СПИСОК ЛИТЕРАТУРЫ

- Гольцман Ф.М. Статистические модели интерпретации. М.: Наука, 1971. – 328 с.
- Троян В.Н. Статистические методы обработки сейсмической информации при исследовании сложных сред. – М.: Недра, 1982. – 184 с.
- Тихонов А.Н. Оптимальный прием сигналов. М.: Радио и связь, 1983. – 320 с.
- Shanks J.L., Treitel S., Frasier C.W. Some aspects of fan filtering // Geophysics. – 1967. – V. 32. – № 5. – P. 789–800.
- Нахамкин С.А. О веерной фильтрации // Известия АН СССР. Физика Земли. – 1969. – № 11. – С. 24–35.
- Кондратьев И.К. К теории веерной фильтрации // Прикладная геофизика. – М.: Недра, 1971. – Вып. 64. – С. 24–39.
- Ширман Я.Д. Разрешение и сжатие сигналов. М.: Советское радио, 1974. – 360 с.
- Бакут П.А., Большаков И.А. и др. Вопросы статистической теории радиолокации. – М.: Мир, 1989. – 448 с.
- Левин Б.Р. Теоретические основы статистической радиотехники. – 3-е изд. перераб. и доп. – М.: Радио и связь, 1989. – 656 с.

- Степанов Д.Ю., Яппарова Е.А. Новый подход к реализации направленных фильтров при анализе сложных волновых полей // Технологии сейсморазведки. – 2005. – № 1. – С. 32–37.
- Иванченков В.П., Степанов Д.Ю. Детализация сложных волновых полей методом оптической перестраиваемой узкополосной фильтрации по кажущейся скорости // Оптический журнал. 1996. № 10. С. 67–72.
- 12. Яновский А.К. Использование функций взаимной корреляции сейсмических трасс для увязки сейсмических колебаний // Дискретная корреляция сейсмических волн / Под ред. Н.Н. Пузырева. – Новосибирск: Наука, 1971. – С. 50–72.
- Сейсморазведка. Справочник геофизика / Под ред. И.И. Гурвича, В.П. Номоконова. М.: Недра, 1990. Т. 1. 335 с.

Поступила 17.04.2008 г.

Ключевые слова:

Веерная фильтрация, сейсмические волновые поля, спектральный анализ.

УДК 550.053:510.2+550.053:681.3(571.16)

АДАПТИВНЫЕ ФАЗОЧАСТОТНЫЕ АЛГОРИТМЫ ОЦЕНКИ ВРЕМЕННОГО ПОЛОЖЕНИЯ СЕЙСМИЧЕСКИХ СИГНАЛОВ

В.П. Иванченков, Е.Г. Колесникова, А.А. Козлов

Томский политехнический университет E-mail: onv@am.tpu.ru

Рассматриваются вопросы оценки временного положения сейсмических сигналов, регистрируемых в различных точках приема, в условиях существенной априорной неопределенности. Решаются задачи синтеза адаптивных фазочастотных алгоритмов, и приводятся результаты исследования их эффективности. Показывается высокая помехоустойчивость и разрешающая способность предложенных методов и возможность их применения в сложных сейсмогеологических условиях, когда не имеется полной априорной информации о свойствах выделяемых сигналов и помех.

При обработке пространственно-временных сигналов, регистрируемых при сейсмических исследованиях, часто требуется определять их местоположение в различных точках приема. При этом приходится решать задачу в условиях существенной априорной неопределенности, когда не имеется достаточно полной информации о форме выделяемых сигналов и их спектрах. В [1, 2] рассмотрены фазочастотные алгоритмы оценки местоположения пространственно-временных сигналов, когда используется только информация о свойствах их фазочастотных характеристик (ФЧХ). В данной статье решаются задачи синтеза адаптивных фазочастотных алгоритмов, когда информация о свойствах ФЧХ сигналов отсутствует, и приводятся результаты исследования их эффективности.

