровень;
- 2) Уровень стека протоколов коммуникации Jen-Net;
- 3) Физический уровень и канальный уровень в виде программного интерфейса к аппаратным ресурсам микроконтроллера.

Прежде чем сенсорные данные будут переданы в направлении адресата (сервер, рабочая станция) их необходимо закодировать таким образом, чтобы обеспечить единство интерпретации на стороне адресата и надежную доставку. Таким образом на адресуемом устройстве располагается сервер ввода-вывода, обеспечивающий декодирование и представление данных измерения в стандартном виде (например, OPC), с другой стороны прикладной код обеспечивает кодирование данных узла в стандартную форму. Стандартный пакет содержит заголовок и тело. Заголовок описывает тип пакета: команда, запрос/приём данных. В теле пакета содержатся данные, которые описываются в виде совокупности объектов, представ-

ляющих полную информацию о данных измерения (Рис. 3).

Object		
Название поля	Количество бит (байт)	Описание
Object Id	16	Идентификатор объекта информации.
Property Count	8	Количество свойств объекта, передаваемых в пакете. Возможные значения 1-255.
Property 1		Свойства объекта
Property N		

Рис. 3. Объектная организация данных

Наличие различных классов устройств предполагает различный прикладной код на каждом устройстве, обеспечивающий функциональную реализацию узла. Задачей координатора и маршрутизатора является сбор информации с дочерних устройств и передача их адресату. Более сложные задачи решает измерительный узел, который должен обеспечить сбор измерительной информации со всех каналов измерения, кодирование/декодирование пакетов, режимы энергосбережения. В целом, порядок работы узлаизмерителя формируется из 2 основных этапов:

- 1) Обработка запроса с сервера, формирование реакции на запрос, коррекция состояния, отклик;
- 2) Обработка функции устройства, передача результатов.

Выполнение каждого этапа имеет периодический характер. Причём, в первом случае период определяется сервером, во втором определяется состоянием узла-измерителя. Между периодами, для экономии энергии, узлы находятся в спящем режиме. Соответственно, энергопотребление складывается из величины периодов и энергопотребления на каждом этапе.

Самым слабым местом беспроводных сенсорных сетей мониторинга остаётся время автономной работы узлов-измерителей, среднее энергопотребление которых, в основном, определяется объемом передаваемых и принимаемых в единицу времени данных.

Заключение

В настоящий момент на этапе отладки находится проект, беспроводной сенсорной сети мониторинга, обеспечивающей сбор базовых параметров среды, таких как температура, влажность, освещённость и давление. В дальнейшем планируется работа над улучшением показателей надёжности и времени автономной работы.

Литература

- 1. Документация на аппаратно-программное обеспечение беспроводных модулей [Электронный ресурс]. Режим доступа: http://jennic.com, свободный.
- 2. Компания-производитель беспроводных модулей [Электронный ресурс]. Режим доступа: http://nxp.com, свободный.
- 3. Gavrilovska L., Krco S., Milutinovic V., Stojmenovic I., Trobec R. Application and multidisciplinary aspects of wireless sensor networks. Springer, 2010. 293 c.