Медь, Си

Ртуть, Нд

	Среонее соо	ержание хил	иических элем	ентов в изучае	гмых вооих		
		Среднее содержание					
Компонент	Размерность	Березовый сок	Почвенные воды	Подземные воды	Речные воды (р.М.Ушайка), [4]	Снег	пдк*
рН	ед. рН	5,79	7,2	7,41	7,8	5,38	6-9
Удельная электропроводность	мS/см	0,869	0,345	0,545	-	0,011	-
С орг.		4828,4	22,11	1,51	-	1,25	-
Гидрокарбонаты, HCO_3^-		208,6	82,9	342	386	4,71	-
СО2, свобод.		60,4	8,8	16,2	-	3,80	-
Сульфаты, ${{\rm SO_4}^2}$		9,26	14,48	23,47	7,05	1,03	500
Хлориды, С1⁻		5,32	4,5	6,74	7,1	0,34	350
Фосфаты, PO ₄ ³⁻	мг/л	37,41	28,9	0,048	-	< 0,05	3,5
Нитриты, NO_2^-	M17J1	0,028	0,077	0,052	0,025	0,03	3,0
${ m Hитраты, NO_3}^ { m Аммоний, NH_4}^+$ ${ m Kальций, Ca}^{2+}$ ${ m Mагний, Mg}^{2+}$		2,76	63,28	11,01	0,614	1,47	45
		-	1,75	0,22	0,19	0,35	-
		129,3	44	98	100	1,67	-
		36,59	19,5	13,59	9,76	0,14	-
Натрий, Na ⁺		0,19	6,8	6,56	10,0	0,12	200
Калий, K ⁺		119,42	4,65	0,69	1,3	0,11	-
ЖО	мг-экв/л	8,7	3,8	6,0	5,8	0,04	7
Минерализация		508,7	281	490,5	524,0	8,1	1000
Железо, Fe	мг/л	0,37	1,38	2,40	0,7	0,08	0,3
Марганец, Мп		5,4	0,4	0,422	-	0,014	0,1
Кремний, Si		5,79	9,87	6,61	7,29	<0,5	10
Цинк, Zn		1,98	0,18	0,022	0,026	0,009	5,0
Кадмий, Cd		4,61	<0,2	<0,2	0,15	<0,2	1,0
Свинец, Рь	мкг/л	7,7	11	1,39	0,8	1,6	30
Манг Сп	MKI/JI	11 Q	7.2	2.5	2.5	1.3	1000

Таблица 2

<0,05 СанПиН 2.1.4.1074-0. «Питьевая вода. Гигиенические требования качеству централизованных систем питьевого водоснабжения».

7,2

2,5

0.16

2,5

1,3

0,06

1000

0,5

11,8

<0,05

Следует отметить, что березовый сок, как и вода, электрически нейтрален, поэтому сумма анионов (в мг-экв/л) должна быть равна сумме катионов (в мг-экв/л). Однако в исследованных пробах эти суммы отличаются, скорее всего, это связано с наличие органических кислот в соке, на что указывает высокая концентрация Сорг. и низкие значения рН.

Таким образом, в березовом соке накапливаются биофильные элементы и некоторые тяжелые металлы (Mn, Zn, Cd, Cu, Pb), а содержание ряда элементов наоборот уменьшается в системе вода-растения, такие как Fe, Hg, Na.

Литература

- Белоголова Г.А., Матяшенко Г.В. Береза как индикатор эколого-геохимических условий в Южном Прибайкалье // География и природные ресурсы. – Новосибирск, 2010. – № 1. – с. 63–70.
- Загузин В.П., Загузина Т.А., Погребняк Ю.Ф. Биогеохимические поиски руд вольфрама и молибдена // Изветия 2. АН СССР. Серия геологическая, - М., 1980. - № 7. - с. 144-148.
- Замана Л.В., Лесников Ю.В. Фтор в соке березы как индикатор флюоритового оруденения // Доклады АН CCCP. - M., 1989. - T. 306. - № 3. - c. 700-703.
- Колубаева Ю.В. Формы миграции химических элементов в водах северной части Колывань-Томской складчатой зоны // Известия Томского политехнического университета. - Томск, 2012. - т. 322. - №1. - С.136-