Будем считать, что наблюдаемое в различных точках приема волновое поле может быть представлено моделью:

$$X(t,k) = Z(t,k) + n(t,k),$$
 (1)

где $Z(t,k) = \sum_{i} A_i S_i(t - \tau_i - \Delta t_i(k))$ – сигнальная часть, включающая полезные и мешающие сигналы в k-ой точке приема, n(t,k) – гауссова помеха; A_i , $S_i(t)$

- соответственно амплитуда и форма *i*-ого сигнала; τ_i - время прихода *i*-ой волны в точку k=0; Δt_i - приращение времени.

Предварительно отметим, основные особенности оптимального фазочастотного алгоритма оценки временного положения, считая, что выделяемый и мешающий сигналы не интерферируют между собой, а процессы, наблюдаемые в различных точках приема, являются независимыми [1]. В этом случае задача оценки местоположения может быть приведена к последовательному анализу процессов вида:

$$X(t) = S(t,\tau) + n(t), \qquad (2)$$

и определению времени прихода τ в каждую точку приема. При этом оптимальной обработке подвергается лишь ФЧХ $\varphi_x(f)$ процесса (2), причем значения ФЧХ в наблюдаемой выборке считаются некоррелированными. Процедура определения оптимальной оценки $\hat{\tau}$ может быть найдена из решения уравнения правдоподобия:

$$\left. \frac{\partial}{\partial \tau} \ln L(\varphi_x(f)) \right|_{\tau = \hat{\tau}_{onm}} = 0.$$
(3)

Для случая сильного сигнала ($\varepsilon(f_j) >>1$; $j=\overline{1,m}$; $\varepsilon(f_j)=A_s(f_j)/\sigma(f_j)$ – отношение сигнала к шуму на частоте f_j) оптимальная оценка времени прихода сигнала в каждую точку приема определяется [2]:

$$\hat{\tau}_{onm} = \frac{\int \varepsilon^2(f) f \Delta \varphi_x(f) df}{\int_{\Omega} \varepsilon^2(f) f^2 df},$$
(4)

где $\Delta \varphi_x = \varphi_x(f) - \varphi_s(f)$ – отклонение ФЧХ смеси сигнала и шума от ФЧХ $\varphi_s(f)$ сигнала.

При этом дисперсия оценки (4) может быть найдена

$$D[\hat{\tau}_{onm}] = \left[\int_{\Omega} \varepsilon^2(f) f^2 df\right]^{-1}.$$
 (5)

Для случая слабого сигнала выражение, описывающее оптимальную обработку, в явном виде получить не удается. В этом случае оценку $\hat{\tau}$ можно найти путем поиска максимума функции правдоподобия:

$$\ln L(\tau) = \sum_{j=1}^{m} \varepsilon(f_j) cos[\Delta \varphi_X(f_j) - 2\pi f_j \tau].$$
 (6)

Показано, что процедура оценки $\hat{\tau}$, синтезированная для случая слабых сигналов, оказывается оптимальной и для случая сильных сигналов [1]. При обработке сейсмической информации, получаемой при взрывных источниках возбуждений упругих колебаний, обычно отсутствует информация о ФЧХ выделяемых сигналов. В этом случае могут быть реализованы адаптивные фазочастотные процедуры на основе отмеченных выше оптимальных процедур, в которых вместо истинного значения ФЧХ сигнала используются их оценки, определяемые по обучающим выборкам. При этом наиболее простой способ заключается в непосредственном определении оценок фазового спектра $\hat{\varphi}_{s}(f)$ сигнала, выделяемого на одной реализации, используемой при обучении. Второй способ заключается сначала в оценке неизвестной формы сигнала путем синфазного суммирования ряда реализаций процессов зарегистрированных в близких точках приема, на которых выделяется сигнал. Далее по найденной оценке формы сигнала определяется оценка его фазового спектра, которая используется при синтезе адаптивного алгоритма.

