УДК 550.8.053:519.2

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ И ПАРАМЕТРЫ ВЕЕРНОЙ ФИЛЬТРАЦИИ ПРИ ОБРАБОТКЕ СЕЙСМИЧЕСКИХ ВОЛНОВЫХ ПОЛЕЙ

Д.Ю. Степанов, Е.А. Яппарова*

Томский политехнический университет *ООО «НК «Роснефть»-НТЦ», г. Краснодар E-mail: sdu@am.tpu.ru

Рассмотрены методики оценки разрешающей способности веерного фильтра, которые учитывают наличие мешающих волн и базируются на двух подходах: достижения требуемого отношения сигнала к помехе и обеспечения требуемого максимального искажения спектра сигнала. Получены оптимальные и эмпирические оценки параметров веерного фильтра при обработке сейсмической информации.

В ряде областей науки и техники актуальной является задача разделения (разрешения) пространственно-временных сигналов, наблюдаемых на фоне помех в условиях существенной априорной неопределенности. К числу таких областей можно отнести сейсмическую разведку, где регистрируемые поля, представляющие определенную совокупность волн (пространственно-временных сигналов), характеризуются повышенной сложностью и часто имеют интерференционный характер [1–3]. В условиях априорной неопределенности относительно основных свойств выделяемых сигналов и помех в большинстве случаев не удается реализовать оптимальные алгоритмы обработки сейсмических наблюдений. Обычно осуществляют синтез таких алгоритмов обработки, которые учитывают имеющиеся априорные сведения о характеристиках сигналов и помех, и по своей эффективности приближаются к оптимальным алгоритмам. Так, при разделении сейсмических волн широкое применение нашли процедуры веерной фильтрации [4-6]. Идея веерной фильтрации состоит в том чтобы, опираясь на различие в кинематических характеристиках волн, обеспечить эффективное подавление регулярных волн-помех при одновременном пропускании полезных волн. Для приближения к оптимальности необходимо решить задачи оценки разрешающей способности и выбора параметров.

В практике статистических методов обработки существует несколько различных подходов к проблеме разрешения сигналов [7–9]. Применительно к веерной фильтрации, в [5, 6] предложено рассматривать задачу разрешения непосредственно для отклика системы. При этом в основе критерия разрешения лежит отношение мощности полезного сигнала к суммарной мощности нерегулярных помех. В других случаях задачу разрешения увязывают с теми или иными решаемыми задачами обработки (обнаружение сигналов, оценка их параметров и т. п.) и для ее решения привлекают методы теории статистических решений [7–11]. В данной статье рассматриваются оба из указанных подходов. Первый основан на выборе таких параметров фильтра, при которых на его выходе обеспечивается требуемое отношение сигнала к помехе. Такой критерий разрешения имеет общий характер, т. к. оказывает непосредственное влияние на эффективность последующей обработки. Однако, в настоящее время при обработке сейсмической информации уделяют большое внимание задачам так называемого динамического анализа (прогноз коллекторских свойств пород, прогноз нефтегазоностности и т. д.), где выдвигаются высокие требования к точности оценивания формы волн, их спектров и т. п. Поэтому второй подход предлагается базировать на критерии обеспечения требуемого максимального искажения динамических характеристик выделяемых волн. Для проведения оценки разрешающей способности веерного фильтра примем, что сейсмическое волновое поле определяется следующей моделью.

Статистическая модель сейсмического волнового поля

В общем случае статистическая модель сейсмического волнового поля представляется в виде суммы полезных волн (сигнала), регулярных волн-помех и нерегулярного шума [1]. При решении задачи разрешения волн, в отличие от задач обнаружения сигналов и оценки их параметров на фоне нерегулярного шума, статистическая модель должна учитывать не только присутствие сигнала, но и волн-помех. Влияние нерегулярного шума на эффективность веерного фильтра рассмотрено в ряде работ [5, 6] и в данной статье затрагиваться не будут. Рассмотрим далее статистическую модель волнового поля, включающую пачку полезных волн и пачку регулярных волн-помех, зарегистрированную в дискретных точках наблюдения вдоль одной координаты пространства *х*:

$$Y(t,x) = \left(\sum_{i=1}^{K_s} a_i S_i(t - \Delta t_i(x)) + \sum_{j=1}^{K_p} b_j P_j(t - \Delta t_j(x))\right) \times \\ \times \sum_{n=-N}^{N} \delta(x - n\Delta x) \cdot \operatorname{rect}\left[\frac{t - T/2}{T}\right],$$
(1)

где $S_i(t)$, $P_j(t)$ — форма полезных и мешающих волн, соответственно; a_i , b_j — амплитуды волн; K_s , K_p — число волн в пачках; T — длительность реализации; (2N+1) — количество пунктов наблюдения; Δx — расстояние между ними; rect $\begin{bmatrix} x \\ a \end{bmatrix} = \begin{cases} 1, |x| \le a/2, \\ 0, \text{ иначе,} \end{cases}$

прямоугольная функция.

