РАЙОНИРОВАНИЕ НЕФТЕГАЗОНОСНОСТИ ПЛАСТА Ю₁5 НЮРОЛЬСКОЙ МЕГАВПАДИНЫ (НА ОСНОВЕ РЕЗУЛЬТАТОВ ПАЛЕОТЕМПЕРАТУРНОГО МОДЕЛИРОВАНИЯ)

Власова А.В.

Томский политехнический университет, Томский филиал ФБУ «Территориальный фонд геологической информации по Сибирскому федеральному округу»

Ранее было выполнено палеотемпературное моделирование, картирование по геотемпературному критерию палеоочагов генерации тогурских нефтей в пределах Нюрольской мегавпадины. В настоящей работе рассчитано распределение относительной плотности ресурсов первично-аккумулированных тогурских нефтей с учетом толщин пласта W_{15} , выполнено районирование резервуара для постановки поисковых работ.

Введение

РОВ нижнеюрской тогурской свиты является основным источником УВ для образования залежей в нижнеюрском НГК Нюрольской мегавпадины и структур ее обрамления. Ранее [1, 2], методом палеотемпературного моделирования [3] разрезов 35-и скважин и картирования по геотемпературному критерию палеоочагов генерации нефти, выполнена оценка распределения относительной плотности генерированных тогурских нефтей – рис. 1, \mathcal{L} .

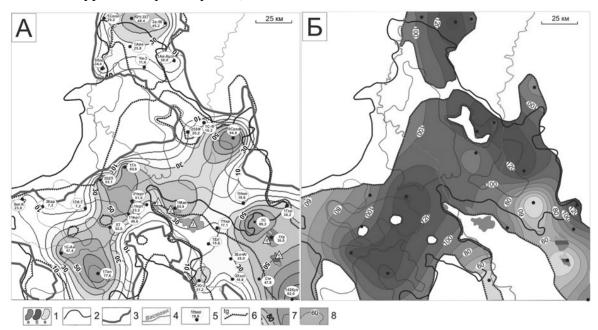


Рис. 1. Схематические карты изопахит пласта Ю15 (A) и распределения значений плотности генерированных тогурских нефтей (Б) в пределах Нюрольской мегавпадины: 1 — месторождение (в треугольнике его условный номер): а — нефтяное, б — газовое, в — газоконденсатное; 2 — границы тектонических элементов І порядка; 3 — граница распространения пласта Ю15; 4 — речная сеть; 5 — скважины, использованные для построения карты изопахит: в числителе условный индекс скважины, в знаменателе — мощность пласта, м; 6 — граница зоны распространения тогурской свиты; 7 — изопахиты пласта Ю15; 8 — изолинии значений плотности генерированных тогурских нефтей, усл.ед. Месторождения: Среднемайское (1), Майское (2), Южно-Майское (3), Урманское (4), Арчинское (5) с залежами углеводородов в пласте Ю15

Цель настоящих исследований – с учетом объема резервуара определить плотность первично-аккумулированных ресурсов для пласта IO_{15} и предложить первоочередные районы для поисков.

Характеристика объекта исследований

Ореол распространения *пласта* Ю₁₅ выходит за границы тогурских отложений в пределах Лавровского мезовыступа, небольшого участка в северной части Чузикско-Чижапской мезоседловины и вдоль восточного и западного бортов северного вреза мегавпадины. Основная часть нефтяных залежей тяготеет к северному склону Лавровского мезовыступа.

С использованием данных [4] о толщинах пласта Θ_{15} , построена объемная модель резервуара для Нюрольской мегавпадины и обрамляющих ее положительных структур (рис. 1, A).

Районирование нижнеюрского резервуара – пласта Ю₁₅

Используя распределение значений плотности генерированных тогурских нефтей (рис. 1, E) и распределение значений толщин пласта-коллектора (рис. 1, A), методом интерполяции построена схематическая карта распределения относительной плотности ресурсов тогурских нефтей для пласта IO_{15} (рис. 2, A).

