5. Хольм Р. Электрические контакты. Пер. с англ. – М.: изд.-во иностр. лит., 1961. – 20–56 с., 203–206 с.;

6. Усов В.В. Металловедение электрических контактов. М.: Госэнергоиздат, 1963. – 58 с.

7. Сахаров П. В. Проектирование электрических аппаратов. Общие вопросы проектирования: учебное пособие. – М.: Энергия, 1971. – 560 с.

8. Мерл В. Электрический контакт. Теория и применение на практике. М. – Л: Госэнергоиздат, 1962. – 80 с.

9. Родштейн Л.А. Электрические аппараты: учебное пособие, 4-е изд., перераб. и доп. – Л.: Энергоатомиздат, 1989. – 304 с.

МОДЕЛИРОВАНИЕ РЕЗОНАНСНОГО ПРЕОБРАЗОВАТЕЛЯ В СИМУЛЯТОРЕ LTSPICE

А.А. Столярова, С.Г. Михальченко

Томский университет систем управления и радиоэлектроники, Россия, Томск

Основными направлениями при создании силовых импульсных преобразователей являются: увеличение мощности, увеличение удельной мощности и увеличение КПД. При использовании силовых импульсных преобразователей в составе систем электропитания космических аппаратов требования: накладываются дополнительные уменьшение уровня помех, создаваемых прибором; широкий диапазон входного напряжения; широкий диапазон нагрузки; высокие требования по надежности работы, стойкости и т.д. [1].

В случае резонансной коммутации мощность в преобразователе изменяется по синусоидальному закону и, соответственно, происходит мягкая коммутация ключей. Таким образом, данный метод позволяет существенно снизить динамические потери и уровень помех преобразователя [1, 2, 3].

Среди различных видов резонансных преобразователей наиболее простым и распространённым является резонансный преобразователь с последовательным резонансным *LC* контуром, с которым последовательно включена цепь нагрузки с выпрямителем, рис. 1, а [2, 4].

В этой схеме резонансный контур и нагрузка представляют собой делитель напряжения. При изменении частоты управления изменяется импеданс резонансного контура. Входное напряжение делится между этим импедансом и нагрузкой, за счет чего и происходит регулировка выходного напряжения. Коэффициент усиления резонансного преобразователя с последовательным *LC*-контуром всегда < 1, рис. 1, б [2, 3].

В симуляторе Ltspice была создана имитационная модель мостового последовательного *LC* резонансного преобразователя. Графики зависимостей коэффициента передачи преобразователя от частоты работы имитационной модели, разработанной в симуляторе Ltspice, при разных сопротивлениях нагрузки приведены на рис. 2.

Рис. 1. а) Схема *LC* резонансного преобразователя; б) зависимость коэффициента передачи от частоты для различных значений добротности резонансного контура

Как видно из рисунка зависимости имеют характерную для *LC* резонансного контура форму.

Рис. 2. Зависимости коэффициента передачи от частоты работы преобразователя при сопротивлениях нагрузки 20, 10, 4 Ом

На рис. З показаны зависимости для имитационной модели и реального преобразователя с аналогичными параметрами резонансного контура, которые в значительной мере совпадают.

Рис. 3. Зависимости коэффициента передачи от частоты работы преобразователя, полученные экспериментально и при моделировании

Эпюры напряжений и токов в ключевых точках схемы (напряжение на конденсаторе резонансного контура, ток резонансного контура и т.д.) модели аналогичны полученным экспериментально, как можно видеть на рис. 4.

Рис. 4. Напряжение на конденсаторе резонансного контура U_c , ток в контуре I_L , сигналы управления на транзисторах, полученные в результате: а) эксперимента; б) симуляции

Таким образом, можно сделать вывод о том, что полученная имитационная модель последовательного *LC* резонансного преобразователя адекватно отражает процессы, происходящие в резонансном контуре, и может служить основой для дальнейшего исследования резонансных преобразователей.

Для дальнейшего анализа преобразователя, а также для создания математической модели, необходимо свести реальные элементы схемы, к идеальным. Рассмотрим основные элементы схемы.

Во многих преобразователях транзисторы возможно заменить просто идеальными ключами, но в резонансных преобразователях важную роль играют как обратные диоды транзисторов, так и некоторые паразитные параметры [5,

6]. На рис. 5, б показана форма тока в контуре при наличии мертвого времени в управлении и отсутствии обратных диодов, которая не наблюдается в реальной схеме с полевыми транзисторами. Для более адекватного моделирования параллельно ключам в схеме замещения пришлось расположить конденсатор, имитирующий паразитную емкость обратных диодов и транзисторов. В резонансных преобразователях этой емкости отводится важное значение [5, 6]. Во время работы одного плеча моста емкость «сток-исток» ключей другого плеча перезаряжается и обеспечивает коммутацию транзистора при нулевом напряжении. На рис. 5, в и 5, г показаны эпюры тока и напряжения на конденсаторе в резонансной цепи без имитации паразитной емкости и с ней соответственно. Как можно видеть формы и значения эпюр на рис. 5, г совпадают с показанными на рис. 5, а. В то время как на рис. 5, в, несмотря на совпадение форм, значение напряжения больше на 20 %, а тока наоборот 15 %. моделировании меньше на При транзисторов резонансных В преобразователях, паразитную емкость «сток-исток» транзистора необходимо учитывать обязательно.

Рис. 5. Формы тока и напряжения на конденсаторе в резонансном контуре в схеме замещения с моделями транзисторов: а)IRFP460; б) с идеальными ключами; в) с идеальными ключами и подключенными параллельно обратными идеальными диодами; г) с идеальными ключами и подключенными параллельно обратными идеальными и конденсаторами

Рассмотрим влияние сопротивления прямого канала. Для оценки степени влияния этого параметра были сняты характеристики для разных сопротивлений открытого канала транзисторов преобразователя, рис. 6.

