ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТРАНСПОЗИЦИИ НА ВЫХОДНЫЕ ХАРАКТЕ-РИСТИКИ МАЛОГАБАРИТНОГО ИНДУКЦИОННОГО ЛИНЕЙНОГО ДАТ-ЧИКА ДИФФЕРЕНЦИАЛЬНО - ТРАНСФОРМАТОРНОГО ТИПА

Симон Д.А.

Научный руководитель: Муравлев О.П., д.т.н., профессор Томский Политехнический Университет, 634050, Россия, г.Томск, пр. Ленина, 30 E-mail: simo da@mail.ru

В последние годы индукционные бесконтактные датчики типа ЛДТ (за рубежом LVDT) – линейные дифференциальные трансформаторы используются все чаще вследствие простоты, высокой точности, удобства монтажа и сравнительно небольших габаритов. Условия применения вызывают существенные отличия в их конструкции и схеме построения.

Наиболее сложным звеном датчиков типа ЛДТ (или LVDT) является катушка, содержащая обмотки первичных и вторичных цепей. Простота конструктивного исполнения других узлов и деталей, в основном изготавливаемых из металлов, их небольшое общее число, свободное поступательное перемещение подвижной части (сердечника) дают основание считать безотказность обмоток определяющей в надежной работе датчика.

Целью данной работы является исследование влияния транспозиции обмоток датчика типа $\Pi \Pi T$ на рабочий ход \pm 5мм с дублированием обмоток на выходные характеристики.

Транспозицией для данных типов датчиков, принято считать изменение расположения всех проводов в ряде мест, равномерно распределенных в осевом направлении обмотки, при числе мест не меньше числа параллельных проводов. Другими словами транспозиция уменьшает влияние разности между положением витков на выходные характеристики.

Принципиальная электрическая схема датчика типа ЛДТ с дублированными обмотками приведена на рис. 1.

Рис. 1. Принципиальная электрическая схема

<u> </u>					
Назначение	е Катушка датчика типа ЛДТ-510			типа ЛДТ-510Д	
Схема обмо	ЭТКИ	HI			
Схема расположения обмоток, секций, ступеней			L L1 L1 L2 L2 II		
Данные обмоток					
Обмотки секции		I	II, III		
Данные по ступе-	Ступень L		Длина ступени	Количество рядов в ступени	
НЯМ			34±0,1	-	
обмоток	L1		16,5±0,05	2	
II, III	L2		13,5±0,05	1	

Сведения обмотки с учетом транспозиции:

- 1. Последовательность намотки обмоток: II, III, I.
- 2. Все обмотки мотать виток к витку двойным проводом. Направление намотки у всех обмоток одинаковое.
- 3. Обмотки II, III мотать с транспозицией через 1 ряд:
 - один ряд ступени L2 к средней щечки каркаса;
- один ряд ступени L1 от средней щечки до края каркаса.

Оставшиеся витки распределить по всей длине третьего ряда ступени L1 в соответствии с табл. 2. Нарушение рядов около средней щечки и ступеней каркаса на длине не более 0,5 мм заполнить витками последнего ряда каждой ступени.

4. Обмотку I мотать от щечки до щечки 3 ряда с транспозицией через 1 ряд, оставшиеся витки распределить в 4 ряду в соответствии с табл. 1. Нарушение рядов около щечек на длине не более 0,5 мм заполнить витками последнего ряда.

Исходя из этих сведений, составляем табл. 1 и 2 шагов распределения и числа витков обмотки.

Таблица 1. Шаг распределения и число витков обмотки I.

Число витков в полных 3	Шаг распределения витков
рядах ступени L1 обмотки I	последнего ряда обмотки I, мм
399 - 401	0,259 - 0,263
402 - 404	0,266 - 0,270
405 - 407	0,272 - 0,276
408 - 410	0,279 - 0,283
411 - 413	0,286 - 0,290
414 - 416	0,293 - 0,298
417 - 419	0,301 - 0,306
420 - 422	0,309 - 0,315
423 - 425	0,317 - 0,324
426 - 428	0,327 - 0,333
429 - 431	0,337 - 0,343
432 - 434	0,347 - 0,354
436 - 438	0,361 - 0,369
439 - 441	0,374 - 0,382
443 - 445	0,391 - 0,400
450 - 452	0,425 - 0,436

Таблица 2. Шаг распределения и число витков обмотки II и III.

Число витков в полных 2	Шаг распределения витков		
рядах	последнего ряда обмоток II и		
ступеней L1 + L2 обмоток	III, mm		
II и III			
136-137	0,100-0,103		
138-139	0,104-0,106		
140-141	0,107-0,108		
142-143	0,110-0,111		
143-144	0,113-0,115		
145-146	0,116-0,118		
147-148	0,119-0,121		

149-150	0,123-0,125
151-152	0,127-0,129
153-154	0,131-0,133
155-156	0,135-0,137
157-158	0,140-0,142
159-160	0.145-0.147

Далее проводим экспериментальные снятия параметров датчика, которые записываем в табл. $3\ \mathrm{u}\ 4.$

Таблица 3. Параметры первого канала датчика.

