УДК 624.131

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ДЛЯ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ ПОВЕДЕНИЯ ГРУНТОВ

Л.А. Строкова

Технический университет, г. Мюнхен, Германия E-mail: gever3@mail.ru

Приводятся теоретические сведения о двух моделях Mohr-Coulomb и Hardening Soil, реализованных в программном комплексе PLAXIS, на примерах показан процесс определения параметров грунтов для последующего численного моделирования.

Ключевые слова:

Определяющие уравнения, параметры грунта, трехосные испытания.

По данным рабочей группы European Geotechnical Thematic Network [1] у пользователей современных программных продуктов ABAQUS, AN-SYS, PLAXIS и др., позволяющих оценивать напряженно-деформированное состояния грунтов, часто возникают трудности по определению и заданию входных параметров; определению начальных условий; выбору подходящей модели, достоверно описывающей поведение материала при нагружении; интерпретации результатов.

В настоящей работе речь пойдет о технологии назначения входных параметров грунтов моделей Mohr-Coulomb и Hardening Soil программного комплекса PLAXIS и методах их определения.

Упругая идеально-пластическая модель Мора-Кулона (Mohr-Coulomb) состоит из двух компонент: закона Гука и условия прочности Кулона, рис. 1. Модель рекомендуется для приближенной оценки напряженно-деформированного состояния [2]. Она учитывает основные свойства грунта, такие как упругое поведение при малых нагрузках, малая жесткость материала при разрушении, условие разрушения и упругая разгрузка после течения [3]. Ограничения модели: определение сопротивления грунта сдвигу вблизи предельного состояния, избыточная дилатансия, неспособность описать явления гистерезиса и изменения тензора упругих модулей после наступления предельного состояния. Фактически модуль Юнга и число Пуассона принимаются константами. Модель Мора-Кулона пригодна для

определения несущей способности грунтов, расчетов устойчивости склонов, подпорных стен.

Основные определяющие уравнения: закон Гука в дифференциальной форме, т. к. поведение материалов является зависимыми от истории нагружения; суммируемость деформаций; функция текучести; закон пластического течения материала; закон пластического упрочнения.

Уточним формулировки:

- Закон Гука в дифференциальной форме в приращениях напряжений $d\sigma_{ij} = D^{e}_{ijkl} d\varepsilon^{e}_{kl}$ или $d\varepsilon_{ij} = C^{e}_{ijkl} d\sigma^{e}_{kl}$ в приращениях деформаций, где коэффициенты пропорциональности между напряжениями σ_{ij} и деформациями представлены тензором напряжений D^{e}_{ijkl} и тензором податливостей C^{e}_{ijkl} , связанные между собой следующим образом $D^{e}_{iikl} = (C^{e}_{ijkl})^{-1}$.
- Независимые от времени, упругие и пластические приращения деформаций действуют независимо друг от друга. Полное приращение деформации складывается из упругих и пластических приращений: dɛ_i=dɛⁱ_b+dɛⁱ_b.
- Функция текучести f задается уравнением $f=(\sigma_1'-\sigma_3')-(\sigma_1'+\sigma_3)\sin\varphi'-2c'\cos\varphi'.$
- Потенциал пластичности *g* задается уравнением $g=(\sigma_1'-\sigma_3')-(\sigma_1'+\sigma_3')\sin\psi$.
- Поверхность текучести одновременно рассматривается как потенциальная поверхность (g=f), т. е. действует ассоциированный закон течения.

Рис. 1. Различные формы представления критерия Мора-Кулона

В процессе пластического деформирования поверхность текучести не изменяется.

Для задания модели требуется 5 параметров, табл. 1.

