РАЗРАБОТКА МЕТОДИКИ ПОЛУЧЕНИЯ АЛЮМООКСИДНЫХ СИСТЕМ МЕТОДОМ ВАКУУМНОГО РАСПЫЛЕНИЯ

Хрусталева К.А.

Научный руководитель Воронова Г.А., к.х.н., доцент Томский политехнический университет, г. Томск, 635050, пр. Ленина, 30 *E-mail:* <u>k.khrustaleva@gmail.com</u>

DEVELOPMENT OF METHODOLOGY FOR THE OBTAINING OF ALUMINA OXIDE SYSTEMS BY VACUUM SPRAY METHOD

Khrustaleva K.A.

Scientific Superviser: associate professor, PhD G.A. Voronova Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 *E-mail:* <u>k.khrustaleva@gmail.com</u>

Annotation. A number of samples of alumina and spinel structures were obtained in this work. The phase composition of the obtained samples was investigated by X-ray analysis. Morphology of the resulting powders was analyzed by scanning electron microscopy.

Введение

Нанопорошки оксида алюминия и систем на его основе нашли применение во многих сферах жизнедеятельности человека, таких как керамика с добавками нанопорошков, сорбентов и катализаторов[1-3]. Структура и свойства данных порошков обуславливают их необычные индивидуальные свойства: механические, физико-химические свойства, проявляющиеся как индивидуально, так и при взаимодействии с другими веществами.

В данной работе предложена методика получения активного оксида алюминия и систем на его основе. Цель работы – разработка методики получения активного оксида алюминия и магний – алюминиевой шпинели (MgAl₂O₄), магний алюминиевой шпинели с добавками кобальта и никеля (Mg_xCo₁. $_x$ Al₂O₄ и Mg_{1-x}Ni_xAl₂O₄) методом вакуумного распыления и изучение фазового состава и морфологии полученных порошков.

Экспериментальные методики

Получение активного оксида алюминия, магний – алюминиевой шпинели (MgAl₂O₄), магний алюминиевой шпинели с добавками кобальта и никеля (Mg_xCo_{1-x}Al₂O₄ и Mg_{1-x}Ni_xAl₂O₄)проводили методом распылительной сушки с помощь аппарата NanoSprayDryerB-90 (Швейцария)и химическим осаждением (для сравнения). Получившийся продукт подвергали термообработке 4 ч при температурах 550 °C, 600 °C, 700 °C(оксид алюминия), 2 ч при 1500 °C(MgAl₂O₄), 2 ч при 1200 °C(Mg_xCo_{1-x}Al₂O₄ и Mg_{1-x}Ni_xAl₂O₄).

Фазовый состав образцов исследовались с помощью рентгеновскогодифрактометраXRD - 7000SShimadzu (Япония). Исследование морфологии полученных образцов проводилось на растровом микроскопе «NeoScopeJCM-6000», просвечивающем микроскопе «JEM-2100F». Определение удельной поверхности образцов проводилось методом тепловой десорбции газов с помощью прибора «Sorbi[®]-M».

Результаты и их обсуждение

По данным таблицы 1 все полученные образцы представляют собой γ – Al₂O₃. Значительных различий в размере OKP для образцов, полученных как распылительной сушкой, так и химическим осаждением, не обнаружено. Исходя из рисунка 1 (а, в) видно, что образцы, полученные на распылительной сушке, характеризуются сферической формой. Минимальный размер частиц – 400 нм. Максимальный размер гранул составил около 4 мкм. Гранулы имеют рыхлую поверхность и видно, что они состоят из более малых частиц.

№ образца	Методполучения	Т отжига, ⁰С	Размер ОКР, нм	Фазовыйсостав	
1	Распылительнаясушка	550	9,48		
2	Химическоеосаждение	550	9,49		
3	Распылительнаясушка	600	9,49		
4	Химическоеосаждение	600 9,49		$\gamma - AI_2O_3$	
5	Распылительнаясушка	700	9,19		
6	Химическоеосаждение	700	9,46		

Таблица 1 – Параметры и характеристики образцов Al₂O₃

При химическом осаждении получаются более крупные окристаллизованные частицы неправильной формы (рис.1, б, г), на снимках их поверхность выглядит достаточно плотной, в отличие от образцов полученных на распылительной сушке. Предположительно, наличие зернистой структуры пока-

Рисунок 1 - СЭМ-изображения синтезированного порошка оксида алюминия: полученных распылительной сушкой (а, в) и химическим осаждением (б, г); термообработка при 550°С (а,б) и термообработка при 600°С (в,г)

зывает, что частицы состоят из более мелких кристаллитов, что согласуется с данными РФА (ОКР 9нм). Возможно, промежутки между кристаллитами составляют пористую структуру образцов.