X1	Вых.х.	К, мм ⁻¹	n, %	U1, B	U2, B
-5,0	0,267814	0,053563	0,220	0,8128	1,4074
-4,0	0,214047	0,053512	0,138	0,8807	1,3604
-3,0	0,160556	0,053519	0,107	0,9479	1,3105
-2,0	0,107286	0,053643	0,118	1,0139	1,2576
-1,0	0,053823	0,053823	0,093	1,0785	1,2012
1,0	0,053351	0,053351	0,004	1,2024	1,0806
2,0	0,107223	0,053611	0,106	1,2593	1,0154
3,0	0,158954	0,052985	-0,193	1,3124	0,9524
4,0	0,211814	0,052953	-0,281	1,3622	0,8860
5,0	0,264982	0,052996	-0,311	1,4090	0,8187
- ,-	-,	-,	- /-	,	- ,

Таблица 4. Параметры второго канала датчика.

X2	Вых.х	К, мм ⁻¹	n, %	U1, B	U2, B
-5,0	0,268224	0,053645	0,306	0,8111	1,4057
-4,0	0,214334	0,053583	0,199	0,8792	1,3589
-3,0	0,160839	0,053613	0,166	0,9467	1,3096
-2,0	0,107391	0,053696	0,141	1,0132	1,2570
-1,0	0,053781	0,053781	0,087	1,0785	1,2011
1,0	0,053600	0,053600	0,053	1,2030	1,0806
2,0	0,106321	0,053161	-0,059	1,2601	1,0179
3,0	0,158940	0,052980	-0,191	1,3136	0,9533
4,0	0,211553	0,052888	-0,323	1,3633	0,8872
5,0	0,264574	0,052915	-0,379	1,4100	0,8200

На рис. 2 приведена выходная характеристика и зависимости напряжения на вторичных обмотках образца от перемещения сердечника.

$$\gamma_1 = \frac{U_{1(1)} - U_{2(1)}}{U_{1(1)} + U_{2(1)}}; \quad \gamma_2 = \frac{U_{1(2)} - U_{2(2)}}{U_{1(2)} + U_{2(2)}}$$

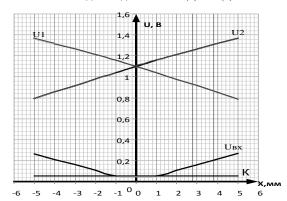


Рис. 2. Выходная характеристика и зависимости напряжения на вторичных обмотках образца от перемещения сердечника.

Практические значения нелинейности, полученные на образце, приведены на рис. 3.

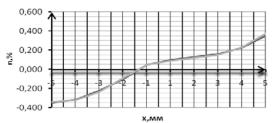


Рис. 3. Нелинейность выходной характеристики.

Нелинейности выходной характеристики, %, определялась по формуле:

$$n = \frac{\begin{pmatrix} \gamma_i \\ K \end{pmatrix} - x_i}{x_{\text{max}}};$$

где γ_i – текущее значение выходной характеристики;

K – крутизна выходной характеристики, мм $^{-1}$; x_i – текущее значение перемещения подвижной части, мм;

 ${x_{max}}-\;\;$ максимальное перемещение подвижной части.

Крутизна выходной характеристики определялась по формуле:

$$K = \frac{\sum \gamma_{1i}}{\sum x_i};$$

На основе полученных данных можно сделать следующие выводы об использовании транспозиции в датчиках типа ЛДТ:

- 1. Предлагаемый вариант намотки с использованием транспозиции позволяет существенно снизить расхождение геометрических нулей, что непосредственно влияет на выходную характеристику датчика. У данного образца геометрические нули составили 1,142В, что привело к низкому расхождению нулей равному 0,002мм (тах 0,038мм).
- 2. Нелинейность датчика также изменилась и стала вдвое меньше, чем была до применения транспозиции. Среднее значение нелинейности исходя из экспериментальных данных составило 0,22% (max 0,42%)

Литература

- 1. Малогабаритный двухканальный датчик типа ЛДТ. / Савченко М.Г., Марьянов Г.М., Новиков М.И. // Электронные и электромеханические системы и устройства: Сб. науч. тр. XVIII науч.техн. конф. НПЦ "Полюс". Томск, 2011. С. 341 347.
- 2. Савченко М.Г., Марьянов Г.М., Филиппов В.И. Двухканальные датчики типа ЛДТ на одном магнитопроводе. // Электронные и электромеханические системы и устройства: Сб. науч. тр. Новосибирск: Наука,2007.С.305–311.
- 3. Йоффе А. Б. Тяговые электрические машины. // Госэнергоиздат: М. Л., 1957.С.89-105.