ФОРМИРОВАНИЕ ПЛАЗМЕННОГО ПОТОКА ПРИ СПИНОВОЙ СЕПАРАЦИИ ИЗОТОПОВ УГЛЕРОЛА

Беспала Е.В.¹, Павлюк А.О.², Котляревский С.Г.² Научный руководитель: д.ф.-м.н., проф. Мышкин В.Ф.

¹Томский политехнический университет, 634050, Россия, г. Томск, пр. Ленина, 30

²ЛСиЯФИ ТУ АО "ОДЦ УГР"

E-mail: bespala_evgeny@mail.ru

Современные тенденции развития атомной промышленности требуют поиска методов повышения энергооэффективности используемых технологий, например при получении стабильных изотопов. Это связано с тем, что традиционные методы разделения изотопов, как правило, требуют больших затрат и не оправдывают себя на интенсивно развивающемся рынке изотопов широкого применения. С другой стороны, актуальны исследования по разработке методов выделения радиоактивных изотопов, концентрирующихся в отходах реакторного производства. В этом случае применение каскадной технологии, не целесообразно, поскольку ведёт к увеличению объема радиоактивных отходов. Остро стоит задача извлечения ¹⁴С из общей массы графита, используемого в уранграфитовых реакторах. Поэтому разработка новых эффективных способов сепарации изотопов является актуальной задачей.

Нами исследуется процесс разделения изотопов углерода в низкотемпературной неравновесной плазме. В низкотемпературной плазме значительно выше скорости протекания химических реакций, а неравновесность газоразрядной плазмы может существенно изменить направление физико-химических процессов. При высокой температуре также могут протекать химические реакции с высоким порогом энергии.

Радикальные процессы в низкотемпературной плазме, находящейся во внешнем магнитном поле, селективны по изотопам [1]. Это связано с тем, что во внешнем магнитном поле спины неспаренных валентных электронов радикалов прецессируют с характерными для каждого изотопа частотами. Путем подбора величины магнитного поля удается создать преимущественные условия для целевого изотопа. Для повышения коэффициентов разделения необходимо создавать в плазменных системах не только заданные условия, но и их распределение по объему высокотемпературного плазменного потока. При этом целесообразно использовать методы и средства математического моделирования.

Одной из причин невысокого коэффициента разделения является неоптимальность газодинамического режима в плазмохимическом реакторе. Это ведёт к выравниванию изотопной концентрации из-за процессов обратного движения изотопов. В работе [1] описан цилиндрический проточный плазмохимический реактор для сепарации изотопов углерода между СО и сажей. Проведенные оценки показывают коэффициент разделения значительно меньше его максимально возможного значения из-за окисления дисперсной фазы на стенках. Эта проблема может быть решена путем формирования заданного распределения по радиусу скорости высокотемпературного потока. Необходимо локализовать плазменный поток вдоль оси реактора и ограничить проникновение плазменного потока к пристеночной области. При этом возможно разделение реагентов и продуктов плазменных процессов.

Для локализации плазменного потока по оси реактора можно использовать диафрагмы, ограничивающие движение газа в пристеночном слое. В работе представлены результаты расчёта газодинамики высокотемпературного плазменного потока. Рассматриваются плоские и конические диафрагмы, а также через диафрагмы с наклонными лопастями. Определены оптимальные размеры диафрагм с точки зрения скорости течение газа в осевой области плазмохимического реактора и возможности контакта плазмы со стенками. Показано, что использование конических диафрагм и диафрагм с наклонными лопастями приводит к резкому снижению скорости газа между ними. При этом скорость газа в пристеночной области между диафрагмами уменьшается в зависимости от диаметра входного отверстия. Это позволяет исключить возможность окисления дисперсной фазы, находящейся на стенках.

СПИСОК ЛИТЕРАТУРЫ

1. Myshkin V.F., Khan V.A., Plekhanov V.G., Izhoykin D.A. and Bespala E.V. Spin isotope separation under incomplete carbon oxidation in a low-temperature plasma in an external magnetic field // Russian Physical Journal, 2015. Vol. 57. №10. P.1442–1448.