воздуху. В образцах композиции ПММА – стекломиканит разряд, как правило, сопровождался разрывом исследуемого материала, что показано на рис. 7.

### Выводы

 В композициях с тонкими слоистыми материалами толщиной порядка 20...40 мкм (лакоткань, ПЭ и ПЭТФ пленки) развитие разряда сопровождается пробоем пленки и выходом канала на их внешнюю поверхность.

### СПИСОК ЛИТЕРАТУРЫ

- Лысенко А.Н. Электрическая прочность границы раздела полимерной композиционной изоляции: Дис. ... к.т.н. – Томск, 1986. – 168 с.
- Воробьев Г.А., Похолков Ю.П., Королев Ю.Д., Меркулов В.И. Физика диэлектриков (область сильных полей). – Томск: Изд-во ТПУ, 2003. – 244 с.

- В композициях слоистых материалов, имеющих толщину более 50...100 мкм (имидофлекс, стеклотекстолит, стекломиканит, стеклолакоткань и др.), происходит заглубление канала разряда в толщу и его последующее развитие по границе раздела клеящего лака и пленки.
- На постоянном токе развитие разряда в композиционных материалах, как правило, сопровождается расслоением компонентов композиции за счет разогрева слоя клеящего лака.
- Койков С.Н., Цикин А.Н. Электрическое старение твердых диэлектриков и надежность диэлектрических деталей. – М.-Л.: Энергия, 1968. – 287 с.
- Моделирование двумерных полей методом конечных элементов. – [Электронный ресурс]. – Режим доступа: http://www.tor.ru/elcut/contact\_r.htm. – 2007.

Поступила 03.06.2008 г.

### УДК 537.521.7:621.315.6

# ПОЛЕВАЯ ЗАВИСИМОСТЬ КОМПЛЕКСНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ПОЛИЭТИЛЕНА, НАПОЛНЕННОГО ЦИРКОНАТОМ ТИТАНАТА СВИНЦА

С.Н. Ткаченко, О.С. Гефле, С.М. Лебедев

ОСП НИИ высоких напряжений ГОУ ВПО ТПУ E-mail: polymer@hvd.tsk.ru

Приведены результаты исследования полевых зависимостей комплексной диэлектрической проницаемости полиэтилена, наполненного ультрадисперсным порошком цирконата титаната свинца. Установлено, что зависимость ε<sup>"</sup>=f(ε') на комплексной плоскости до и после определенного уровня воздействующего напряжения аппроксимируется двумя функциями: линейной – при U≤U<sub>0k</sub> и дебаевской – при U>U<sub>0k</sub>, где U<sub>0k</sub> – значение напряжения при котором начинается нелинейная зависимость ε<sup>"</sup>=f(ε'). Предложен способ расчета электрической прочности композиционных полимерных материалов по параметрам спектра диэлектрической релаксации.

#### Ключевые слова:

Диэлектрическая проницаемость, электрическая прочность, полиэтилен, цирконат титанат свинца.

### Введение

В [1] показано, что метод диэлектрической спектроскопии дает полную информацию о поведении композиционных полимерных материалов (КПМ) в слабом электрическом поле в определенном температурно-частотном диапазоне и позволяет прогнозировать изменение их свойств в зависимости от состава полимерной матрицы и концентрации наполнителей. Однако для целенаправленного регулирования состава и свойств КПМ необходимо исследование комплексной диэлектрической проницаемости не только в слабом, но и в сильном электрическом поле. Это обусловлено тем, что введение в полимерную матрицу модифицирующих добавок неорганического происхождения может обуславливать иное поведение КПМ в сильном электрическом поле вследствие усиления локального поля на границах раздела полимерная матрица — наполнитель [2].

Так, в [1] была сделана оценка величины локального поля для полиэтилена низкой плотности (ПЭНП), наполненного порошком цирконата титаната свинца (ЦТС) по формуле Лорентца. При концентрации ЦТС *С*=40 об. % локальное поле в неполярной матрице увеличивается примерно в 3 раза по сравнению с  $E_0$ , что может приводить к локальному пробою диэлектрика в сильном электрическом поле.

Очевидно, что усиление поля в локальном объеме диэлектриков должно приводить к снижению их электрической прочности в любом диапазоне частот внешнего электрического поля. То есть, повышение электрофизических характеристик (удельного объемного сопротивления  $\rho_{v}$  и диэлектрической проницаемости) за счет введения модифицирующих добавок при напряженности внешнего электрического поля  $E \le 10^4$  В/м может давать ложную информацию о возможном поведении КПМ в области сильных электрических полей.

В этой связи целью данной работы являлось исследование влияния напряженности внешнего электрического поля на действительную  $\varepsilon'$  и мнимую  $\varepsilon''$  составляющие комплексной диэлектрической проницаемости полиэтилена, наполненного ультрадисперсным порошком цирконата титаната свинца (ЦТС) и установление взаимосвязи между параметрами спектра диэлектрической релаксации и электрической прочностью КПМ.