Примем следующие предположения относительно параметров модели (1) [12]: $\Delta t_i(x) = t_i + \gamma x_i$, $\Delta t_i(x) = t_i + \gamma x$ — уравнения годографов *i*-ой и *j*-ой волн; γ — обратная величина кажущейся скорости волны, случайная величина с равномерным законом распределения $p(\gamma)$ на интервале $\Theta = [\gamma_{\mu}, \gamma_{e}]$; времена прихода волн t_i, t_i являются случайными величинами, с равномерным законом распределения p(t) на интервале [0,T]; форма волн в пачках одинакова, т. е. $S_i(t) = S(t)$, $P_{i}(t) = P(t)$; число волн в пачках K_{S} и K_{P} есть случайные величины, распределенные по закону Пуассона со средними значениями N_s и N_p ; амплитуды a_i и b_i являются случайными величинами с математическим ожиданием m_a и m_b и средним значением квадрата ψ_a^2 и ψ_b^2 , соответственно; все параметры волн есть независимые величины и не зависят от номера волны.

В общем случае такое волновое поле можно отнести к неоднородным нестационарным импульсным случайным полям [9]. Однако при некоторых допущениях неоднородностью и нестационарностью можно пренебречь [9, 11]. Так, математическое ожидание и дисперсия поля Y(t,x), далее считая, что длительность импульса волн $\tau_{имп} << T$, будут определяться выражениями:

$$\begin{split} M[Y(t,x)] &= \\ &= \frac{N_S m_a \overline{S} + N_P m_b \overline{P}}{T} \sum_{n=-N}^{N} \delta(x - n\Delta x) \operatorname{rect}\left[\frac{t - T/2}{T}\right], \\ D[Y(t,x)] &= \\ &= \left[\frac{N_S \psi_a^2 \overline{E}_S + N_P \psi_b^2 \overline{E}_P}{T} - \left(\frac{N_S m_a \overline{S} + N_P m_b \overline{P}}{T}\right)^2\right] \times \\ &\times \sum_{n=-N}^{N} \delta(x - n\Delta x) \cdot \operatorname{rect}\left[\frac{t - T/2}{T}\right], \\ \text{Figure } \overline{S} &= \int_{-\infty}^{\infty} S(t) dt, \ \overline{P} &= \int_{-\infty}^{\infty} P(t) dt; \ \overline{E}_S &= \int_{-\infty}^{\infty} S^2(t) dt. \end{split}$$

Таким образом, зависимость математического ожидания и дисперсии волнового поля (1) от пространства и времени обусловлена только ограниченностью по времени и дискретностью по пространству.

Подобное заключение можно сделать и относительно корреляционных свойств поля. Так, автоковариационную функцию волнового поля Y(t,x) в точке приема $x=n\Delta x$ на интервале $t \in [0;T]$ можно представить

$$R_{Y}(\tau) = \psi_{a}^{2} N_{S} R_{S}(\tau) + \psi_{b}^{2} N_{P} R_{P}(\tau),$$

где $R_{s}(\tau)$ и $R_{P}(\tau)$ – корреляционные функции форм волн. Следовательно, если модель волнового поля (1) рассматривается только в точках приема $x=n\Delta x$ и на интервале $t \in [0;T]$, то $Y(t,n\Delta x)$ можно считать локально-стационарным импульсным случайным процессом и его спектральную плотность в точке $x=n\Delta x$ определить как:

$$G_{Y}(f_{t}, n\Delta x) = G_{S}(f_{t}, n\Delta x) + G_{P}(f_{t}, n\Delta x) =$$
$$= N_{S} \psi_{a}^{2} |S(f_{t})|^{2} + N_{P} \psi_{b}^{2} |P(f_{t})|^{2},$$

где f_i – временная частота, $S(f_i)$ и $P(f_i)$ – спектры форм волн.

