РЕШЕНИЕ ЗАДАЧ ТРАНСПОРТНОЙ ЛОГИСТИКИ НА ОСНОВАНИИ ДАННЫХ GPS-ТРЕКОВ

Пекарская С.С.

Национальный исследовательский Томский политехнический университет pekarskayasvetlana@gmail.com

Введение

Одной из основных ценностей современного мира на сегодняшний день является время. Особенно важен критерий времени в задачах связанных с перемещением в дорожной сети (ДС) в связи с наличием избыточной дорожной нагрузки и её неравномерностью, в частности, в задачах связанных с транспортной логистикой — построением рациональных маршрутов. Нагрузка в дорожной сети, неравномерна и значительно изменяется в течение суток, поэтому прогнозирование нагрузки в ДС является основой для решения задачи построения рационального маршрута.

Современное развитие технологий позиционирования приводит к широкому распространению систем и сервисов, использующих информацию о местоположении объектов, большинство из них позволяют пользователям фиксировать и сохранять позиции мобильных объектов (МО) в ДС. Такого рода данные, собранные за достаточно длительный период, могут быть использованы для прогнозирования дорожной нагрузки.

Модели дорожной сети

С точки зрения топологии ДС можно представит в виде направленного мультиграфа, в котором узлы представляют пересечения дорог на одном уровне, а рёбра — сегменты дорог между пересечениями [1]. Однако, в зависимости от специфики решаемых задач, модели дорожной сети могут быть различны.

Источники данных

В настоящее время можно найти много источников картографических данных, как открытых, так и коммерческих. В данном исследовании используются данные, предоставленные открытым сервисом OpenStreetMap [2] (OSM). Многие сервисы, работающие на основе данных OSM, также являются открытыми, и позволяют добавлять новые данные, в том числе и пользовательские треки [2, 3], что делает задачу прогнозирования нагрузки в ДС на основании статистических данных достаточно актуальной. В работе были использованы данные проекта OSM по г. Москве.

Пользовательские треки

Основными характеристикам GPS-треков являются координаты точек-позиций МО и время, в которое данная позиция была зафиксирована. В общем случае процесс создания пользовательско-

го трека можно описать следующим образом: через определённые временные промежутки определяется местоположение МО в координатах некой картографической проекции. Подавляющее большинство форматов позволяет сохранять не только координаты МО, фиксируемые через определённые промежутки времени, но так же фиксировать дату и время, в которое данное местоположение МО было определено в каждом конкретном случае.

Алгоритм расчёта времени проезда сегмента

В данном алгоритме используется пропорциональная зависимость времени от пройденного расстояния, рассчитывается интерполирующая функция [4, 5]. В качестве аргументов используются расстояния, пройденные по сегменту от последней точки-позиции предыдущего сегмента до каждой последующей вплоть до первой точки следующего сегмента, в качестве значений – время в соответствующих точках-позициях [6].

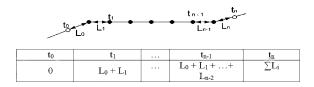


Рис. 1. Определение табличных данных для интерполяции

Так как сегмент представляет собой фрагмент ДС между пересечениями дорог на одном уровне. В данном случае пересечение являющееся выездом из двора будет также разбивать фрагмент ДС на сегменты. Однако в ДС дороги делятся на главные и второстепенные по отношению друг к другу. Исходя из этого, при условии отсутствии светофора на перекрёстке дорог разного типа, сегменты ДС между пресечениями дорог одного типа «главная дорога», можно определить в один участок ДС прохождение которых фактически можно представить как прохождение одного сегмента.

Алгоритм расчёта времени проезда участка ДС аналогичен алгоритму расчёта времени проезда сегмента ДС.

