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Jump Point Search (JPS) [1] is a unique online 

symmetry-breaking algorithm, which speeds up path 
finding on uniform-cost grid maps by “jumping over” 
many locations that would otherwise need to be 
explicitly considered. JPS is faster and more powerful 
than RSR: it can consistently speed up A* search by 
over an order of magnitude and more. Unlike other 
similar algorithms JPS requires no preprocessing and 
has no memory overheads. Further, it is easily 
combined with most existing speedup techniques — 
including abstraction and memory heuristics. 

 
The Algorithm 
This section and the next describe the mechanical 

details and algorithmic properties of Jump Point 
Search. A set of figures is provided in order to explain 
the algorithm`s behavior. 

JPS [1] can be described in terms of two simple 
pruning rules which are applied recursively during 
search: one rule is specific to straight steps, the other 
for diagonal steps. The key intuition in both cases is 
to prune the set of immediate neighbours around a 
node by trying to prove that an optimal path 
(symmetric or otherwise) exists from the parent of the 
current node to each neighbour and that path does not 
involve visiting the current node. Figure 1 outlines the 
basic idea. 

 

 
Figure 1. Neighbour Pruning 

 
Node x is currently being expanded. The arrow 

indicates the direction of travel from its parent, either 
straight or diagonal. In both cases we can immediately 
prune all grey neighbours as these can be reached 
optimally from the parent of x without ever going 
through node x. 

We will refer to the set of nodes that remain after 
pruning as the natural neighbours of the current node. 
These are marked white in Figure 1. Ideally, we only 
ever want to consider the set of natural neighbours 
during expansion. However, in some cases, the 
presence of obstacles may mean that we need to also 
consider a small set of up to k additional nodes (0 ≤ k 
≤ 2). We say that these nodes are forced neighbours of 
the current node. Figure 2 gives an overview of this 
idea. 

 
Figure 2. Forced Neighbours 

 
Node x is currently being expanded. The arrow 

indicates the direction of travel from its parent, either 
straight or diagonal. Notice that when x is adjacent to 
an obstacle the highlighted neighbours cannot be 
pruned; any alternative optimal path, from the parent 
of x to each of these nodes, is blocked [2]. 

We apply these pruning rules during search as 
follows: instead of generating each natural and forced 
neighbour we instead recursively prune the set of 
neighbours around each such node. Intuitively, the 
objective is to eliminate symmetries by recursively 
“jumping over” all nodes which can be reached 
optimally by a path that does not visit the current 
node. We stop the recursion when we hit an obstacle 
or when we find a so-called jump point successor. 
Jump points are interesting because they have 
neighbours that cannot be reached by an alternative 
symmetric path: the optimal path must go through the 
current node. 
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Figure 3. (A) jumping straight; (B) jumping 

diagonally  
The details of the recursive pruning algorithm are 

reasonably straightforward: to ensure optimality we 
need only assign an ordering to how we process 
natural neighbours (straight steps before diagonal). I 
will not attempt to outline it further here; the full 
details are in the paper and my aim is only to provide 
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a flavour for the work. Figures 3 gives two examples 
of the pruning algorithm in action. In the first case we 
identify a jump point by recursing straight; in the 
second case we identify a jump point by recursing 
diagonally. 

Node x is currently being expanded. p(x) is its 
parent. 

(A) We recursively apply the straight pruning rule 
and identify y as a jump point successor of x. This 
node is interesting because it has a neighbour z that 
cannot be reached optimally except by a path that 
visits x then y. The intermediate nodes are never 
explicitly generated or even evaluated. 

(B) We recursively apply the diagonal pruning 
rule and identify y as a jump point successor of x. 
Notice that before each diagonal step we first recurse 
straight (dashed lines). Only if both straight 
recursions fail to identify a jump point do we step 
diagonally again. Node w, which is simply a forced 
neighbour of x, is generated as normal. 