Веерная фильтрация

Согласно [4, 5], в области нулевого порядка дискретизации максимальные значения спектра регулярной волны с линейным уравнением годографа сосредоточены вдоль одной линии $f_x+f_t\gamma=0$, где $\gamma=1/V_k$ – обратная величина кажущейся скорости волны, f_x – пространственная частота. Область максимальных значений двумерного спектра (OM3C) пачки волн с линейными уравнениями годографов ($\gamma \in [\gamma_n, \gamma_e]$), можно ограничить неравенствами $-\gamma_e f_t \leq f_x \leq -\gamma_b f_r$.

Таким образом, когда волновое поле включает совокупность плоских волн с отличными γ , OM3C волн может быть ограничена областью в виде веера. Если диапазоны γ полезных и мешающих волн отличны, то их двумерные спектральные характеристики будут разнесены. Это дает возможность синтеза пространственно-временных фильтров в частотной области, полоса пропускания которых наиболее полно согласована с OM3C разрешаемых волн. Подобный фильтр получил название веерный фильтр (ВФ). Исходя из условия пропускания пачки полезных волн, частотную характеристику идеального направленного веерного пропускающего фильтра можно задать в виде (рис. 1) [10]:

$$H_{id}(f_t, f_x) = \operatorname{rect}\left[\frac{f_x + \gamma_{\Phi} |f_t|}{\Delta \gamma_{\Phi} |f_t|}\right], \qquad (2)$$

где $\gamma_{\Phi} = tg \phi$ — тангенс среднего угла наклона веерного фильтра (направление фильтра), $\Delta \gamma_{\Phi}$ — полоса пропускания по параметру γ (раствор фильтра).

Рис. 1. Частотная характеристика веерного фильтра

Параметры веерного фильтра принято определять из граничных значений γ пачки полезных волн:

$$\Delta \gamma_{\Phi} = \gamma_{s}^{s} - \gamma_{\mu}^{s}, \quad \gamma_{\Phi} = \frac{\gamma_{s}^{s} + \gamma_{\mu}^{s}}{2}.$$
 (3)

Анализ разрешающей способности веерного фильтра

За относительную величину разнесения одной пачки волн от другой при $\gamma_{s}^{s} \gamma_{r}^{\rho}$ примем отношение

$$\gamma_r = (\gamma_s^S - \gamma_s^P) / (\gamma_s^S - \gamma_{\scriptscriptstyle H}^S). \tag{4}$$

Рассмотрим двумерный спектр волнового поля (1) в области нулевого порядка дискретизации [10]

$$Y(f_{t}, f_{x}) = S(f_{t}, f_{x}) + P(f_{t}, f_{x}) =$$

$$= \sum_{i=1}^{K_{s}} a_{i}S_{i}(f_{t})e^{-j2\pi t_{i}f_{t}}U\operatorname{Sinc}[\pi U(f_{x} + \gamma_{i}f_{t})] +$$

$$+ \sum_{l=1}^{K_{p}} b_{l}P_{l}(f_{t})e^{-j2\pi t_{l}f_{t}}U\operatorname{Sinc}[\pi U(f_{x} + \gamma_{Pl}f_{t})],$$

где $U=(2N+1)\Delta x$ – протяженность системы наблюдения; Sinc() – функция отсчетов. Спектры пачек полезных и мешающих волн будут разнесены в частотной области, если $\gamma_r > 1$, рис. 2.

Рис. 2. Возможные случаи взаимного положения ОМЗС пачек полезных и мешающих волн: а) разнесены; б) не разнесены

Остановимся на рассмотрении оценки разрешающей способности $B\Phi$ в рамках отмеченных выше подходов. При оценке разрешающей способности по первому подходу определим спектральную плотность волнового поля на выходе $B\Phi$ в точке \tilde{x} как

$$G_Y^{\text{\tiny Gbix}}(f_t, \tilde{x}) = M[|Y_{\text{\tiny Gbix}}(f_t, \tilde{x})|^2],$$