В соответствии (4) в случае сильного сигнала для адаптивного метода оценка временного положения сигнала определяется:

$$\hat{\tau} = \frac{\int_{\Omega} \varepsilon^2(f) f[\varphi_x(f) - \hat{\varphi}_s(f)] df}{\int_{\Omega} \varepsilon^2(f) f^2 df}.$$
(7)

Учитывая сделанные выше предпосылки, дисперсию оценки (7) можно представить в виде:

$$D[\tau] = D[\tau_{onm}] + \frac{1}{\left(\int_{\Omega} \varepsilon^{2}(f) f^{2} df\right)^{2}} \int_{\Omega} \varepsilon^{4}(f) f^{2}(D[\widehat{\varphi}_{S}(f)]) df. \quad (8)$$

В отмеченном выше первом способе, ФЧХ сигнала оценивается по одной реализации, представляющей аддитивную смесь сигнала и шума. Тогда, согласно [4] $D[\hat{\varphi}_s(f)]$ запишется в виде $D[\hat{\varphi}_s(f)]=1/\varepsilon_1^2(f)$, где $\varepsilon_1^2(f)$ – определяет отношение сигнала к шуму для выборки процесса, используемой при обучении. При этом выражение (8) примет вид:

$$D[\hat{\tau}] = D[\hat{\tau}_{onm}] + \frac{1}{\left(\int_{\Omega} \varepsilon^{2}(f) f^{2} df\right)^{2}} \int_{\Omega} \frac{f^{2} \varepsilon^{4}(f)}{\varepsilon_{1}^{2}(f)} df. \quad (9)$$

Очевидно, при $\varepsilon(f) = \varepsilon_1(f)$, то $D[\hat{\tau}] = 2D[\hat{\tau}_{onm}]$, т. е. случайная составляющая погрешности оценки временного положения сигнала при адаптивном методе увеличивается в 2 раза по сравнению с оптимальным фазочастотным методом. При втором способе оценки формы и ФЧХ сигнала могут быть определены:

$$\widehat{S}(t) = \frac{1}{N'} \sum_{i=1}^{N'} x_i (t - \tau_i),$$

$$\widehat{\varphi}_S(\omega) = \arg F\{\widehat{S}(t)\},$$
(10)

где $x_i(t) = S(t - \tau_i) + n(t)$ – определяет реализации процесса, зарегистрированных в N'точках приема; F – оператор прямого преобразования Фурье.

Если принять, что процессы $x_i(t)$ в различных точках приема независимы и $\varepsilon_i(f) = \varepsilon_1(f)$, то дисперсия оценки временного положения сигнала при адаптивной обработке составит:

$$D[\hat{\tau}] = D[\hat{\tau}_{onm}] + \frac{D[\tau_{onm}]}{N'}.$$
(11)

Очевидно, второй способ оценивания ФЧХ сигнала оказывается более предпочтительным, чем первый. Однако при его реализации требуется проводить синфазное суммирование сигнала, выделяемого в различных точках приема, т. е. не допускать значительного разброса времени τ_i при суммировании.

Как следует из (11), при числе суммируемых каналов $N' \ge 8$, адаптивный метод обеспечивает практически одинаковую точность получаемых оценок, что оптимальный фазочастотный метод.

Как отмечалось выше, при слабом сигнале, в случае некоррелированных отсчетов ФЧХ, оптимальная процедура оценки временного положения сигнала, которая является оптимальной и для сильных сигналов, определяется ур. (6). При адаптивной обработке функция качества (критерий оценки временного положения) запишется в следующей форме:

$$L_1(\tau) = \sum_{j=1}^m \varepsilon(f_j) \cos([\varphi_x(f_j) - \hat{\varphi}_s(f_j)] - 2\pi f_j \tau).$$
(12)

Как и в случае оптимального фазочастотного метода адаптивная процедура оценивания временного положения сигнала сводиться к поиску наибольшего значения $L_1(\tau)$ для всех τ [5].