Таблица 1. Параметры линейно-упругой идеально-пластической модели Мора-Кулона

Символ	Название	Размерность
E ₀	Модуль упругости (Tangent Young's Modulus)	кН/м²
v(nu)	Число Пуассона (Poisson's ratio)	-
С	Сцепление (Cohesion)	кH/м²
ϕ (phi)	Угол внутреннего трения (Friction angle)	град
ψ(psi)	Угол дилатансии (Dilatancy angle), при- нимает значения $0{\leq}\psi{\leq}\phi$	град

Упругопластическая модель с изотропным упрочнением Hardening Soil Model [2, 4, 5] включает: в качестве поверхности разрушения – формулировку Мора-Кулона; для описания упругой области напряженно-деформированного состояния – гиперболическую формулировку Duncan-Chang [6] с изменяемыми модулями упругости для траектории первичного нагружения и траектории разгружения – повторного нагружения; для описания пластических сдвиговых и объемных деформаций – две функции текучести для девиаторного f и изотропного f нагружений, соответственно, рис. 2, б.

Модель точно описывает поведение грунта при экскавации грунта, при устройстве подпорных стен и проходке туннелей, сопровождающейся уменьшением среднего эффективного напряжения и одновременно мобилизацией сопротивления пород сдвигу. Ограничения модели: неспособность учесть явления анизотропии прочности и жесткости, ползучести и длительной прочности, непригодность для моделирования динамических процессов [7].

Основные определяющие уравнения: гиперболическое отношение; суммируемость деформаций; функция текучести; закон пластического течения материала; закон пластического упрочнения. Уточним формулировки:

Для описания нелинейной упругой области используется гиперболическое отношение между напряжениями и деформациями в ходе дренированных трехосных испытаний (рис. 2, *a*), впервые предложенное R.L. Kondner и J.S. Zelasko в 1963 г., дополненное J.M. Duncan и С.-Ү. Chang в 1970 г.

$$\varepsilon_1 = \frac{1}{2E_{50}} \frac{q}{1 - q/q_a}.$$

Асимптотическое девиаторное напряжение q_a связано с максимальным девиаторным напряжением q_f уравнением $q_a = q_f / R_f$. где

$$q_f = (c' \cdot \operatorname{ctg} \varphi' + \sigma'_3) \frac{2\sin\varphi'}{1 - \sin\varphi'}$$

Величина *R_f* для большинства грунтов изменяется в пределах 0,75...1 [6].

Секущий модуль упругости E_{50}^{ref} и модуль упругости при разгрузке — повторном нагружении E_{ur}^{ref} являются величинами, зависящими от сдерживающего напряжения σ_3' , определяются из трехосных испытаний по формулам

$$E_{so} = E_{so}^{ref} \left(\frac{c \cos \varphi - \sigma'_{3} \sin \varphi}{c \cos \varphi + p^{ref} \sin \varphi} \right)^{m}$$

W $E_{ur} = E_{ur}^{ref} \left(\frac{c \cos \varphi - \sigma'_{3} \sin \varphi}{c \cos \varphi + p^{ref} \sin \varphi} \right)^{m}$

 В процессе пластического деформирования поверхность текучести изменяется двояко.

1) Функция текучести для девиаторного нагружения *f*описывает пластические сдвиговые деформации и задается уравнением

$$f^{s} = \frac{1}{2E_{50}} \frac{q}{1 - q/q_{a}} - \frac{2q}{E_{ur}} - \gamma^{p} ,$$

где γ^{p} — параметр упрочнения, равный $\gamma^{p} = -(\varepsilon_{1}^{p} - \varepsilon_{2}^{p} - \varepsilon_{3}^{p})$. При девиаторном нагружении

Рис. 2. Гиперболическое отношение между напряжениями и деформациями (слева) и поверхности текучести модели Hardening-Soil (справа)

пластические объемные деформации пренебрежительно малы по сравнению с сдвиговыми, т. е. $\gamma^{p} \approx -2\varepsilon_{1}^{p}$. При первичном нагружении проявляются и упругие ε^{e} , и пластические е^pдеформации. При разгрузке – повторном нагружении возникают преимущественно упругие деформации, которые при трехосных испытаниях определяются $\varepsilon_{1}^{e} = q/E_{ur}$, причем $\varepsilon_{2}^{e} = \varepsilon_{3}^{e} = -v_{ur}(q/E_{ur})$.