где M[] — оператор математического ожидания; $Y_{\text{est}}(f,\tilde{x})$ — спектр волнового поля на выходе ВФ в точке \tilde{x} , который можно определить следующим образом

$$\begin{split} Y_{_{\textit{GbX}}}(f_t,\tilde{x}) &= S_{_{\textit{GbX}}}(f_t,\tilde{x}) + P_{_{\textit{GbX}}}(f_t,\tilde{x}) = \\ &= \sum_{i=1}^{K_S} a_i S_i(f_t) e^{-j2\pi(t_i+\gamma_i\tilde{x})f_i} B(f_t,\tilde{x};\gamma_i',\Delta\gamma_{\Phi}) + \\ &+ \sum_{l=1}^{K_p} b_l P_l(f_t) e^{-j2\pi(t_l+\gamma_i\tilde{x})f_i} B(f_t,\tilde{x};\gamma_l',\Delta\gamma_{\Phi}), \end{split}$$

где

$$B(f_t, \tilde{x}; \gamma', \Delta \gamma_{\Phi}) =$$

$$= \frac{e^{-j2\pi \tilde{x}\gamma'|f_t|}}{\pi} \begin{bmatrix} \operatorname{Si}[\pi U | f_t | (\gamma' + \Delta \gamma_{\Phi}/2)] - \\ -\operatorname{Si}[\pi U | f_t | (\gamma' - \Delta \gamma_{\Phi}/2)] \end{bmatrix}$$

— эквивалентная передаточная функция фильтра, определяющая изменение спектра волны с линейным уравнением годографа на выходе фильтра в точке \tilde{x} ; $\gamma = \gamma_{\Phi} - \gamma - расстройка направления фильтра$ $<math>\gamma_{\Phi}$ относительно направления волны γ [10, 11]. Таким образом, исходя из выдвинутых выше предположений относительно свойств принятой модели волнового поля, спектральная плотность поля на выходе фильтра будет иметь вид:

$$\begin{split} G_{Y}^{a_{b}x}(f_{t},\tilde{x}) &= N_{S}\psi_{a}^{2}\left|S_{0}(f_{t})\right|^{2}J_{B}\left(f_{t};p(\gamma_{S});\gamma_{\phi},\Delta\gamma_{\phi}\right) + \\ &+ N_{P}\psi_{b}^{2}\left|P_{0}(f_{t})\right|^{2}J_{B}\left(f_{t};p(\gamma_{p});\gamma_{\phi},\Delta\gamma_{\phi}\right) = \\ &= G_{S}^{ax}(f_{t},\tilde{x})J_{B}\left(f_{t};p(\gamma_{S});\gamma_{\phi},\Delta\gamma_{\phi}\right) + \\ &+ G_{P}^{ax}(f_{t},\tilde{x})J_{B}\left(f_{t};p(\gamma_{p});\gamma_{\phi},\Delta\gamma_{\phi}\right), \end{split}$$

где

$$J_{B}(f_{t}; p(\gamma); \gamma_{\phi}, \Delta \gamma_{\phi}) = M[|B(f_{t}, 0; \gamma', \Delta \gamma_{\phi})|^{2}] =$$
$$= \frac{1}{\pi(\gamma_{e} - \gamma_{n})} \int_{\gamma_{\phi} - \gamma_{e}}^{\gamma_{\phi} - \gamma_{n}} |\mathrm{Si}[\pi U|f_{t}|(\gamma' + \Delta \gamma_{\phi}/2)] -$$
$$-\mathrm{Si}[\pi U|f_{t}|(\gamma' - \Delta \gamma_{\phi}/2)]|^{2} d\gamma'$$

— функция, определяющая уровень пропускания сигнала или помех на частоте f_t .

Определим отношение сигнала к помехе на входе и выходе фильтра как [7, 9]:

$$\rho_{\rm BX} = \frac{\psi_s^2}{\psi_p^2} = \frac{N_S \psi_a^2 E_S}{N_P \psi_b^2 E_P},$$

$$\rho_{\rm BMX}(\gamma_{\Phi}, \Delta \gamma_{\Phi}) = \frac{\psi_{S\,_{BMX}}^2}{\psi_{P\,_{BMX}}^2} = \rho_{\rm BX} K(\gamma_{\Phi}, \Delta \gamma_{\Phi}), \qquad (5)$$

где E_s и E_p – энергия импульса сигнала и помехи, соответственно;

$$K(\gamma_{\phi}, \Delta \gamma_{\phi}) =$$

$$= \frac{E_{p} \int_{-\infty}^{\infty} |S_{0}(f_{t})|^{2} J_{B}(f_{t}; p(\gamma_{S}), \gamma_{\phi}, \Delta \gamma_{\phi}) df_{t}}{E_{s} \int_{-\infty}^{\infty} |P_{0}(f_{t})|^{2} J_{B}(f_{t}; p(\gamma_{P}), \gamma_{\phi}, \Delta \gamma_{\phi}) df_{t}}.$$
(6)