Как видно из соотношений (4), (6), (7), (12) для реализации как оптимальных, так и адаптивных фазочастотных алгоритмов требуется иметь информацию о распределении соотношения сигнал/помеха по частотам. В ряде случаев такая информация отсутствует. В этой ситуации один из возможных путей решения задачи заключается в построении фазочастотных алгоритмов, в которых функция $\varepsilon(f_i)$ в (12) заменяется на другие, специально подобранные весовые функции. Такого типа алгоритмы получили название адаптивных алгоритмов с равновесной или неравновесной обработкой.

В случае адаптивных алгоритмов с равновесной и неравновесной обработкой обобщенная функция качества представляется в следующей форме:

$$L_{2}(\tau) = \sum_{j=1}^{m} W(f_{j}) \cos[\varphi_{X}(f_{i}) - \widehat{\varphi}_{S}(f_{i}) - 2\pi f_{i}\tau], \quad (13)$$

где $W(f_j)$ — частотная весовая функция, вид которой зависит от реализуемого адаптивного фазочастотного алгоритма.

Для равновесного алгоритма весовая функция принимается равной 1 во всей полосе анализируемых частот:

$$W_{p}(f) = \operatorname{rect}\left[\frac{f-f_{p}}{\Omega}\right], \quad \operatorname{rect}\left(\frac{f}{\Omega}\right) = \begin{cases} 1, & |f| \le \frac{\Omega}{2} \\ 0, & |f| > \frac{\Omega}{2} \end{cases}$$

Для алгоритмов с неравновесной обработкой весовая функция задается треугольной или экспоненциальной формы.

Обобщенная структура адаптивных алгоритмов с равновесной и неравновесной обработкой приведена на рис. 1. При этом адаптивные процедуры оценки временного положения сигнала сводятся к выполнению следующих основных операций:

- Оценка фазового спектра сигнала на обучающей выборке;
- 2. Определение мгновенных ФЧХ в перемещающемся вдоль обрабатываемых реализаций (сейсмотрасс) окне анализа T_{oxH} и нахождении отклонения: $\Delta \varphi(f, \tau) = \varphi_{X}(f) - \hat{\varphi}_{S}(f) - 2\pi f \tau$;
- 3. Формировании $L_2(\tau)$ в соответствии с (13) для заданной весовой функции и поиск $\hat{\tau}$, при котором функция качества достигает максимального значения.

Для оценки эффективности предложенных адаптивных алгоритмов с равновесной и неравновесной обработкой было проведено их исследование на моделях сейсмических волновых полей. При этом решались следующие основные задачи:

- Провести исследования точности определения временного положения сигналов, наблюдаемых на фоне нерегулярных помех;
- Дать оценку разрешающей способности разработанных алгоритмов.

При решении первой задачи реализации процессов, наблюдаемых в различных точках приема, формировались на ПЭВМ в соответствии с (2). В качестве сигнала S(t) был выбран импульс с колокольной огибающей; часто используемый для описания отраженных сейсмических волн:

Рис. 1. Обобщенная структура адаптивных алгоритмов определения временного положения сейсмических сигналов по оценке ФЧХ

$$S_i(t) = A_0 e^{(-\beta^2 (t-t_i)^2)} \cos(2\pi f_0 (t-t_i) + \varphi_0), \qquad (14)$$

где β — коэффициент, определяющий затухание импульса; f_0 — основная частота; φ_0 — начальная фаза. При исследовании адаптивных алгоритмов оценка фазового спектра сигнала на обучающих выборках осуществлялась двумя рассмотренными выше способами. Отношение сигнала к помехе задавалось в виде: $\rho = A_0/\sigma_n$, где σ_n — среднеквадратическое отклонение помехи n(t). На рис. 2 в качестве примера приведены графики среднеквадратического отклонения оценки временного положения сигнала в зависимости от отношения сигнала к помехе для адаптивных алгоритмов с равновесной и неравновесной обработкой: a, δ , при φ_0 =0; e, e, при $\varphi_0 = \pi/4$. Для сравнения на этих графиках также показаны зависимости $\sigma_r = f(\rho)$ для фазочастотных алгоритмов, в которых фазовой спектр считался известным.