Таблица 2. Перечень параметров грунта для модели PLAXIS Hardening Soil

Символ	Название	Ед. изм.	
E ₅₀ ^{ref}	Секущий модуль упругости при 50 % значении ($\sigma_1 - \sigma_3$) из трехосных испытаний (Reference stiffness for triaxial compression)		
E _{oed} ref	Тангенциальный модуль упругости из ком- прессионных испытаний (Reference stif- fness for primary oedometer loading)	кН/м²	
E _{ur} ref	Модуль упругости при разгрузке-повторном нагружении из компрессионных испытаний (Reference stiffness for triaxial unloading)		
V _{ur}	Число Пуассона при разгрузке-повторном нагружении, по умолчанию v_{ur} =0,2	-	
m (power)	Показатель степени, для описывания влия- ния ограничивающего давления на модуль упругости, определяется из компрессион- ных испытаний	_	
K ₀	Коэффициент бокового давления грунта $K_0 = \sigma'_{xx} / \sigma'_{yy}$ при консолидации, по Jaky (1944) $K_0^{NC} = 1 - \sin \varphi$	-	
p ^{ref}	Опорный уровень напряжений (Reference stress for stiffnesses), по умолчанию $p^{rel}=100$	кН/м²	
с	Эффективное сцепление из трехосных ис- пытаний		
ϕ (phi)	Эффективный угол внутреннего трения из трехосных испытаний		
ψ(psi)	Угол дилатансии из трехосных испытаний, обычно <i>и= a</i> =30°	град	

- Потенциал пластичности при девиаторном нагружении g^s задается уравнением $g^s = (\sigma_1' - \sigma_3') - (\sigma_1' + \sigma_3') \sin \psi_m$, где ψ_m – мобилизованный угол дилатансии, определяемый по закону дилатансии Rowe [2].
- Поверхность текучести не совпадает с потенциальной поверхностью (g^s≠f^s), т. е. действует неассоциированный закон течения.

2) Функция текучести для изотропного нагружения f^c описывает пластические объемные деформации и задается уравнением $f^c = (q^2/\alpha^2) - p^2 - p_p^2$. Поверхность текучести f^c изменяется независимо от f^c . Размеры и формы этой поверхности текучести определяются параметрами α и преднапряжением консолидации p_p . Оба эти параметрами являются внутренними параметрами программы PLAXIS и определяются по входным параметрам. Параметр α зависит от коэффициента бокового давления для нормально-консолидированного грунта K_0^{NC} и от отношения E_{50}^{ref} . Параметр p_p зависит, главным образом, от модуля упругости E_{ref}^{ref} , определяемого из компрессионных испытаний по формуле:

$$E_{_{oed}} = E_{_{oed}}^{^{ref}} \left(\frac{c\cos\varphi - \sigma'_{_{1}}\sin\varphi}{c\cos\varphi + p^{^{ref}}\sin\varphi} \right)^{^{m}}$$

где m — показатель степени, предложенный Ohde (1937) для оценки изменения модуля упругости при изменении действующего напряжения по отношению к опорному (атмосферному) давлению $p^{ref} \approx 100 \text{ kH/m}^2$ [9]. Параметр m для большинства грунтов изменяется в пределах 0,4...1.

 Поверхность текучести при изотропном нагружении совпадает с потенциальной поверхностью (g^e=f^e), т. е. действует ассоциированный закон течения.

Для задания модели необходимо 10 параметров, табл. 2.

Методика установления параметров

Определение угла внутреннего трения ϕ и сцепления *с* возможно методом одноплоскостного среза при трех разных вертикальных нагрузках σ_1 или методом трехосного сжатия при различных вертикальных σ_1 и ограничивающих давлениях σ_3 (рис. 3).