Таким образом, отношение сигнала к помехе на выходе ВФ можно рассматривать как произведение отношения сигнала к помехе на входе фильтра ρ_{ex} на коэффициент выигрыша $K(\gamma_{\phi}, \Delta \gamma_{\phi})$, определяющий увеличение отношения сигнала к помехе при проведении ВФ. Тогда согласно первому подходу за *разрешающую способность ВФ* можно принять величину γ_r' , при которой отношение сигнала к помехе на выходе фильтра (5) достигнет заданного значения ρ_0 , т. е. $\gamma_r'=\gamma_r$ при $\rho_{exx}=\rho_0$. Оптимальные параметры ВФ в смысле максимума отношения сигнала к помехе на выходе ВФ будут определяться как

$$(\gamma_{\Phi}^{onm}, \Delta \gamma_{\Phi}^{onm}) = \arg \max K(\gamma_{\Phi}, \Delta \gamma_{\Phi}).$$
 (7)

При рассмотрении второго подхода искажение сигнала на выходе фильтра будем оценивать через средний квадрат ошибки восстановления спектра сигнала в центре базы наблюдения $\tilde{x}=0$:

$$\varepsilon^{2}(f_{t}, \Delta \gamma_{\Phi}, \gamma_{\Phi}) = M[|Y_{_{bbx}}(f_{t}, 0) - S_{_{ex}}(f_{t}, 0)|^{2}] =$$

$$= M[|\sum_{i=1}^{K_{s}} a_{i}S_{i}(f_{t})e^{-j2\pi t_{i}f_{t}}B(f_{t}, 0; \Delta \gamma_{\Phi}, \gamma_{i}') +$$

$$+\sum_{l=1}^{K_{p}} b_{l}P_{l}(f_{t})e^{-j2\pi t_{l}f_{t}}B(f_{t}, 0; \Delta \gamma_{\Phi}, \gamma_{i}') -$$

$$-\sum_{i=1}^{K_{s}} a_{i}S_{i}(f_{t})e^{-j2\pi t_{i}f_{t}}|^{2}].$$
(8)

Согласно выше принятым предпосылкам относительно свойств полезных волн и волн-помех выражение (8) запишем как:

$$\begin{aligned} \varepsilon^{2}(f_{t};\gamma_{\Phi},\Delta\gamma_{\Phi}) &= \\ &= G_{S}^{ax}(f_{t})J(f_{t};\rho(\gamma_{S}),\Delta\gamma_{\Phi},\gamma_{\Phi}) + \\ &+ G_{P}^{ax}(f_{t})J_{B}(f_{t};\rho(\gamma_{P}),\Delta\gamma_{\Phi},\gamma_{\Phi}), \end{aligned}$$

где

$$J(f_t; p(\gamma_s), \Delta \gamma_{\Phi}, \gamma_{\Phi}) = M[|B(f_t, 0; \gamma'_t, \Delta \gamma_{\Phi}) - 1|^2] =$$

= $\frac{1}{\gamma_s^S - \gamma_n^S} \int_{\gamma_{\Phi} - \gamma_s^S}^{\gamma_{\Phi} - \gamma_n^S} \left(\frac{1}{\pi} \left(\frac{\operatorname{Si}[\pi U f_t(\gamma'_t + \Delta \gamma_{\Phi}/2)] -}{-\operatorname{Si}[\pi U f_t(\gamma'_t - \Delta \gamma_{\Phi}/2)]} \right) - 1 \right)^2 d\gamma'_t$

– функция, определяющая уровень искажения спектра сигнальной составляющей на частоте *f_i*. Таким образом, искажение сигнала складывается из искажений, вносимых ВФ в сигнальную составляющую, и остаточных помех.

