обломочной части отмечается увеличение количества кварца (37–49 %) и уменьшение количества обломков пород (23–27 %) и полевых шпатов (17–24 %). Среди обломков пород значительное место принадлежит устойчивым зернам кремнистых пород, кислых эффузивов и гранитоидов. Содержание цемента снижается до 7–16 %, цемент преимущественно порового типа, в нем резко преобладает каолинит над неразделенным каолинит-хлорит-гидрослюдистым материалом, кальцитом, сидерита и пиритом. Поровое пространство коллектора сформировано межзерновыми, внутризерновыми и межпакетными (в каолинитовом цементе) порами. Поры распределены относительно равномерно, размер сечений пор от 0.01-0.25 мм. Открытая пористость 14.1-15.9 %; проницаемость $-10.1-24.3 \cdot 10^{-3}$ мкм².

3. Выводы

Отложения пласта Θ_1^{-3} сформированы в прибрежной полосе мелководного шельфа и генетически связаны с регрессивными вдольбереговыми барами.

Песчаные породы с хорошими коллекторскими свойствами распространены в средней и верхней частях разреза, генетически связаны со склонами и центральными частями баров, представлены среднемелкозернистыми хорошо промытыми разностями, в которых кварц преобладает над полевым шпатами и обломками пород, слабо сцементированы поровым каолинитовым цементом или соединены бесцементным способом, имеют межзерновые, внутризерновые и межпакетные поры.

Песчаные породы с более низкими коллекторскими свойствами распространены в нижней части разреза, сформированы в подошвенной части баров, представлены мелкозернистыми разностями с повышенным количеством обломков пород, полевых шпатов и цемента, в структуре порового пространства в них преобладают межзерновые плохо сообщающиеся между собой поры.

Литература

- 1. Влияние гранулометрического и минералогического состава на формирование коллекторских свойств песчаников пласта Ю₁³ Западно-Моисеевского участка Двуреченского месторождения (Томская область) / Н.М. Недоливко, А.В. Ежова, Т.Г. Перевертайло и др. // Известия ТПУ, 2004. Т. 307. № 5. С. 48 54.
- 2. Жэнь Сюйцзин, Недоливко Н.М. Формирование порового пространства в терригенных нефтенасыщенных коллекторах // Материалы Всероссийской научной геологической молодежной школы «Развитие минеральносырьевой базы Сибири: от В.А. Обручева, М.А. Усова, Н.Н. Урванцева до наших дней». Томск: Изд-во ТПУ, 2013. С. 68 70.
- Жэнь Сюйцзин, Недоливко Н.М. Влияние литолого-петрографических особенностей пород на их фильтрационно-емкостные характеристики. // Проблемы геологии и освоения недр: Труды XVIII Международного симпозиума имени академика М.А. Усова студентов и молодых ученых. – Т. 1; Томский политехнический университет. – Томск: Изд-во ТПУ, 2014. – С. 280 –281.
- 4. Конторович В.А., Беляев С.Ю., Конторович А.Э. и др. Тектоническое строение и история развития Западно-Сибирской геосинеклизы в мезозое и кайнозое // Геология и геофизика, 2001. – Т. 42 (11—12),. С. 1832 – 1845.
- 5. Ежова А.В. Литология: учебник. 2-е изд. Томск: Изд-во Томского политехнического университета, 2009. С. 292 295.
- 6. Жэнь Сюйцзин. Литолого-петрографический состав, коллекторские свойства и особенности формирования и песчаных пород пласта ${\rm Ю_1}^3$ южной части Каймысовского свода (Западная Сибирь) // Сборник Тезисов Всероссийской школы-конференции студентов, аспирантов и молодых ученых «Материалы и технологии XXI века». Казань: Изд-во КФУ, 2014. С. 102.
- Жэнь Сюйцзин, Баркалова А.М. Роль моря в формировании продуктивных отложений пласта Ю₁³ на Крапивинском нефтяном месторождении (Томская и Омская области). // Творчество юных – шаг в успешное будущее: Материалы VII Всероссийской научной студенческой конференции с элементами научной школы имени профессора М.К. Коровина. – Томск: Изд-во Томского политехнического университета, 2014. – С. 158– 161.
- Жэнь Сюйцзин (Ren Xujing). Analysis of Formation Characters, Lithological Petrographic Composition and Reservoir Properties of Oil Bedset In Oilfield K West Sibirian Basin. / VI Международная студенческая научно-практическая конференция «Нефтегазовые горизонты». / Abstract book Oil and Gas Horizon VI, 24-26th November, 2014. – Москва: Изд-во РГУНГ, 2014. – С. 6.

