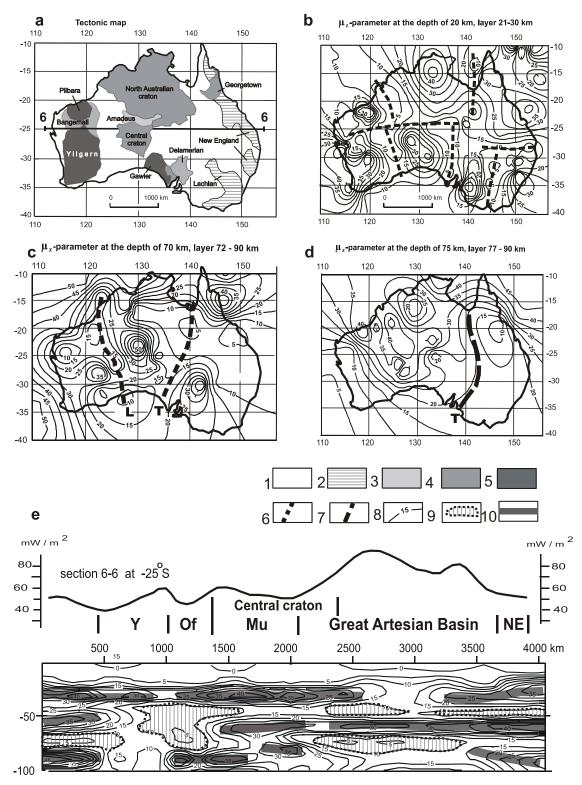
РЕОЛОГИЯ ЛИТОСФЕРЫ АВСТРАЛИЙСКОГО КОНТИНЕНТА В ГЕОФИЗИЧЕСКИХ МОДЕЛЯХ

Петрищевский А.М.


Национальный исследовательский Томский политехнический университет, Институт комплексного анализа региональных проблем ДВО РАН, Биробиджан

Рассматривается 3D-модель гравитационного параметра (μ_z), описывающая реологические свойства тектоносферы Австралии до глубины 200 км. Характеризуется реологическая расслоенность земной коры и верхней мантии на три жестких (нижняя кора, нижняя литосфера и подастеносферная мантия) и три вязких (вулканогенно-осадочный, подкоровый и астеносферный) слоя. В зонах глубинных разломов литосферы Лассетер и Тасман установлена связь минимумов μ_z -параметра с минимумами электрического сопротивления и скорости поперечных сейсмических волн. Обнаружены черты сходства глубинного строения Восточной Австралии и Северо-Восточной Азии.

Обзор проблемы

По мнению ведущих геофизиков Австралии и США, Австралийский континент является лабораторией геофизических методов. Плотная сеть сейсмических станций и частые землетрясения (для построения сейсмических моделей использованы более 1000 землетрясений за последние 10 лет) обеспечили здесь регистрацию более чем 13 000 поверхностных волн (surface wave tomography) и 25 000 томографических волн (body wave tomography), в результате чего была создана 3D-сеймологическая модель тектоносферы Австралии: AuSREM (Australian Seismological Reference Model) [1, 2]. Модель описывает мощность осадочного слоя, рельеф подошвы земной коры, подошвы литосферы и скорости распространения сейсмических волн (Vp, Vs, Vp / Vs, SH и SV) до глубины 300 км. Многолетние наблюдения на геомагнитных станциях (Australia-wide Array of Geomagnetic Stations) и магнито-теллурические зондирования были аккумулированы в 3D-R/C-модели (R – электрические сопротивление C – проводимость) тектоносферы Австралии до глубины 250 км [3].

Перечисленные данные дают развернутое представление о глубинном строении земной коры и верхней мантии, а также латеральных вариациях физических свойств тектоносферы Австралийского континента. Однако существующие модели и представления нельзя признать полностью однозначными и окончательными, поскольку результаты разных методов исследований не всегда и не во всем согласуются между собой и с геологическими данными. Так, например, между сейсмическими характеристиками и возрастом литосферы существует слабая связь для структур с размерами более 1000 км, то есть она очевидна только при сравнении архейских, протерозойских и фанерозойских доменов, однако на меньших расстояниях эта связь теряется. Геоэлектрические аномалии [3], аномалии скорости сейсмических волн [1–2] и плотностные модели [4] неоднозначно сопоставляются друг с другом в близких срезах тектоносферы, с аномалиями теплового потока и тектоническими структурами.

Тектоническая схема (a) и карты-срезы распределений μ_z -параметра (b, c, d) с разрезом $\mu_z(x, y, z)$ -модели (e): I-5 – тектонические структуры: фанерозойские и палеозойские (1), палеозойские аккретированные террейны Восточной Австралии (2), позднепротерозойские-раннепалеозойские (3), протерозойские (4); палеопротерозойские и архейские (5); 6-7 – оси зон реологического разуплотнения; 8 – изолинии μ_z -параметра. Обозначения структур: кратоны Йилгарн (Y) и Масгрейв (Mu); Of — впадина Оффисер; NE — складчатая система Новая Англия. Главные структурные швы: L – Лассетер, T – Тасман

То же самое можно сказать о самых крупных глубинных разломах — Тасман и Лассетер, разделяющих литосферу континента на три разновозрастных сегмента: архейский, протерозойский и фанерозойский. На большинстве геофизических схем геологические линии этих разломов не совпадают, или только частично совпадают, с линейными аномалиями или границами областей физических параметров. Поэтому привлечение других методов исследования, объективно (т. е. независимо от других) дополняющих существующие данные, может быть полезным при разработке комплексных моделей литосферы Австралии.