В качестве показателя вносимых искажений при разделении волн примем нормированное значение среднеквадратической ошибки восстановления спектра сигнала на выходе ВФ, усредненное в области сигнальных частот:

$$\overline{\varepsilon}(\gamma_{\Phi}, \Delta \gamma_{\Phi}) = \frac{1}{(f_{eepx} - f_{max})\sqrt{E_s}} \int_{f_{max}}^{f_{eepx}} \varepsilon(f_t; \gamma_{\Phi}, \Delta \gamma_{\Phi}) df_t, (9)$$

где f_{eepx}, f_{max} — верхняя и нижняя частота спектра сигнала. Тогда, согласно второму подходу, за разрешающую способность в смысле восстановления сигнала можно взять величину γ_r ", при которой нормированная усредненная среднеквадратическая ошибка (9) не превышает заданного значения ε_0 . Таким образом, под задачей разрешения пачки волн подразумевается подбор параметров ВФ ($\gamma_{\Phi}, \Delta \gamma_{\Phi}$), при которых будет достигнута его заданная разрешающая способность. Оптимальными параметрами ВФ в этом случае будем считать

$$(\gamma_{\Phi}^{onm}, \Delta \gamma_{\Phi}^{onm}) = \arg\min \overline{\varepsilon}(\gamma_{\Phi}, \Delta \gamma_{\Phi}).$$
(10)

Для определения оптимальных параметров фильтра в соответствии с принятыми критериями разрешения, как видно из (7) и (10), необходима априорная информация, как о кинематических, так и о динамических характеристиках входного сигнала и помехи. На практике, данная информация отсутствует, а оценки динамических характеристик волн в интерференционных условиях обладают значительными погрешностями, что затрудняет нахождение оптимальных значений γ_{Φ} и $\Delta \gamma_{\Phi}$. Поэтому, при известных оценках распределения γ сигнала и мешающих волн предложено параметры фильтра задавать эмпирически. Для случая, когда спектры пачек полезных и мешающих волн налагаются ($\gamma_r < 1$), необходимо учитывать область значений у мешающих волн, например в виде:

$$\Delta \widehat{\gamma}_{\Phi} = \gamma_s^S - \gamma_e^P, \quad \widehat{\gamma}_{\Phi} = \frac{\gamma_s^S + \gamma_e^P}{2} \quad \text{при} \quad \gamma_s^S > \gamma_e^P. \quad (11)$$

При обработке полей малого размера, учитывая эффект Гиббса, параметры фильтра предлагается задавать согласно выражениям:

$$\Delta \widehat{\gamma}_{\Phi} = \gamma_s^S - \gamma_s^P + \frac{2}{f_{sepx}U}, \quad \widehat{\gamma}_{\Phi} = \frac{\gamma_s^S + \gamma_s^P}{2} + \frac{1}{f_{sepx}U}.$$
(12)

В этой связи рассмотрим задачу: насколько приближаются оценки γ_{ϕ} и $\Delta \gamma_{\phi}$, определяемые согласно выражениям (3, 11, 12), к оптимальным параметрам фильтра.

Для принятой модели волнового поля были проведены исследования влияния параметров фильтра на коэффициент выигрыша (6) и на нормированную усредненную ошибку восстановления спектра сигнала (9). На рис. 3 в качестве примера приведены графики $K(\gamma_{\phi}, \Delta\gamma_{\phi})$ и $\overline{\varepsilon}(\gamma_{\phi}, \Delta\gamma_{\phi})$ в зависимости от величины раствора фильтра $\Delta\gamma_{\phi}$. При проведении расчетов пачка полезных волн имела постоянную область Θ_s , а пачка мешающих волн меняла свое направление так, что области Θ_s и Θ_p вначале налагались ($\gamma_r < 1$), а потом разносились друг относительно друга ($\gamma_r > 1$). Направление фильтра γ_{ϕ} задавалось согласно выражению (12). За форму волн взят импульс с колокольной огибающей [13].

Как показали проведенные исследования:

- *K*(Δγ_Φ) имеет экстремальный характер с выраженным максимумом;
- величина max[K] увеличивается с увеличением относительной величины разнесения γ_r. Даже в условиях, когда наблюдается интенсивная интерференция волн (γ_r<1), ВФ позволяет существенно повысить отношение сигнала к помехе. Например, при γ_r=0,65 коэффициент выигрыша составил 40;
- поведение ε

 (Δγ_Φ) также имеет экстремальный характер с ярко выраженным минимумом.

В соответствии с выражениями (6, 8) для принятой модели волнового поля были проведены исследования γ_r 'и γ_r "в зависимости от ρ_{ex} по отмеченным выше критериям разрешения. На рис. 4 в качестве примера приведены графики γ_r для двух критериев разрешения и рассматриваемых оценок параметров фильтра.