Определение упругих параметров *модулей упругости Е* и числа Пуассона производится при компрессионных и трехосных испытаниях в лаборатории, либо при испытаниях штампом *in-situ*. Модуль упругости при компрессионных испытаниях определяется как тангенс угла наклона кривой напряжение — деформации. Лучшие результаты дает определение модуля деформации в приборах трехосного сжатия.

Для расчета модуля упругости *E*₀ для модели Мора-Кулона берут отрезок, составляющий 1/2...1/3 от напряжения разрушения. Расчет модулей упругости E_{oed}^{ref} и E_{ur}^{ref} для модели Hardening Soil возможен по данным компрессионных или *К*₀-консолидации. Под *К*₀-консолидацией понимается сжатие образца в специальных трехосных приборах с двумя камерами без возможности бокового расширения. Условия сжатия напоминают компрессию в обычном одометре, но преимущество этого прибора – исключение сил трения по боковой поверхности. Специальная система в автоматическом режиме регулирует боковое давление на образец грунта по данным объемной деформации. На рис. 4 приведен пример определения E_{oed}^{ref} и E_{ur}^{ref} при компрессионных испытаниях, в табл. 3 представлено вычисление параметра *m*.

Таблица 3. Определение параметра т для глины со сцеплением 25 кН/м² и углом внутреннего трения 25°

Напряже- ние <i>о</i> 1', кН/м ²	Модуль упруго- сти $E_{oed}^{ref} = \Delta \sigma / \Delta \varepsilon$, MH/м ²	Параметр <i>т</i> [-]
100	53,5/0,22=16,5	$E = E^{ref} \left(\frac{c' \cos \varphi' + \sigma' \sin \varphi}{c' \cos \varphi' + p^{ref} \sin \varphi} \right)^m$
300	82,0/0,21=23,5	$23,5 = 16,5 \left(\frac{25\cos 25^\circ + 300\sin 25^\circ}{25\cos 25^\circ + 100\sin 25^\circ}\right)^m \implies m \sim 0,6$

Рис. 4. Определение модулей упругости E^{ref}

Число Пуассона определяется в результате непосредственного измерения продольных и поперечных деформаций (рис. 5) по формуле

$$v = \frac{1}{2} \left(1 - \frac{\Delta \varepsilon_v}{\Delta \varepsilon_1} \right)$$

Коэффициент бокового давления K_0 определяется как отношение горизонтального напряжения σ'_h к действующему вертикальному напряжению σ'_ν ($K_0 = \sigma'_h / \sigma'_\nu$) при отсутствии боковых деформаций ($\varepsilon_2 = \varepsilon_3 = 0$). Для определения K_0 предложено множество полевых (пенетрометр, дилатометр) и лабора-

торных (компрессия, K_0 -консолидация) методов. Коэффициент бокового давления отражает мгновенное напряженно-деформированное состояние массива, и многократно меняется в геологическое время, при седиментации и нормальной консолидации является постоянной величиной, при увеличении вертикальных напряжений, (наступление ледников, застройка) K_0 – уменьшается, при разгрузке (отступлении ледников, эрозии, экскавации грунта) K_0 – увеличивается. На рис. 6 представлены результаты определения коэффициента бокового давления при K_0 -консолидации для глины мягко-

Рис. 6. Определение коэффициента бокового давления К₀

пластичной, $K_0^{NC}=0,45$ в условиях нормальной консолидации, при разгрузке образца, наблюдается повышение K_0 до 0,9. Для определения *угла дилатансии* используют результаты испытаний на сдвиг и трехосного дренированного сжатия. Угол дилатансии ψ определя-

Рис. 7. Определение угла дилатансии по результатам среза

ется для условий плоской деформации по предложению M.D. Bolton [10] по формуле

$$\mathrm{tg}\psi_m = \frac{\dot{\varepsilon}_{1yy}}{\dot{\gamma}_{yx}}$$

а для условий трехосного сжатия по предложению P.A. Vermeer, R. De Borst [11],

$$\sin\psi_m = \frac{2\dot{\varepsilon}_v}{\dot{\varepsilon}_v - 2\dot{\varepsilon}_1}$$

где $\dot{\varepsilon}_1$ и $\dot{\varepsilon}_{\nu}$ – скорости осевой и объемной деформаций.