ТЕПЛОВОЙ ПОТОК ЗЕМЛИ И ЕГО РОЛЬ В НЕФТЯНОЙ ГЕОЛОГИИ И.В. Иванов, А.Н. Курманов, В.А. Смирнов

Научный руководитель ассистент Е.Н. Осипова

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Разрабатываемые месторождения постепенно истощаются, применение наиболее рациональных методов поиска залежей углеводородов (УВ) является актуальной задачей.

Из множества методов поисков и разведки УВ, мы хотим выделить геотермический метод, опирающийся на изучение теплового потока, который поднимается из недр земли к ее поверхности.

Термин «геотермическая съемка» принят Всесоюзной научно-технической конференцией (г. Львов) в ноябре 1972 г., где обсуждалась эффективность подготовки нефтегазоносных структур к поисковому бурению. Роль геотермии при изучении энергетического состояния Земли является определяющей в решении основной задачи теоретической геологии – познании эволюции нашей планеты.

На сегодняшний день накоплен большой фактический материал, установлены закономерности формирования глобального, регионального и локального геотемпертурных полей. Теоретической основой для

оценок формирования геологических температурных полей является физико-математическое моделирование процессов тепломассопереноса в горных породах [3].

Тепловой поток (q) – это количество тепла, переданное через изотермическую поверхность в единицу времени. Зависит от природы и мощности источников тепла, а также от переноса тепла через горные породы обладающие теплопроводностью, посредством излучения и конвекции. Источниками теплового потока являются процессы, протекающие в недрах земли, и тепловая энергия Солнца. Вариации активности солнца (суточные, сезонные, многолетние) приводят к циклическим изменениям температур воздуха. Чем длиннее период цикличности, тем больше глубина теплового воздействия. Так, суточные колебания температуры проявляются до 1,5 м и связаны с переносом солнечного тепла за счет молекулярной теплопроводности пород и конвекции воздуха, паров воды, инфильтрирующихся осадков и подземных вод. Сезонные или годовые приводят к изменениям температур на глубинах до 20-40 м. На этих глубинах теплопередача осуществляется в основном за счет молекулярной теплопроводности, а также движения подземных вод. Глубже 40 м расположен нейтральный слой, где температура остается практически постоянной и в каждом районе в среднем на 3,7 °C выше среднегодовой температуры воздуха. Ниже нейтрального слоя температура пород повышается в среднем на 3 °C при погружении на каждые 100 м. Многовековые климатические изменения сказываются на вариациях температур сравнительно больших глубин. Например, похолодания и потепления в четвертичном периоде повлияли на геотемпературный режим Земли до глубин 3-4 км [2]. Поскольку залежи углеводородов (УВ) формируются ниже нейтрального слоя, то влиянием цикличности солнечной активности можно пренебречь.

Аномалии теплового потока различают по четырем признакам.

По простиранию – глобальные, региональные, локальные.

По глубине нахождения источника тепла – глубинные (мантийные), промежуточные (коровые), поверхностные (первые км литосферы)

По физической природе — изменения граничных условий во времени или в пространстве и теплофизических свойств среды, особенности кондуктивной теплопередачи в среде с неоднородной теплопроводностью или движущемся в твердом теле, характер расположения источников тепла, различные энергообразующие процессы.

По времени действия – стационарные, нестационарные.