Рис. 3. Результаты исследования: а) коэффициента выигрыша; б) нормированной усредненной ошибки восстановления спектра сигнала в зависимости от величины раствора фильтра

Из проведенных исследований следует, что когда спектры разрешаемых пачек волн разнесены, то в соответствии с первым критерием разрешения оценку параметров фильтра целесообразно осуществлять согласно выражению (3). В том случае, когда ОМЗС пачек волн налагаются, оценку γ_{Φ} и $\Delta \gamma_{\Phi}$ требуется проводить согласно (11):

$$\widehat{\gamma}_{\Phi} = \begin{cases}
\frac{\gamma_{e}^{S} + \gamma_{e}^{P}}{2} + \frac{1}{f_{sepx}U}, \gamma_{u}^{S} \leq \gamma_{e}^{P}, \\
\frac{\gamma_{e}^{S} + \gamma_{u}^{S}}{2}, & \gamma_{u}^{S} > \gamma_{e}^{P}, \\
\frac{\gamma_{e}^{S} - \gamma_{e}^{P}}{2} + \frac{2}{f_{sepx}U}, \gamma_{u}^{S} \leq \gamma_{e}^{P}, \\
\gamma_{e}^{S} - \gamma_{u}^{S}, & \gamma_{u}^{S} > \gamma_{e}^{P}.
\end{cases}$$
(13)

В том случае, когда спектры разрешаемых волн налагаются и отношение сигнала к помехе на входе ВФ $\rho_{ex}>1$, то согласно второму критерию разрешения волн оценку параметров фильтра целесообразно осуществлять согласно (3). В остальных случаях γ_{Φ} и $\Delta \gamma_{\Phi}$ необходимо выбирать согласно (11):

$$\widehat{\gamma}_{\Phi} = \begin{cases} \frac{\gamma_{e}^{S} + \gamma_{e}^{P}}{2}, & (\gamma_{\mu}^{S} < \gamma_{e}^{P}) \land (\rho_{ex} > 1), \\ \frac{\gamma_{e}^{S} + \gamma_{e}^{P}}{2} + \frac{1}{f_{sepx}U}, & \text{иначе,} \end{cases}$$
$$\Delta \widehat{\gamma}_{\Phi} = \begin{cases} \gamma_{e}^{S} - \gamma_{\mu}^{S}, & (\gamma_{\mu}^{S} < \gamma_{e}^{P}) \land (\rho_{ex} > 1), \\ \gamma_{e}^{S} - \gamma_{e}^{P} + \frac{2}{f_{sepx}U}, & \text{иначе.} \end{cases}$$
(14)

Рис. 4. Разрешающая способность ВФ в зависимости от ρ_№ согласно подходу: а) первому (ρ₀=20); б) второму (ε₀=0,1). Параметры ВФ задавались согласно: 1) ур. (3); 2) ур. (11); 3) ур. (12); 4) ур. (7), рис. 4, а, и (10), рис. 4, б

Таким образом, предложена методика оценки разрешающей способности веерного фильтра, учитывающая наличие мешающих регулярных волн. Критерием разрешающей способности может выступать не только максимум отношения сигнала к шуму, но и минимум искажения спектральных характеристик выделяемых волн. Разработанные оценки (13, 14) позволяют на практике произвести выбор параметров веерного фильтра и обеспечить более высокое разрешение пачек волн, даже в условиях их интенсивной интерференции.

СПИСОК ЛИТЕРАТУРЫ

- Гольцман Ф.М. Статистические модели интерпретации. М.: Наука, 1971. – 328 с.
- Троян В.Н. Статистические методы обработки сейсмической информации при исследовании сложных сред. – М.: Недра, 1982. – 184 с.
- Тихонов А.Н. Оптимальный прием сигналов. М.: Радио и связь, 1983. – 320 с.
- Shanks J.L., Treitel S., Frasier C.W. Some aspects of fan filtering // Geophysics. – 1967. – V. 32. – № 5. – P. 789–800.
- Нахамкин С.А. О веерной фильтрации // Известия АН СССР. Физика Земли. – 1969. – № 11. – С. 24–35.
- Кондратьев И.К. К теории веерной фильтрации // Прикладная геофизика. – М.: Недра, 1971. – Вып. 64. – С. 24–39.
- Ширман Я.Д. Разрешение и сжатие сигналов. М.: Советское радио, 1974. – 360 с.
- Бакут П.А., Большаков И.А. и др. Вопросы статистической теории радиолокации. – М.: Мир, 1989. – 448 с.
- Левин Б.Р. Теоретические основы статистической радиотехники. – 3-е изд. перераб. и доп. – М.: Радио и связь, 1989. – 656 с.