Properties and Performance 
Jump Point Search is nice for a number of reasons: 

• It is optimal. 
• It involves no pre-processing. 
• It requires no extra-memory overheads. 
• It can consistently speed up A* search by over 

10 times; making it not only competitive with, 
but often better than, approximate techniques 
such as HPA* [3]. 

Properties 1-3 are interesting theoretical results, 
and rather surprising, but I will not address them 
further here. My main objective in this article is 
simply provide a flavour for the work; for a full 
discussion, including proofs, please see the original 
paper [1]. Property 4 is perhaps of broadest practical 
interest so I will give a short summary of our findings 
below. 

We evaluated JPS on four map sets taken from 
Nathan Sturtevant’s freely available pathfinding 
library, Hierarchical Open Graph. Two of the 
benchmarks are realistic, originating from popular 
BioWare video games Baldur’s Gate II: Shadows of 
Amn and Dragon Age: Origins. The other two 
Adaptive Depth and Rooms are synthetic though the 
former could be described as semi-realistic. In each 
case we measured the relative speedup of A* + JPS 
vs. A* alone. 

Briefly: JPS can speed up A* by a factor of 
between 3-15 times (Adaptive Depth), 2-30 times 
(Baldur’s Gate), 3-26 times (Dragon Age) and 3-16 
times (Rooms). In each case the lower figure 
represents average performance for short pathfinding 
problems and the higher figure for long pathfinding 
problems (i.e. the longer the optimal path to be found, 
the more benefit is derived from applying JPS). 

What makes these results even more compelling is 
that in 3 of the 4 benchmarks A* + JPS was able to 
consistently outperform the well known HPA* 
algorithm [3]. This is remarkable as A* + JPS is 
always performing optimal search while HPA* is only 

performing approximate search. On the remaining 
benchmark, Dragon Age, we found there was very 
little to differentiate the performance of the two 
algorithms. 

Caveat emptor: It is important to highlight at this 
stage that A* + JPS only achieves these kids of 
speedups because each benchmark problem set 
contains a large number of symmetric path segments 
(usually manifested in the form of large open areas on 
the map). In such cases JPS can exploit the symmetry 
and ignore large parts of the search space. This means 
A* both generates and expands a much smaller 
number of nodes and consequently reaches the goal 
much sooner. When there is very little symmetry to 
exploit however we expect that our gains will be more 
modest. 

Final Thoughts 
The explicit identification and elimination of 

symmetries in pathfinding domains is an idea that 
until now has received little attention in the academic 
literature. Approaches for dealing with symmetry, 
such as Jump Point Search, provide us with powerful 
new tools for reducing the size of explicit regular 
search spaces. By eliminating symmetry we speed up 
not just A* but entire classes of similar pathfinding 
algorithms. Also, consider: JPS is entirely orthogonal 
to almost every other speedup technique applicable to 
grid maps. Thus, there is no reason why we couldn’t 
combine it, or other similar methods, with hierarchical 
pathfinding approaches, memory heuristics or even 
other optimality-preserving state-space reduction 
techniques. That means the results presented thus far 
are only the tip of the iceberg in terms of performant 
grid-based pathfinding methods. 

Another exciting aspect of this work is the 
possibilities it opens for further research. For 
example: could we pre-process the map and go even 
faster? Or: are there analogous jumping rules that one 
could develop for weighted grids? What about other 
domains? Could we apply the lessons learned thus far 
to help solve other interesting search problems? The 
answers to the first two questions already appear to be 
positive; the third is something we want to explore in 
the near future.  

 
References 

1. D. Harabor and A. Grastien. Online Graph 
Pruning for Pathfinding on Grid Maps. In National 
Conference on Artificial Intelligence (AAAI), 
2011. 

2. D. Harabor, A. Botea, and P. Kilby. Path 
Symmetries in Uniform-cost Grid Maps. In 
Symposium on Abstraction Reformulation and 
Approximation (SARA), 2011. 

3. A. Botea, M. Müller, and J. Schaeffer. Near 
Optimal Hierarchical Path-finding. In Journal of 
Game Development (Issue 1, Volume 1), 2004. 

290 