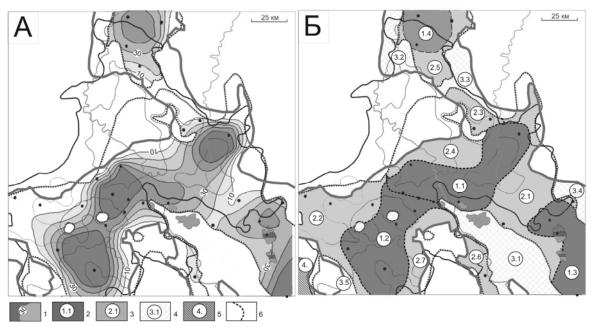


Рис. 2. Схематические карты распределения плотности первично-аккумулированных ресурсов тогурских нефтей в пласте Ю15 (А) и районирования пласта Ю15 Нюрольской мегавпадины (Б): 1 — изолинии значений плотности ресурсов, условные единицы; 2—5 — зоны с 1 по 4 (номер ранжирования; диапазон значений плотности ресурсов, усл. ед.): 1. — больше 30, 2. — меньше 30, 3. — зоны выклинивания тогурских отложений в пределах распространения пласта, 4. — зона отсутствия оценки плотности аккумулированных ресурсов; 6 — границы районов. Остальные условные обозначения те же, что на рис. 1

Здесь изменение плотности первично-аккумулированных ресурсов напрямую (с одинаковым весовым коэффициентом) зависит от мощности пласта и от плотности ресурсов генерированных нефтей. Оценка плотности ресурсов выполняется в

условных единицах, что представляется корректным для последующего площадного районирования.

Далее проведено районирование нижнеюрского резервуара по степени перспективности (рис. 2, B). Ранжирования районов пласта Θ_{15} выполнено по величине относительной плотности первично-аккумулированных тогурских нефтей, с учетом величины площадей зон.

Наибольшая плотность ресурсов приурочена к центральной части Нюрольской мегавпадины и к северной и южной части территории исследований — зона 1, со значениями плотности первично-аккумулированных тогурских нефтей больше 30 усл.ед. Здесь выделено 4 района, занимающие самую большую площадь, и с учетом площадного распространения проведено ранжирование по степени перспективности. Со значениями плотности первично-аккумулированных тогурских нефтей меньше 30 усл.ед. выделена зона 2. В зоне 3 отмечено распространение резервуара, однако тогурские отложения выклиниваются. В результате анализа выделена зона 4, где оценка плотности аккумулированных ресурсов не проведена в связи с отсутствием данных по толщинам пласта Ю₁₅.

Заключение

Таким образом, можно предложить первоочередные районы для изучения и освоения нижнеюрского резервуара Нюрольской мегавпадины — пласта Θ_{15} . Наиболее перспективный район 1.1 приурочен к Тамрадской и Кулан-Игайской впадинам и зоне их сочленения. Месторождение Майское, расположение в этом районе, подтверждает его высокую перспективность.

Отмечается высокая перспективность *района 1.3*, где уже открыты газоконденсатнонефтяные месторождения Урманское и Арчинское с залежами в пласте IO_{15} . Земли этих районов предлагаются как первоочередные для постановки поисков залежей нефти, приуроченных к резервуару нижнеюрского $\mathrm{H}\Gamma\mathrm{K}$ – пласту IO_{15} .

Литература

- 1. Лобова Г.А., Власова А.В. Реконструкция геотермического режима материнской тогурской свиты и обоснование районов аккумуляции нефти в нижнеюрских и палеозойском комплексах Нюрольской мегавпадины // Нефтегазовая геология. Теория и практика. 2013. Т. 8 № 2. http://www.ngtp.ru/rub/6/15_2013.pdf.
- 2. Isaev V.I., Lobova G.A., Osipova E.N. The oil and gas contents of the Lower Jurassic and Achimovka reservoirs of the Nyurol'ka megadepression // Russian Geology and Geophysics. 2014. Vol. 55. pp. 1418–1428.
- 3. Gulenok R.Yu., Isaev V.I., Kosygin V.Yu., Lobova G.A., Starostenko V.I. Estimation of the Oil-and-Gas Potential of Sedimentary Depression in the Far East and West Siberia Based on Gravimetry and Geothermy Data // Russian Journal of Pacific Geology. 2011. Vol. 5. pp. 273–287.
- 4. Лифанов В.А. Особенности геологического строения и перспективы нефтегазоносности нижнеюрских базальных горизонтов юго-востока Западной Сибири // Пути реализации нефтегазового и рудного потенциала ХМАО. Том 1. Ханты-Мансийск: «ИздатНаукСервис», 2012. С. 252–257.