- Степанов Д.Ю., Яппарова Е.А. Новый подход к реализации направленных фильтров при анализе сложных волновых полей // Технологии сейсморазведки. – 2005. – № 1. – С. 32–37.
- Иванченков В.П., Степанов Д.Ю. Детализация сложных волновых полей методом оптической перестраиваемой узкополосной фильтрации по кажущейся скорости // Оптический журнал. 1996. № 10. С. 67–72.
- 12. Яновский А.К. Использование функций взаимной корреляции сейсмических трасс для увязки сейсмических колебаний // Дискретная корреляция сейсмических волн / Под ред. Н.Н. Пузырева. – Новосибирск: Наука, 1971. – С. 50–72.
- Сейсморазведка. Справочник геофизика / Под ред. И.И. Гурвича, В.П. Номоконова. М.: Недра, 1990. Т. 1. 335 с.

Поступила 17.04.2008 г.

Ключевые слова:

Веерная фильтрация, сейсмические волновые поля, спектральный анализ.

УДК 550.053:510.2+550.053:681.3(571.16)

АДАПТИВНЫЕ ФАЗОЧАСТОТНЫЕ АЛГОРИТМЫ ОЦЕНКИ ВРЕМЕННОГО ПОЛОЖЕНИЯ СЕЙСМИЧЕСКИХ СИГНАЛОВ

В.П. Иванченков, Е.Г. Колесникова, А.А. Козлов

Томский политехнический университет E-mail: onv@am.tpu.ru

Рассматриваются вопросы оценки временного положения сейсмических сигналов, регистрируемых в различных точках приема, в условиях существенной априорной неопределенности. Решаются задачи синтеза адаптивных фазочастотных алгоритмов, и приводятся результаты исследования их эффективности. Показывается высокая помехоустойчивость и разрешающая способность предложенных методов и возможность их применения в сложных сейсмогеологических условиях, когда не имеется полной априорной информации о свойствах выделяемых сигналов и помех.

При обработке пространственно-временных сигналов, регистрируемых при сейсмических исследованиях, часто требуется определять их местоположение в различных точках приема. При этом приходится решать задачу в условиях существенной априорной неопределенности, когда не имеется достаточно полной информации о форме выделяемых сигналов и их спектрах. В [1, 2] рассмотрены фазочастотные алгоритмы оценки местоположения пространственно-временных сигналов, когда используется только информация о свойствах их фазочастотных характеристик (ФЧХ). В данной статье решаются задачи синтеза адаптивных фазочастотных алгоритмов, когда информация о свойствах ФЧХ сигналов отсутствует, и приводятся результаты исследования их эффективности.

Будем считать, что наблюдаемое в различных точках приема волновое поле может быть представлено моделью:

$$X(t,k) = Z(t,k) + n(t,k),$$
 (1)

где $Z(t,k) = \sum_{i} A_i S_i(t - \tau_i - \Delta t_i(k))$ – сигнальная часть, включающая полезные и мешающие сигналы в k-ой точке приема, n(t,k) – гауссова помеха; A_i , $S_i(t)$

- соответственно амплитуда и форма *i*-ого сигнала; τ_i - время прихода *i*-ой волны в точку k=0; Δt_i - приращение времени.

Предварительно отметим, основные особенности оптимального фазочастотного алгоритма оценки временного положения, считая, что выделяемый и мешающий сигналы не интерферируют между собой, а процессы, наблюдаемые в различных точках приема, являются независимыми [1]. В этом случае задача оценки местоположения может быть приведена к последовательному анализу процессов вида:

$$X(t) = S(t,\tau) + n(t), \qquad (2)$$

и определению времени прихода τ в каждую точку приема. При этом оптимальной обработке подвергается лишь ФЧХ $\varphi_x(f)$ процесса (2), причем значения ФЧХ в наблюдаемой выборке считаются некоррелированными. Процедура определения оптимальной оценки $\hat{\tau}$ может быть найдена из решения уравнения правдоподобия:

$$\left. \frac{\partial}{\partial \tau} \ln L(\varphi_x(f)) \right|_{\tau = \hat{\tau}_{onm}} = 0.$$
(3)