ПОЛУЧЕНИЕ, СТРУКТУРА И МЕХАНИЧЕСКИЕ СВОЙСТВА НАНОКОМПОЗИТОВ

СИСТЕМЫ $Al_2O_3 - ZrO_2 - TiC$

Григорьев М.В., Котельников Н.Л.

Научный руководитель: Кульков С.Н., д.ф-м.н., профессор

Национальный исследовательский Томский политехнический университет

г. Томск, пр. Ленина, 30, 634050

Федеральное государственное учреждение науки Институт физики прочности и материаловедения Си-

бирского отделения Российской академии наук

г. Томск, пр. Академический, 2/4, 634055

Национальный исследовательский Томский государственный университет

г. Томск, пр. Ленина, 36, 634050

MVgrigoriev@yandex.ru

PRODUCTION, STRUCTURE AND MECHANICAL PROPERTIES OF NANOCOMPOSITES Al₂O₃ - ZrO₂ - TiC

<u>Grigoriev M.V.</u>, Kotelnikov N.L. Scientific Supervisor: Kul'kov S.N., Dr., Prof. Tomsk Polytechnic University, Tomsk, Lenina str., 30, 634050 Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences Tomsk, pr. Academic, 2/4, 634055 Tomsk State University, Tomsk, Lenina str., 36, 634050

Abstract

Hot pressing ceramic composite materials $Al_2O_3 - ZrO_2 - TiC$ with a density close to theoretical were obtained. Obtained multi-scale hierarchical structure, which can be directed to adjust the physico-mechanical properties of $Al_2O_3 - ZrO_2 - TiC$ composites. The hardness and fracture toughness was 21.4 GPA and 5.7 MPa*M1/2 respectively. The modulus of elasticity was 385 GPA.

Актуальной проблемой на сегодняшний день в области развития технологий машиностроения является разработка керамических композиционных материалов нового класса, обладающих высокой твердостью, химической инертностью способных выдерживать длительное воздействие агрессивных сред, высокого давления и температур, с повышенной стойкостью к хрупкому разрушению и трещиностойкостью.

Керамические композиты Al_2O_3 -TiC и Al_2O_3 - ZrO₂ широко используются в промышленности [1,2]. Композит Al_2O_3 -TiC известен как «черная керамика» и имеет состав 70% Al_2O_3 и 30% TiC, благодаря высоком модулю упругости и твердости карбида титана [3] «черная керамика» обладает повышенной твердостью порядка 22ГПа, но недостаточной вязкостью разрушения - 4 МПа*м^{1/2} [4]. Добавление до 20% ZrO₂ частично стабилизированного иттрием, обладающего очень высокой вязкостью разрушения 10 МПа*м^{1/2}, в матрицу оксида алюминия напротив повышает вязкость разрушения композита, но ухудшает твердость, в данном случае твердость и вязкость разрушения Al_2O_3 - ZrO₂ композитов составляют 18 ГПа

и 5 МПа*м^{1/2}, соответственно [5]. В связи с этим вызывает интерес добавление сразу и диоксида циркония и карбида титана, в матрицу оксида алюминия поскольку, это позволит повысить вязкость разрушения композита при сохранении его высокой твердости.

Цель исследования - получить сложно компонентный керамический композиционный материал Al₂O₃–ZrO₂–TiC и исследовать его структуру и физико-механические свойства.

В работе использованы нано порошки оксида алюминия (США) и диокида циркония (TOSOH, Япония), и субмикронный порошок карбид титана производство Россия.

Получение однородной порошковой композиции достигалось следующим образом: создавали водные суспензии отдельных компонентов, аккуратно смешивали их друг с другом с помощью магнитной мешалки, с последующей обработкой суспензии ультразвуком. Осаждение полученной композиции производили путем флоккуляции частиц из раствора за счет повышения уровня PH, с последующей вакуумной сушкой. Таким образом, были получены композиции следующих составов:

Условное	Содержание				
обозначение	Al ₂ O ₃ , %	ZrO ₂ , %	TiC, %		
AZT-1	85	10	5		
AZT-2	80	10	10		
AZT-3	70	10	20		
AZT-4	60	10	30		
AZT-5	75	20	5		
AZT-6	70	20	10		
AZT-7	60	20	20		
AZT-8	50	20	30		

Керамические нанокомпозиты были получены методом горячего прессования в среде аргона, при температуре спекания 1500 градусов, давление прессования 50 МПа, и выдержке 10 минут.

Методом рентгеновской дифракции были получены данные о параметрах кристаллического строения и фазовом составе нанокомпозитов. Методами электронной микроскопии были получены данные о структуре, размере зерени элементном анализе полученных композитов. Плотность образцов определяли гидростатическим методом. Твердость определяли методом Викерса, прикладываемая нагрузка составляла 5 кг, индентирование проводили не менее 10 раз. Вязкость разрушения определяли по формуле:

$$K_{1c} = 0,035 \cdot (H \cdot a^{1/2}) \cdot (E\varphi/H)^{0,4} \cdot (l/a)^{-0.5}$$

где: H – твердость, P – нагрузка, E – модуль, а – половина диагонали отпечатка, l – длина трещины из угла отпечатка, ϕ - константа.

Рентгенофазовый анализ показал, что оксид алюминия в полученных нанокомпозитах находится в α- модификации (корунд), диоксид циркония находится в двух модификациях кубической и тетрагональной, а карбид титана в кубической сингонии (Рис. 1.).