СОВРЕМЕННОЕ ЭКОЛОГИЧЕСКОЕ СОСТОЯНИЕ ОЗЕРА БЕЛЕНЬКОЕ (ГОРОД ТОМСК) Г.Д. Лоскутов

Научный руководитель доцент О.Г. Токаренко

Национальный исследовательский Томский политехнический университет, г.Томск, Россия

В настоящее время крайне остро стоит вопрос о загрязнении водных объектов. Многим рекам и озерам необходима очистка и рекультивация. В г. Томске в последнее время проводится рекультивация водных

объектов по программе «Чистая вода». Например, в период с 2010 по 2014 года было полностью очищенно и восстановлено Университетское озеро, Мавлюкеевское, озеро в микрорайоне Солнечный, Сенная Курья и другие.

В 2012 г. через озеро Песчаное была проложена автомобильная дорога, что привело к его резкому пересыханию. С каждым днем озеро пересыхает все сильнее, правая часть озера практически исчезла. В виду этого в свете сложивщшейся проблемы возникает необходимость в проведении рекультивационных работ и изучении современного экологического состояния озера Беленькое.

Данный водный объект располагается на равнинной местности между п. Нижний Склад и Тимирязевским микрорайоном. Озеро является старицей р. Томи и имеет следующие размеры: длина — 900 м, ширина — 50 м. Берег озера коренной, достаточно крутой, занят густым сосновым бором. Пойма обширная в примыкающей к коренному берегу части покрыта кустарниками, мезофильным разнотравьем. Берега водного объекта заняты в основном густыми зарослями тальника, ивой осоками и многими другими растениями. Прибрежная подводная часть имеет многочисленные водоросли. В летний период, большей часть растительности берега оказывается вытоптанной. Почва, уплотненная из-за большого антропогенного воздействия и пасущегося крупнорогатого скота [1].

В настоящее время пойма водного объекта все так же захламлена мусором, а правый берег озера был засыпан гравием и песком из-за строительства дороги, которая разделила озеро Беленькое на две части, между собой они никак не связаны, хотя проект изначально предусматривал монтаж водопропускной трубы на озере. В результате уровень воды правой части водоема значительно упал, активно развивается процесс евтрофикации.

Химический анализ, любезно предоставленный Наливайко Н.Г., научным сотрудникос НОЦ «Вода» ИПР ТПУ, приведен в табл.1.

Таблица 1 Результаты химического анализа воды озера Беленькое

			<u> </u>
Компоненты химического состава	ПДК [1]	ПДК [3]	Содержание
pН	8,5	9	8,08
НСО₃¯, мг/л	_		77
CO_2	_		5,28
CO ₃ ² -	_		<3
СГ-, мг/л	300	350	6,89
SO ₄ ²⁻ , мг/л	100	500	9,14
Са ²⁺ , мг/л	180		22
Mg ²⁺ , мг/л	40		4,88
Na ⁺ , мг/л	120	200	5,33
К⁺, мг/л	50		2,15
Общая жёсткость, мг-экв/л	-	7	1,5
Минерализация, мг/л	_	1000	105,39
NO ₂ ⁻, мг/л	0,08	3	0,005
NO ₃ ⁻ , мг/л	40	45	0,17
NH ₄ , мг/л	0,5	2,5	0,066
PO ₄ ³⁻ , мг/л	0,15	3,5	0,021
П.ок., мгО₂/л	-	10	4,86
$\mathbf{Б}\mathbf{\Pi}\mathbf{K}_{5}$, мг \mathbf{O}_{2} /л	_	5	3,34
XПК, мг O_2 /л	-	3	21,2
Fe _{общ} , мг/л	0,1	0,1	0,17
Фенолы, мг/л	0,001	15	< 0,002
Электропроводность, mS/см	_	0,3	0,13
Zn, мкг/л	10	0,25	3
Cd, мкг/л	5	2,5	<0,2
Pb, мкг/л	100	5000	0,19
Си, мкг/л	1	1	0,39

По классификации Щукарева С.А., вода изученного озера является гидрокарбонатной кальциево-магниевой. По величине жесткости вода озера Беленькое является очень мягкой, по значениям рН – слабощелочной. Содержание фенолов летучих – ниже предела обнаружения.