3D-модель гравитационного параметра µz

В докладе рассматриваются результаты и геологические возможности пространственно-статистического анализа распределений источников гравитационных аномалий компактного класса и их вещественных свойств, связанных с реологическим состоянием тектонических сред в земной коре и верхней мантии Австралии. Источником информации о реологии тектоносферы Австралии является 3D-модель распределений μ_z -параметра, составленная по результатам интерпретации 549 единичных гравитационных аномалий от коровых источников и 292 – от мантийных. Для каждой элементарной симметричной гравитационной аномалии вычислены глубина залегания центра соответствующей плотностной неоднородности и поверхностная плотность эквивалентной сферы, нормированная по глубине залегания центра масс (μ_z -параметр). Последний характеризует плотностную контрастность геологического пространства на отрезках между центрами масс (Z_0) и поверхностями (Нс), на которые выметаются (по Пуанкаре) массы объемных источников. Опыт многолетних исследований в Северо-Восточной Азии [5] показал, что этот параметр характеризует реологическое состояние тектонических сред. Тот же вывод получен после сравнения моделей распределений μ_z -параметра с сейсмическими, геоэлектрическим и тепловыми моделями земной коры и верхней мантии Австралийского континента.

В рассматриваемой ниже модели тектоносфера Австралии была разделена на 22 слоя, в каждом из которых аномальные массы плотностных неоднородностей конденсировались на 22 поверхности, равноотстоящие от кровли слоев. Предметом тектонического анализа является формальная трехмерная $\mu_z(x, y, Hc)$ -модель, представленная пакетом карт-срезов и разрезов распределений μ_z -параметра.

Тектонический анализ модели

В коровом срезе μ_z -модели (рис. 1b) диагностированы три субмеридиональных и две субширотные линейные зоны реологических разуплотнений, разделяющие земную кору Австралии на четыре кратонных блока, ороген Деламериан с протерозойским основанием на юге Австралии и два палеозойских аккретированных террейна с фанерозойской корой на востоке континента. Зоны реологических разуплотнений коррелируются с зонами электрической проводимости [3] и понижениями скорости S-сейсмических волн [1], а также с геологическими признаками региональных сдвигов (линиями Лассетер и Тасман). В кратонной части Австралийского континента максимумы μ_z -параметра совпадают с расположением архейских блоков Йилгарн, Пилбара, Гаулер и протерозойскими блоками Центрально-Австралийского (Масгрейв) и Северо-Австралийского (Кимберли, Макартур) кратонов. Такая связь идентична связи нижнекоровых μ_z -максимумов с размещениями

архейских и протерозойских террейнов на Северо-Востоке Азии [5], где они очерчивают глубинные границы Алдано-Станового и Цзямусы-Буреинского кратонных террейнов, Колымо-Омолонской, Евразиатской и Северо-Американской плит.

В глубоких срезах верхней мантии, на глубинах от 75 до 200 км, широкий максимум μ_z -параметра вписывается в контур архейско-протерозойской кратонной литосферы (рис. 1, d). Согласно AuSREM [2], мощность кратонной литосферы в центральных и западных районах Австралии составляет 170–220 км, а фанерозойской на востоке – менее 140 км. Восточная граница кратонной литосферы выражена резким понижением скорости поперечных волн [1] и μ_z -параметра (рис. 1, d).

В разрезах тектоносферы Австралии минимумами μ_z -параметра диагностируются подкоровый вязкий слой в интервале глубин 60–80 км (рис. 1, e) и астеносфера в интервале глубин 100–180 км. Оба слоя прерывисты по мощности и простиранию, а в восточных районах они нередко сливаются. Мощность подкорового вязкого слоя увеличена под впадинами (Оффисер, Юкла, Джорджина, Эроманга, Дарлинг), а астеносферы – под северным флангом Северо-Австралийского кратона и Восточной Австралией. На глубине 45–60 км μ_z -минимумам соответствуют контрастные максимумы теплового потока (90–110 mW/m 2) под впадинами Каннинг, Юкла, Уйасо-Джорджина–Купер–Эроманга, что позволяет предполагать существование расплавленных магм в подкоровом слое верхней мантии под этими впадинами. В восточных частях разрезов наблюдаются признаки чешуйчатого надвигания периокеанических коровых пластин на Центрально-Австралийский и Южно-Австралийский кратоны.

Литература

- 1. Kennett B.L.N., Fichtner A.S., Fishwick S. and Yoshizawa K. Australian Seismological Reference Model (AuSREM): mantle component // Geophys. J. Int. 2013. V. 192. pp. 871–887.
- 3. Salmon M., Kennett B. L. N. and Saygin E. Australian Seismological Reference Model (AuSREM): crustal component // Geophys. J. Int. 2013. v. 192. pp. 190–206.
- 3. Wang L., Hitchman A.P., Siripunvaraporn Ya. W., Ogawa M., Fujita K. A. 3-D conductivity model of the Australian continent using observatory and magnetometer array data // Geophys. J. Int. 2014. V. 198 (2). pp. 1171–1186.
- 4. Aitken A.R.A. Moho geometry gravity inversion experiment (MoGGIE): A refined model of the Australian Moho and its tectonic and isostatic implications // Earth Planetary Science Letters. 2010. V. 297. pp. 71–83.
- 5. Петрищевский А.М. Гравитационный метод оценки реологических свойств земной коры и верхней мантии (в конвергентных и плюмовых структурах Северо-Восточной Азии). М.: Наука, 2013. 192 с.