На рис. 7 приведен результат определения угла дилатансии по данным среза глины тугопластичной в условиях кинематического нагружения. Точка перегиба кривой изменения объема соответствует изменению контракции на дилатансию. Макси-

СПИСОК ЛИТЕРАТУРЫ

- De Vos M., Whenham V. Innovative design methods in geotechnical engineering. – Belgium, 2006. – 90 p. http://www.geotechnet.org/wp3.
- Brinkgreve R.B.J. et al. PLAXIS, 2D Version 8. Balkema, 1997. 200 p. http://www.plaxis.nl/index.php?cat=manuals&mouse=Plaxis%20V8.
- Болдырев Г.Г. Устойчивость и деформируемость оснований анкерных фундаментов. – М.: Стройиздат, 1987. – 80 с. http://geoteck.ru/publications/public1/.
- Schanz T. Zur Modellierung des mechanischen Verhaltens von Reibungsmaterialien // Mitt. Inst. für Geotechnik 45. Universität Stuttgart. – Stuttgart, 1998. – 152 S.
- Schanz T., Vermeer P.A., Bonnier P.G. The Hardening-Soil Model: Formulation and verification // Beyond 2000 in Computational Geotechnics. – Balkema, Rotterdam, 1999. – P. 281–290. http://www.uni-stuttgart.de/igs/content/publications/40.pdf.
- Duncan J.M., Chang C.-Y. Nonlinear analysis of stress and strain in soils // ASCE Journal of the Soil Mechanics and Foundations Division, 1970. – № 96 (SM5). – P. 1629–1653.

мальное значение дилатансии имеет место при максимальном значении напряжения τ_{peak} .

Процесс установления параметров грунта для последующего численного моделирования является важнейшей составляющей обеспечения качества оценки напряженно-деформированного состояния грунтового массива. Поэтому необходимо уделить особое внимание разработке отечественных нормативов для определения числа Пуассона, коэффициента бокового давления грунта в состоянии покоя, угла дилатансии. Следует установить методику определения этих параметров с достаточной надежностью и с приемлемыми издержками.

Автор признателен Г. Пельцу, инженеру Центра Геотехники Технического университета Мюнхена, за помощь в процессе нахождения параметров и их использовании при численном моделировании напряженно-деформированного состояния грунтов.

- Brinkgreve R.B.J. Selection of soil models and parameters for geotechnical engineering application // Soil Constitutive Models: Evaluation, Selection, and Calibration. Ed. J.A. Yamamuro, V.N. Kaliakin. – American Society of Civil Engineers, 2005. – V. 128. – P. 69–98.
- Wehnert M. Ein Beitrag zur drainierten und undrainierten Analyse in der Geotechnik // Mitt. Inst. fur Geotechnik 53. Universität Stuttgart. – Stuttgart, 2006. – 167 S.
- Ohde J. Zur Theorie der Druckverteilung im Baugrund // Der Bauingenieur. – 1939. – V. 20. – P. 451–453.
- Bolton M.D. The strength and dilatancy of sands // Geotechnique. - 1986. – № 36 (1). – P. 65–78. http://www-civ.eng.cam.ac.uk/geotech_new/people/bolton/14-Geotechnique(36) 65–78.pdf.
- Vermeer P.A., De Borst R. Non-associated plasticity for soils, concrete and rock // Heron. 1984. № 29 (3). 62 p.

Поступила 17.04.2008 г.