В работе синтезировались шпинельные структуры: MgAl₂O₄, Mg_{1-x}Co_xAl₂O₄, Mg_{1-x}Ni_xAl₂O₄. Фазовый состав полученных образцов и значения их удельной поверхности приведены в таблице 3.Из таблицы 3 видно, что фазовый состав магний алюминиевой шпинели (MgAl₂O₄) полученной химическим осаждением однороден и выход продукта составил 100%. Образец

же полученный распылительной сушкой содержит незначительную часть MgO не вступившего в реакцию образования окончательного продукта. Прокалка этих образцов осуществлялась при 1500 °C. Шпинель $Mg_{1-x}Ni_xAl_2O_4$, полученная на распылительной сушке, представляет собой смесь $MgAl_2O_4$ и $NiAl_2O_4$, здесь также присутствуетне вступивший в реакцию Al_2O_3 . Данная шпинель, полученная химическим осаждением содержит в себе $Mg_{0.7}Ni_{0.3}Al_2O_4$ и $MgAl_2O_4$. Таким образом, положительный результат достигнут методом химического осаждения. В условиях вакуумного распыления не удалось подобрать условий для получения $Mg_{1-x}Ni_xAl_2O_4$. Фазовый состав шпинелей с добавками кобальта и никеля очень неоднороден. В случае шпинели $Mg_{1-x}Co_xAl_2O_4$, полученной химическим осаждением, образовалось две независимые шпинельные структуры: $MgAl_2O_4$, $CoAl_2O_4$. А в образце, полученном распылительной сушкой помимо двух этих шпинельных структур обнаруживается Al_2O_3 .

№ образцов	Состав	Метод получения	ОКР, нм	Фазовый состав	S, м ² /г
7	MgAl ₂ O ₄	Химическое осаждение	85,04	100 % MgAl ₂ O ₄	0,61
8	MgAl ₂ O ₄	Распылительнаясушка	15,44 17,29	97,4 % MgAl₂O ₄ 2,6 % MgO	0,14
9	Mg _{1-x} Co _x Al ₂ O ₄	Химическоеосаждение	31,3 10,78	26,4 % - MgAl ₂ O ₄ 27,7% - CoAl ₂ O ₄	0,38
10	Mg _{1-x} Co _x Al ₂ O ₄	Распылительнаясушка	22,97 13,31 9,05	2,3% - MgAl ₂ O ₄ 18,1% - CoAl ₂ O ₄ 33,1% - Al ₂ O ₃	0,43
11	Mg _{1-x} Ni _x Al ₂ O ₄	Химическоеосаждение	22,01 32,12	55,3% - MgAl ₂ O ₄ 13,8 % - Mg_{0.7}Ni_{0.3}Al₂O₄	3,46
12	Mg _{1-x} Ni _x Al ₂ O ₄	Распылительнаясушка	22,97 14,16 9,05	3,1% - MgAl ₂ O ₄ 17,3% - NiAl ₂ O ₄ 30% - Al ₂ O ₃	2,75

Таблица 3 - Основные параметры порошков шпинельных структур

Прокалка данных образцов проводилась при 1200 °C. Таким образом, для шпинели $Mg_{1-x}Co_xAl_2O_4$, оба метода не дали положительного результата. Целевой продукт не образовался, либо не удалось подобрать условий для его получения.

Выводы:

1. Полученные образцы порошков оксида алюминия имеют размер частиц менее 100 нм, что позволяет отнести данные порошки к нанопорошкам.

2. С увеличением температуры прокалки оксида алюминия от 550-700 °С происходит укрупнение частиц порошка, и как следствие, уменьшение удельной поверхности образцов.

3. Установлено, что метод распылительной сушки пригоден для получения сложных оксидных структур, таких как MgAl₂O₄, выход продукта составляет 97,4%.

4. Не удалось подобрать условия для получения Mg_xCo_{1-x}Al₂O₄.

Литература

1. Способ получения активного оксида алюминия: патент Рос. Федерации № 2259232; опубл. 27.08.2005, Бюл №3.

2. Способ получения пористого оксида алюминия: патент США №3664970 В01Ј 23/50, В01Ј 23/66; опубл. 05.23.1972.

3. Способ получения активного оксида алюминия: патентРос. Федерации № 2473468; заявл. 31.05.2011; опубл. 27.01.2013, Бюл №3.