Разбиение суток на интервалы и оптимальный размер интервалов

Требуемое на прохождение участка ДС время значительно варьируется в течение суток, поэтому целесообразно разбивать сутки на интервалы, и рассчитывать время проезда участков, усреднённое по этим интервалам, а не по суткам в целом. Как указывалось в работе [4] определять интервалы необходимо для каждой дорожной сети в отдельности, так как суточные изменения нагрузки могут существенно отличаться для различных населённых пунктов. Интервалы определяются таким образом, чтобы пиковые нагрузки, спад и нарастание нагрузки были локализованы в соответствующих интервалах. В рамках данного исследования сутки были разбиты на интервалы по два часа и по часу. Разбиение на интервалы по часу даёт более точную оценку времени для исследуемых данных (рис. 2). Важно, что при таком делении среднее значение времени рассчитывается достаточно достоверно.

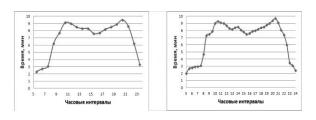


Рис.2. Расчётное время для 2-часовых (слева) и 1-часовых (справа) интервалов

Построение рационального маршрута

Одной из важных задач транспортной логистики является построение рационального маршрута – маршрута, минимизирующего расход топлива и временные затраты при доставке грузов.

На сегодняшний день значительную долю грузоперевозок составляет доставка небольших партий грузов, поэтому маршрут, как правило, составной. Используя данные о среднем времени в качестве весовых коэффициентов рёбер графа ДС данную задачу можно свести к поиску оптимального маршрута на графе ДС в заданном интервале суток до каждого требуемого пункта. При расчёте, исходя из данных о времени отправления, расчётного времени до каждого пункта и планируемого времени разгрузки/погрузки, расчёт времени пути осуществляется в прогнозируемом интервале суток, т.е. учитывается изменение нагрузки в ДС. Первоначально определяется время пути до каждого пункта и в качестве первого выбирается ближайший по времени. Процедура повторяется для всех пунктов, которые требуется посетить. Построенный таким образом рациональный маршрут является оптимальным по времени.

Заключение

Разработанный алгоритм расчёта среднего времени проезда участков ДС в некотором интервале суток позволяет корректно учитывать изменение дорожной нагрузки в течение суток.

Описаны результаты экспериментального исследования, показывающие эффективность дифференцированного подхода к расчёту среднего времени в зависимости от дополнительных параметров, а именно времени суток, дня недели, является ли день буднем или выходным.

Статистический анализ результатов экспериментального исследования показал, что рассчитывается среднее время достаточно достоверно. Использование предложенных подходов и алгоритмов может быть применено при решении широкого круга задач, в том числе задач транспортной логистики – построение рационального маршрута.

Предложенный алгоритм построения рационального маршрута с учётом нагрузки в ДС позволяет рассчитать оптимальный по времени маршрут до каждого пункта в прогнозируемом интервале суток.

Литература

- 1.Шестаков Н.А. Алгоритмическое и программное обеспеченье геоинформационной системы для мониторинга мобильных объектов в дорожной сети. Диссертация на соиск. уч. степ. к.т.н., ТПУ, Томск, 2010. 176 с.
- 2.OpenStreetMap Wiki. URL: http://wiki.openstreetmap.org/wiki/Main_Page обращения 24.04.2014).
- 3.Шестаков Н.А. Использование открытых источников геоданных на примере сервиса ОрепStreetМар.//Сборник докладов 7-й Всероссийской научно–практической конференции «Молодежь и современные информационные технологии», Томск, 2009.
- 4. Ибрагимов И.И. Методы интерполяции функций и некоторые их применения.// М.: Наука. 1971. 520с.
- 5. Пекарская С.С., Шестаков Н.А. Расчёт весовых коэффициентов для нахождения кратчайшего по времени пути.// Сборник докладов 18-й Всероссийской научно-практической конференции «Современные техника и технологии», Томск, 2012.
- 6. Пекарская С.С. Расчет весовых коэффициентов рёбер графа ДС для составления графика движения маршрутных транспортных средств.// Научная сессия ТУСУР 2013: материалы всероссийской научно-технической конференции студентов, аспирантов и молодых ученых, Томск, 15—17 мая 2013 г. в 5 т. / Томский государственный университет систем управления и радиоэлектроники (ТУСУР). 2013. Т. 2. С. 344-347.