Таблица 2

Количественное содержание микроорганизмов в воде озера Беленькое

Энтеро- бактерии	Мезофиль- ные сапро- фиты	Психро- фильные сапрофит ы	Олиго- трофы	Индекс олиготроф -ности	Нефтеокис -ляющие	Гетеротр железо- окисляющ	Бензол	Толуол	Пентан окисляющ
70	110	320	17700	55	110	130	70	0	0

По результатам микробиологического опробования озера, проведенного в летний период 2012 г. выявлено присутствие незначительного количества энтеробактерий и мезофильных сапрофитов. ОМЧ было выше норматива в 2,5 раза. По количеству психрофильных сапрофитов вода характеризовалась как умеренно загрязненная, но способная к самоочищению. Несмотря на то, что в озере часто наблюдается несанкционированная мойка автомобилей, содержание нефтеокисляющих микроорганизмов было незначительным.

Во избежание окончательного пересыхания озера и сохранения природных водных объектов территории города Томска необходимо уделить особое внимание дальнейшему изучению состояния озеро Беленькое.

Литература

- 1. ГН 2.1.5.1315 Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования
- 2. Приказ Росрыболовства от 18.01.2010 № 20 «Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения». М.: 2010. 214 с.
- 3. СанПин 2.1.5.980-00 Предельно допустимые концентрации (ПДК) для рыбохозяйственных водных объектов 1 категории.

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ПОВЕРХНОСТНЫХ ВОД КИЗЕЛОВСКОГО УГОЛЬНОГО БАССЕЙНА

И.А. Лямин

Научный руководитель доцент В.В. Фетисов

Пермский государственный национальный исследовательский университет, г. Пермь, Россия

Эксплуатация Кизеловского угольного бассейна велась более 200 лет. Здесь впервые в России началась промышленная добыча угля. Характерной особенностью Кизеловского бассейна при его эксплуатации являлось образование больших объемов кислых шахтных вод, содержавших целый ряд загрязняющих веществ в количествах многократно превышающих предельно—допустимые концентрации для водных объектов рыбохозяйственного водоснабжения. В результате сброса шахтных вод сильному загрязнению подвергались не только почти все поверхностные водные объекты на территории бассейна, но и такие крупные реки Пермского края как Яйва, Косьва, Усьва, Северная Вильва и Южная Вильва. Закрытие шахт не решило экологических проблем, связанных с шахтными водами [2]. Изучению геоэкологических проблем Кизеловского угольного бассейна посвящены работы многих исследователей А.П. Красавина, В.М. Баньковской, Н.Г. Максимовича, С.М. Блинова, В.Н. Катаева, С.С. Потапова, К.К. Имайкина, Н.Г. Максимовича, Е.А. Меньшиковой, А.К. Имайкина и др. [5].

Основным источником питания рек района являются снеговые талые воды весеннего половодья. Значительно меньшую роль играют атмосферные осадки, выпадающие в виде дождей, а также подземные воды. Последние или непосредственно разгружаются в русло реки, образуя подводные родники, или стекают в виде ручьев. В соответствии с источниками питания находятся уровни воды. Особенностью рек является высокое весеннее половодье и сравнительно низкая летняя межень с отдельными дождевыми паводками.

Притоки вышеописанных рек довольно густой сетью покрывают всю территорию района. Долины всех притоков, за небольшим исключением, ассиметричны, русла их мало выработаны, причем характерно, что течение их в верховьях более медленное, чем в низовьях.

Величина модуля стока изменяется в больших пределах – от 0,9 до 23 л/сек с 1 км². В течение года сток распределяется весьма неравномерно. Наибольшая доля его приходится на весенний период (апрель – июнь), когда стекает более 60 % годового объёма. Сток летнего периода (июль – сентябрь) составляет 15–20 %, а на некоторых реках 5–10 %. Осенний период (октябрь – ноябрь) в первой половине характеризуется несколько повышенным стоком, ближе к зиме величина стока резко снижается и не превышает 3–5 % годового объёма [1].

Шахты Кизеловского бассейна в период эксплуатации были одними из самых обводненных в стране. В силу особенностей геолого-гидрогеологических условий территории, шахты бассейна характеризуются