Рис. 2. Среднеквадратическое отклонение $\sigma_{?t}$ оценки временного положения сигналов, для алгоритмов равновесной и неравновесной обработки с треугольной весовой функцией

Из приведенных графиков видно, что адаптивные алгоритмы при малых отношениях сигнала к шуму р≤2 проигрывают по точности фазочастотным алгоритмам с известным фазовым спектром. Однако введение адаптивной обработки незначительно увеличивает погрешность, не требуя априорной информации о фазовом спектре выделяемого сигнала. Как следовало ожидать, адаптивные алгоритмы, в которых оценка ФЧХ сигнала осуществлялась первым способом, уступают по точности адаптивным алгоритмам, в которых оценка спектра проводится путем синфазного суммирования. Исследования также показали, что изменения $\varphi_{s}(f)$ практически не ухудшают точности оценки временного положения сигналов по сравнению, когда $\varphi_{s}(f)$ принималось равным нулю во всей полосе анализируемых частот.

Таким образом, проведенные исследования показывают, что адаптивные алгоритмы с равновесной и неравновесной обработкой позволяют обеспечить сравнительно высокую помехоустойчивость при отсутствии сведений о фазовом спектре выделяемых сигналов, не требуя априорной информации о распределении отношения сигнала к шуму по частотам.

При синтезе рассмотренных выше алгоритмов, предполагалось, что полезные и мешающие сигналы в различных точках приема не интерферируют между собой. Поэтому при наличии интерференции сигналов важно также произвести оценку их разрешающей способности. Так, при поиске нефтяных и газовых месторождений, при решении задач детального расчленения тонкослоистых продуктивных толщ особое значение приобретает обеспечение повышенного разрешения выделяемых сейсмических сигналов. При исследовании разрешающей способности адаптивных алгоритмов с равновесной и неравновесной обработкой были сформированы численные модели волновых полей вида:

$$S_{\Sigma}^{k} = S_{1}\left(t - t_{0} + \frac{\Delta T_{k}}{2}\right) + S_{2}\left(t - t_{0} - \frac{\Delta T_{k}}{2}\right)$$

где k=1,40 — номера каналов (точки приема); $\Delta T_k \cdot 0,001$. Форма импульсов волны $S_1(t)$ и $S_2(t)$ задавалась одинаковой в виде (14). На рис. 3 в качестве примера показана модель волнового поля, которая использовалась при оценке разрешающей способности адаптивных алгоритмов с равновесной и неравновесной обработкой.

Рис. 3. Модель волнового поля

Проводился ряд экспериментов, в которых с помощью адаптивных алгоритмов осуществлялась оценка временного положения сигналов в различных точках приема, и находилось значение Δt , при котором сигналы раздельно уже не выделялись. Величина Δt характеризовала разрешающую способность исследуемого алгоритма. На рис. 4, а, б, представлены результаты исследования разрешающей способности адаптивных алгоритмов в зависимости от основной частоты f₀ выделяемых сигналов. Из них видно, что большей разрешающей способностью обладают адаптивные алгоритмы, в которых оценка ФЧХ сигнала осуществляется путем синфазного суммирования. На рис. 4, в, г, показаны графики $\Delta t/T_{sud} = f(T_{oxh})$, где $T_{sud} = 1/f_0$ характеризует видимый период сигнала, а T_{oxh} определяет размеры окна анализа, которые были заданы при оценке временного положения сигналов. Из рис. 4, в, г, следует, что при увеличении окна анализа, не превышающего длительности сигналов, повышается их разрешение.