К глубинным тепловым процессам относят радиогенное тепло, которое создается путем распада изотопов радиоактивных элементов (урана, тория, калия и др.), расположенных в горных породах. Также тепло создаётся различными процессами, протекающими в недрах. Например, химические экзогенные и эндогенные реакции, плавление, деформация за счет приливов и др. Тепловая энергия таких источников считается значительно выше энергии тектонических, сейсмических и гидротермальных процессов [2]. Тепловой поток из недр «твёрдой» Земли непрерывно поступает и рассеивается в окружающем пространстве.

Плотность теплового потока зависит от теплофизических свойств геологической среды и тесно связана с тектоническим строением регионов, а также с вулканической и гидротермальной деятельностью. Распределение температуры и ее источников в недрах, тепловую историю Земли изучают с помощью геотермии, собирая информацию о температурах (t) на различных глубинах, геотермических градиентах (Г) и плотности потока (q).

Главным условием выделения тепловых аномальных зон является всесторонний учет многочисленных природных факторов, которые могут повлиять и искажать тепловые излучения. Главный из этих факторов – структурный. Существует два типа термического градиента: для осадочных и для магматических пород. Разная теплопроводность различных горных пород, пликативная и дизъюнктивная тектоника (внедрение интрузии, разломы и т.д.). В расчетах теплового потока нужно учесть все факторы, способные на него повлиять, в этом и есть наибольшая сложность подсчёта всех данных.

Изучение теплового поля земли даёт важную информацию о планетарном энергетическом балансе, энергетике геолого-тектонических процессов, термодинамических условиях в недрах планеты, а, следовательно, о движущих механизмах развития тектоносферы. Тепловой поток может помочь в поисках, разведке и эксплуатации полезных ископаемых, а также в освоении геотермальных ресурсов – это один из перспективных источников энергии булушего. Но нам наиболее интересна его роль в нефтяной геологии.

Исследование распределения температур в горных породах с различными теплофизическими свойствами – весьма трудная задача, но она решаема. С помощью электромоделирования решаются как прямые задачи теплопроводности (решением дифференциального уравнения и условий однозначности определяется поле температур), так и обратные задачи (по известному полю температур устанавливают граничные условия, например, коэффициент теплоотдачи на поверхности тела) [1].

Существенное искажение геотемпературного поля возникает в случаях, если породы возмущающего тела в 5-10 раз отличаются по теплопроводности от вмещающих отложений. Для платформенных областей такие различия очень редки [4]. На температурное равновесие влияет и бурение скважин. Время восстановления температуры до первоначального значения превышает в среднем 10-ти кратное время процесса бурения и зависит от способа бурения.

Обработка фактических данных по нефтегазовым провинциям показала приуроченность геотемпературных аномалий к ряду залежей нефти и газа. Температуры в залежах иногда превышают фоновые на 10 °C и более. Аномальные тепловые потоки, излучаемые углеводородами, могут быть обусловлены катагенезом органического вещества и миграцией УВ. Поднимаясь с большей глубины, где температуры выше, углеводороды привносят и распределяют тепло, подогревая общую массу пород. По тепловому излучению можно косвенно определять состав нефти – чем легче нефть, тем тепловые потоки наиболее интенсивные [6].

Методика поиска нефтегазоносных структур с помощью термотомографии была известна еще в 20 веке, но до сих пор не воспринимается серьез, хотя может сэкономить на проведении поисковых работ миллионы долларов. Метод заключается в составлении трехмерных моделей распределения тепловых потоков и температур, что дает возможность получить срезы геотермического поля практически на любой глубине и определить уровень, благоприятный для образования УВ (в пределах 110–190 °C). Также позволяет прогнозировать размещение месторождений и глубину залегания УВ.

Метод был тестирован в изученных геотермических районах в акватории Баренцева моря. Первая построенная 3D модель показала его эффективность [4]. Известные месторождения УВ находились как раз в пределах определенных термических куполов, которые были построены в трехмерных моделях. Нефть залегала точно в том диапазоне, который был рассчитан для геотермической аномалии. Точно такое же совпадение получилось и на месторождениях Карского моря, Припятской впадине, Северогерманской впадине.