Интегральный элементный анализ по поверхности излома нанокомпозита 70% Al₂O₃ – 10% ZrO₂ – 20% TiC (Рис. 2), показал, что зерна белого цвета принадлежат зернам диоксида циркония, о чем свиде-

тельствует распределение атомов циркония по исследуемой поверхности (Рис. 2,б), из распределения атомов титана и углерода (Рис. 2, в и г) видно, что они сконцентрированы в области более крупных белосерых зерен, которые соответствуют зернам карбида титана. Распределение атомов алюминия и кислорода (Рис. 2, д и е) свидетельствуют о том, что основная масса зерен тёмно-серого цвета принадлежит оксиду алюминия.

Рис. 1. Фазовый анализ полученных нанокомпозитов.

Рис. 2. Интегральный элементный анализ по поверхности излома (a) нанокомпозита 71% Al₂O₃ – 9% ZrO₂ – 20% TiC; б - распределение атомов циркония, в - атомов титана, г - атомов алюминия.

Методом случайных секущих, были получены данные о среднем размере зерен отдельных компонентов, для оксида алюминия - 1.5мкм; диоксида циркония - 0.8мкм; карбида титана - 2,5мкм.

Данные об основных механических свойствах нанокомпозитов представленны в Таблице 1.

Таблица 1

Состав	Плотность, г/см ³	Теоретическая плотность, г/см ³	Относительная плотность	Е, ГПа	Макро Hv, ГПа	К _{1с} , Мпа*м ^{1/2}
AZT-1	4,03	4,16	0,97	370	18,6	5,04
AZT-2	4,16	4,20	0,99	380	19,8	5,44
AZT-3	4,26	4,29	0,99	385	21,4	5,68
AZT-4	4,36	4,37	0,99	400	19,3	5,16

Механические свойства полученных нанокомпозитов

ХХІ Международная научная конференция «СОВРЕМЕННЫЕ ТЕХНИКА И ТЕХНОЛОГИИ» Секция 3: МАТЕРИАЛЫ И ТЕХНОЛОГИИ НОВЫХ ПОКОЛЕНИЙ

Состав	Плотность, г/см ³	Теоретическая плотность, г/см ³	Относительная плотность	Е, ГПа	Макро Hv, ГПа	К _{1с} , Мпа*м ^{1/2}
AZT-5	4,32	4,33	0,99	340	13,3	5,82
AZT-6	4,35	4,38	0,99	344	17,7	5,44
AZT-7	4,44	4,47	0,99	357	16,0	5,41
AZT-8	4,55	4,57	0,99	357	16,5	5,83

Таким образом, сформирована мульти масштабная иерархическая структура в сложных оксикарбидных нанокомпозитах, которая позволяет направленно регулировать физико-механические свойства окси-карбидных композитов. Матрица композита, состоящая из микронных зерен оксида алюминия упрочняется более крупными и твердыми зернами карбида титана играющие роль крупной преграды на пути движения трещины, для преодоления которой, нужно затратить гораздо большее количество энергии, а на границах между зернами Al_2O_3 и TiC находятся нанозерна диоксида циркония в тетрагональной сингонии, которые при взаимодействии с распространяющейся трещиной испытывают тетрагональномоноклинное превращение под действием нагрузки сопровождающееся увеличением объема, что создает сжимающие напряжения в матрице Al_2O_3 повышая тем самым вязкость разрушения композита в целом. Наилучшее сочетание механических свойств показал состав $70\%Al_2O_3 - 10\%ZrO_2 - 20\%TiC$ его твердость и вязкость разрушения составили 21,4 ГПа и 5,7 МПа*м^{1/2} соответственно. Модуль упругости составил $385\Gamma\Pia$.

Работа выполнена при частичной финансовой поддержке МОН, соглашение №14.607.21.0056- RFMEFI60714X0056. Элементный анализ и растровые снимки структуры композитов получены на приборе LEO EVO 50 (Zeiss, Германия) в ЦКП «НАНОТЕХ» ИФПМ СО РАН (ЦКП ТНЦ СО РАН).

СПИСОК ЛИТЕРАТУРЫ:

1. Григорьев М.В., Буякова С.П., Кульков С.Н. Влияние механической обработки на структуру и свойства порошков ZrO₂ и TiC и спеченных на их основе керамик // Огнеупоры и техническая керамика -2013. - №11/12 - С. 20-25.

2. Григорьев М.В., Кульков С.Н. Особенности синтеза керамики на основе порошков Al₂O₃ различной дисперсности //Перспективные материалы. - 2010. - №6. - С.73-75.

3. Григорьев М.В., Молчунова Л.М., Буякова С.П., Кульков С.Н. Влияние механической обработки на структуру и свойства нестехиометрического порошка карбида титана // Известия ВУЗов. Физика - 2013. - №7/2. - С. 206-210.

4. Zhang Y, Wang L, Jiang W, Chen L, Bai G. Microstructure and properties of Al₂O₃–TiC nanocomposites fabricated by SPS from high-energy ball milled reactants. // *J Eur Ceram Soc.* – 2006. - 26:3393–7.

5. Савченко Н.Л., Королёв П.В., Мельников А.Г., Саблина Т.Ю., Кульков С.Н. Структура и механические схарактеристики спеченных композитов на основе ZrO₂-Y₂O₃-Al₂O₃ // Фундаментальные проблемы современного материаловедения. - 2008. - C.94-99.