Максимальный коэффициент усиления при сопротивлении R_{on} =8 Ом и R_{on} =200 Ом отличаются приблизительно на 5 %. Если минимальные сопротивления открытого канала не будет превышать 30 Ом, данным сопротивлением при дальнейшем моделировании можно пренебречь.

Таким образом можно сделать вывод о том, что при моделировании реальный транзистор можно заменить моделью идеального ключевого элемента с параллельно подключенными к нему емкостью, равной паразитной емкости транзистора, и идеальным диодом, включенном в обратном направлении.

Схему замещения трансформатора для резонансного контура представляет собой две связанные между собой коэффициентом связи индуктивности.

Рис. 6. Зависимости переходных характеристик мостового резонансного преобразователя в зависимости от значения сопротивления открытого канала транзисторов

Схема замещения мостового резонансного преобразователя представлена на рис. 7.

Рис. 7. Схема замещения мостового резонансного преобразователя

Адекватное отображение нагрузки в имитационной модели также необходимо учитывать при анализе процессов, протекающих в преобразователе. Здесь возможности имитационной среды *LTSpice* позволяют значительно упростить анализ динамики.

Для отражения адекватных процессов в резонансном контуре модель преобразователя необходимо рассматривать вместе с моделью выпрямителя в цепи вторичной обмотки трансформатора, т.к. замена выпрямителя с нагрузкой на сопротивление ведет к изменению формы тока, и анализ «мягкого» переключения, как показано на рис. 8, становится невозможным.

Рис. 8. Формы тока резонансного контура и управляющего сигнала для: а) схемы с выпрямителем во вторичной цепи и нагрузкой; б) для схемы с активной нагрузкой, подключенной непосредственно ко вторичной цепи трансформатора без выпрямителя

Выводы

Продемонстрирована возможность использования пакета *LTSpice* и созданной модели для проектирования резонансного преобразователя применяемого в разрабатываемой системе электропитания.

Упрощение модели и переход от моделей транзисторов, близких к практически используемым, к моделям идеальных элементов вносит определенный ряд погрешностей, учитывая величину которых возможно существенно упростить математическую и имитационную модель. Такое упрощение необходимо для исследований динамики поведения преобразователя в различных режимах изменения параметров системы и увеличения скорости расчетов.

СПИСОК ЛИТЕРАТУРЫ

1 YorkB. An integrated boost resonant converter for photovoltaic applications / B. York, W. Yu, J.S. Lai // Power electronics. – 2013. – vol.28. – №1. – pp. 1199–1207.

2 Yang B. Topology investigation of front end DC/DC converter for distributed power system / Bo Yang. – PhD. – etd-09152003-180228. – 09.12.2003.

3 Hangseok Choi. Half-Bridge LLC Resonant Converter Design Using FSFR-Series Fairchild Power Switch. – www.fairchildsemi.com. – Rev. 1.0.2 10/22/14.

4 Li X. Analysis and design of high-frequency isolated dual-bridge series

resonant DC/DC converter / X. Li, A.K.S. Bhat // Power electronics. –2010. – vol. 25. – №4. – pp. 850–862.

5 Wang M. A novel control scheme of synchronous buck converter for ZVS in light-load condition / J.-M. Wang, S.-T. Wu, G.-C. Jane // Power electronics. -2014 - vol.26. $-N_{2}11$. -pp. 3264-3271.

6 Михальченко С.Г. Функционирование импульсно-модуляционных преобразователей в зонах мультистабильности // Доклады Томского государственного университета систем управления и радиоэлектроники. 2012. № 1–1. – С. 259–268.

ПРОЕКТИРОВАНИЕ ВЕКТОРНОЙ СУ ЧАСТОТНО- РЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА ЧЕТЫРЁХСТЕПЕННОЙ ДИНАМИЧЕСКОЙ ПЛАТФОРМЫ

С.В. Борисов, Г.В. Родионов, С.Н. Кладиев Национальный исследовательский Томский политехнический университет, Россия, Томск

Современные имитаторы движения транспортных средств подготовки водителей-операторов имеют сложную структуру и представляют собой многоуровневый программно-аппаратный комплекс. Данная система реализуется либо на основе гидропривода для имитации среды подвижного транспорта во время движения с учетом рельефа местности, либо с использованием частотно-управляемого электропривода для отработки навыков вождения автотранспорта водителем-оператором на малой платформе с учетом динамических режимов вождения. Для имитации данных режимов движения автотранспорта электропривод решает следующие задачи:

- отработка сигнала задания скорости и ускорения по осям вращения подвижной платформы, с учетом постоянно меняющегося рельефа;

- учет влияния больших моментов инерции механической системы;

- обеспечение двухкратной перегрузочной способности по моменту исполнительного двигателя;

- работа двигателя с ослаблением поля с кратковременным поддержанием момента на уровне 0,7 $M_{\rm H}$;

В качестве объекта разработки выступает подвижная динамическая платформа ДП-43, имеющая 4 степени свободы (рис. 1). Управление подвижной платформой осуществляется с помощью встроенного компьютера по локальной вычислительной сети, построенной на базе протоколов Ethernet и Modbus TCP. В качестве преобразователей частоты используется инверторы модели FR-A740 Mitsubishi Electric.

Использование в данной установке импортных компонентов и составляющих приводит к зависимости от поставщиков комплектующих изделий. Исходя из данного факта, поставлена задача модернизации подвижной