Проанализировав все закономерности, ученые решили заняться отработкой метода на перспективном, но не изученном районе – в акватории моря Лаптевых. Специально для этой местности была разработана своя 3D-модель, которая показала наличие 2-х термических куполов. Исходя из полученных данных, ученые обозначили район поиска в виде треугольника, в качестве вершин которого выступали остров Столбовой и устья двух рек – Яны и Лены. По предварительной оценке нефтяной разведки стоимость этого прогноза оказалась очень низкой – 300 тысяч рублей.

По словам М.Д. Хуторского, главное преимущество метода состоит в его экономичности по трудовым затратам и по стоимости.

Недостаток применяемых сегодня методов – невозможность точно определять, что располагается на нужной нам глубине – нефть или вода, необходим комплекс различных методов. Использование метода термотомографии позволит уменьшить затраты на буровые работы не требуя проведения дополнительных измерений, а оперируя полученными данными тепловых потоков. Термографическую модель оценки нефтегазоностности можно построить практически на любой территории [4].

Литература

- 1. Большая энциклопедия нефти газа. Электромоделирование. [Электронный ресурс]. Режим доступа: http://www.ngpedia.ru/id613365p1.html
- 2. Геофизические методы исследования земной коры. Глава 5. Терморазведка. [Электронный ресурс]. Режим доступа: http://www.astronet.ru/db/msg/1173309/page47.html
- 3. Курчиков А.Р., Ставицкий Б.П. Геотермия нефтегазоносных областей Западной Сибири. М.: Недра, 1987. 134 с.
- 4. Российские учёные нашли дешёвый способ поиска нефти. [Электронный ресурс]. Режим доступа: http://strf.ru/material.aspx?CatalogId=21731&d_no=43623.
- 5. Хуторской М.Д.Тепловой поток в областях структурно-геологических неоднородностей. М.: Наука, 1982. 80 с.
- 6. Ященко И.Г., Полищук Ю.М., Рихванов Л.П. Анализ взаимосвязи физико-химических свойств нефтей с уровнем теплового потока (на примере Западной Сибири) // Геология нефти и газа, 2003. № 3. С. 17 23.

ВЛИЯНИЕ ПОСТСЕДИМЕНТАЦИОННЫХ ПРОЦЕССОВ НА ФИЛЬТРАЦИОННО-ЕМКОСТНЫЕ СВОЙСТВА ПОРОД-КОЛЛЕКТОРОВ (ПУРТАЗОВСКАЯ НЕФТЕГАЗОНОСНАЯ ОБЛАСТЬ)

Е.Р. Исаева

Научный руководитель доцент Н.Ф. Столбова

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Рассмотрение современного состояния локального прогноза нефтегазоносности показывает, что для выявления залежей становится необходимым изучение механизмов аккумуляции углеводородов, а это значит, что необходимы исследования геохимии органического вещества, особенностей стадиальных и наложенных эпигенетических изменений коллекторов и покрышек, а также получение ряда других сведений, которые раньше при поисковых работах фактически были не нужны [1, 2, 5].

Известно, что не только первично седиментационные условия, но и постседиментационные процессы влияют на формирование порового пространства [3]. С целью оценки их влияния был проведен статистический анализ и исследованы зависимости между петрографическими, петрофизическими и геохимическими параметрами. Были использованы данные параллельных измерений для 154 образцов, отобранных при изучении 7 глубоких скважин, пробуренных в пределах Пуртазовской нефтегазоносной области на восточном борту Западно-Сибирского седиментационного мегабассейна.

Образование дополнительного порового пространства связано с наличием дислокационных процессов и с перераспределением вещества внутри осадочной толщи. В результате проведенных исследований было выявлено, что при стадиальных процессах происходит незначительное растворение и перераспределение вещества. В основном, они приводят к уплотнению песчаных пород, отжатию вод из глинистых пород и др. [6].

В свою очередь, дислокационно-метасоматические процессы, связанные с перемещением углекислоты, могут значительно повлиять на фильтрационно-емкостные свойства (ФЕС) пород. То есть, большей частью, именно наложенно-эпигенетические процессы влияют на «привнос-вынос» химических элементов [3].