Рис. 4. Оценка разрешающей способности адаптивных алгоритмов равновесной – а, в и неравновесной обработки с треугольной весовой функцией – б, г

Проведенные исследования показали, что применение разработанных адаптивных алгоритмов обеспечивают повышенную разрешающую способность предложенных методов, позволяющих достичь разрешение сигналов $\Delta t \approx 0.3 T_{eud}$. Следует отметить, что для широко используемых на практике алгоритмов, основанных на разновременном или

СПИСОК ЛИТЕРАТУРЫ

- Иванченков В.П., Кочегуров А.И. Определение временного положения сейсмических сигналов по оценкам их фазочастотных характеристик // Геология и геофизика. – 1988. – № 9. – С. 77–83.
- Иванченков В.П., Кочегуров А.И. Фазочастотные алгоритмы оценки местоположения пространственно-временных сигналов в условиях априорной неопределенности // Известия вузов. Физика. – 1995. – Т. 37. – № 9. – С. 100–104.
- Иванченков В.П., Вылегжанин О.Н., Кочегуров А.И. и др. Методы фазочастотного анализа волновых полей и их применение в задачах обработки данных сейсморазведки // Известия Томского политехнического университета. – 2006. – Т. 309. – № 7. – С. 65–70.
- Пестряков В.Б. Фазовые радиотехнические системы. М.: Советское радио, 1968. – 468 с.

направленном суммировании сигналов, их разрешающая способность не превышает $0.5 T_{aud}$ [6].

В настоящее время предложенные адаптивные алгоритмы включены в программно-алгоритмические комплексы «Геосейф» и «Геосейф-ВСП» [3] и используются для обработки сейсмических данных, получаемых при разведке нефтяных и газовых месторождений.

- Колесникова Е.Г., Иванченков В.П. Адаптивные фазочастотные алгоритмы прослеживания сейсмических волн // Молодежь и современные информационные технологии: Труды IV Всеросс. научно-практ. конф. студентов, аспирантов и молодых ученых. – Томск, 2006. – Т. 1. – С. 111–112.
- Боганик Г.Н., Гурвич И.И. Сейсморазведка. Тверь: Изд-во «АИС», 2006. – 744 с.

Поступила 14.04.2008 г.

Ключевые слова:

Фазочастотная характеристика, функция качества, разрешающая способность, помехоустойчивость, адаптивный фазочастотный алгоритм.

УДК 378(075.8)

ТЕХНОЛОГИИ ВЕКТОРНЫХ ИДЕНТИФИКАЦИОННЫХ ШКАЛ В МЕТОДОЛОГИИ РАСПОЗНАВАНИЯ И КЛАССИФИКАЦИИ СИГНАЛОВ

К.Т. Кошеков

Северо-Казахстанский государственный университет им. М. Козыбаева, г. Петропавловск E-mail: kkoshekov@mail.ru

Рассмотрены применения векторных идентификационных шкал для решения задачи распознавания сигналов. Описаны примеры, иллюстрирующие превосходство шкал, и их математические модели и способы организации. Представлены аналитические формы уравнений идентификационными параметрами сигналов, измеренных тестерами распределений мгновенных значений и временных интервалов.

В работе [1] показано, что основными условиями, необходимыми для реализации технологии идентификационных измерений сигналов является наличие инструментов:

- измерения распределений мгновенных значений (PM3) и временных интервалов (PBИ);
- установления логических связей количественных оценок РМЗ и РВИ с качественным состоянием сигнала.

Оба условия объединяются в особой структуре (рис. 1), названной идентификационной шкалой и состоящей из тестеров идентификационных параметров (IdP-тестеры), базы данных (БД), а также логического анализатора.

Как следует из работы [2], наибольшие перспективы в решении задач классификации и распознавания сигналов имеют векторные идентификационные шкалы (ВИШ). В их основе заложены IdP-тестеры двух типов *NF-NF* и *NF-K* с математи-ческими моделями:

$$NF = \left[\frac{(Paзмах сигнала)_N}{CKO сигналa}\right]^2 = \left\lfloor\frac{\max\{x_i\} - \min\{x_j\}}{\sqrt{\frac{1}{N}\sum_{i=1}^N (x_i - X)^2}}\right\rfloor,$$
$$K = \frac{\left|\overline{\Delta X(t)}\right|}{\left|\overline{X(t)}\right|}.$$

Параметр NF, называемый виртуальным объемом, трактует обработку значений $\{X\}$ сигнала как преобразование количества информации объема N на входе системы распознавания в количество информации объема NF на выходе. Основным свойством NF— тестера является независимость его показаний от