### Методика эксперимента и образцы

Объектами исследования являлись КПМ на основе полиэтилена низкой плотности (10803-020 ГОСТ 16337-77). В качестве наполнителя использовался ультрадисперсный порошок ЦТС, со средним размером сферических частиц около 1 мкм. Диэлектрическая проницаемость ЦТС  $\varepsilon$ =1600...1700 [3]. Концентрация наполнителя в полимерной матрице изменялась от 10 до 40 об. %, т. к. при большем наполнении резко ухудшаются физико-механические свойства КПМ.

Образцы для измерений комплексной диэлектрической проницаемости представляли собой плоскопараллельные пластины диаметром от 50 до 75 мм. Толщина образцов  $\Delta$  изменялась от 0,25 до 1,2 мм. Точность измерения толщины образцов составляла ±1 мкм, а разброс значений  $\Delta$  под измерительным электродом не превышал 2 %. Для обеспечения контакта между измерительными электродами и образцом на его поверхности наносились электроды из серебра. Электрическое сопротивление слоя серебра не превышало 3 Ом.

Измерение  $\varepsilon' и \varepsilon'' КПМ$  осуществлялось в стандартной системе электродов с помощью измерительного моста Haefely Trench Tettex AG Instrument при частоте внешнего электрического поля 50 Гц в диапазоне от 2 до 11 кВ. Погрешность измерения  $\varepsilon''$ и  $\varepsilon''$  не превышала 2 и 5 %, соответственно.

Образцы для определения пробивного напряжения ( $U_{\rm np}$ ) при  $\Delta > 0,5$  мм изготавливались методом горячего прессования с углублением, по форме соответствующим форме высоковольтного электрода. Для исключения скользящих разрядов по поверхности и повышения напряжения возникновения частичных разрядов образцы помещались в ячейку, заполненную трансформаторным маслом с электрической прочностью не менее 50 кВ/мм. Испытания образцов производились в однородном электрическом поле. Пробой образцов осуществлялся при плавном подъеме переменного напряжения f=50 Гц со скоростью 2 кB/с. Измерение пробивного напряжения производилось с помощью электростатического киловольтметра С-196 с классом точности 1,0. При соответствующей толщине испытывалось не менее 10 образцов. Доверительный интервал для среднего значения  $U_{np}$  и электрической прочности  $E_{np}$  образцов рассчитывался по формуле [4]:

$$\Delta(U_{\rm np}; E_{\rm np}) = \pm t_{\alpha} \, \frac{\sigma}{\sqrt{N}},\tag{1}$$

где  $t_{\alpha}$  – критерий Стьюдента при доверительной вероятности 95 %;  $\sigma$  – среднеквадратичное отклонение  $U_{np}$  или  $E_{np}$ ; N – общее количество образцов данной толщины.

### Экспериментальные результаты и их обсуждение

Известно, что введение мелкодисперсного наполнителя в объем полимера существенно модифицирует его структуру и свойства за счет межфазных взаимодействий и образования граничного слоя вблизи частиц наполнителя [5, 6]. При этом стабильные свойства наполненных полимеров могут быть получены лишь при определенной степени гетерогенности системы полимер-наполнитель. В [1] показано, что при наполнении ПЭНП порошком сегнетоэлектрической керамики ЦТС с объемной концентрацией С=40 об. % эффективное значение действительной составляющей комплексной диэлектрической проницаемости  $\varepsilon_{_{3\varphi\varphi}}$  при частоте 50 Гц возрастает почти в 5 раз по сравнению с ПЭНП. Кроме того, необходимо учитывать, что в отличие от ПЭНП, диэлектрическая проницаемость которого не зависит от напряженности внешнего электрического поля, ЦТС является сегнетоэлектриком, для которого характерно наличие доменной поляризации, обуславливающей нелинейную зависимость  $\varepsilon = f(E)$ .

Результаты исследования зависимостей  $\varepsilon'$ , tg $\delta$ ,  $\varepsilon''=f(E)$  КПМ показали, что при концентрации ЦТС *С*=10 об. % (табл. 1) повышение напряженности внешнего электрического поля или уровня испытательного напряжения (при одной и той же толщине диэлектрика) в 3,5 раза приводит к увеличению  $\varepsilon'$  примерно на 1 %, а  $\varepsilon''$  – в 3,5 раза. При *С*=30 и 40 об. % (табл. 2, 3)  $\varepsilon'$  возрастает на 20 и 30 %, соответственно, а  $\varepsilon''$  – в 5...6 раз.

Увеличение действительной и мнимой составляющих комплексной диэлектрической проницаемости, особенно при С≥30 об. %, свидетельствует о том, что дисперсия комплексной диэлектрической проницаемости КПМ при фиксированной частоте внешнего электрического поля обусловлена прежде всего нелинейной зависимостью поляризации от напряженности поля в керамической фазе. Причем, наиболее существенным здесь является тот результат, что зависимость  $\varepsilon''=f(\varepsilon)$  на комплексной плоскости до и после определенного уровня воздействующего напряжения аппроксимируется двумя функциями: линейной — при  $U \le U_{0\kappa}$ и дебаевской — при  $U > U_{0\kappa}$ , где  $U_{0\kappa}$  – значение напряжения при котором начинается нелинейная зависимость  $\varepsilon''=f(\varepsilon)$ , рис. 1.

| <i>U</i> , кВ | ε'    | tgδ, 10⁻² | ε"    |
|---------------|-------|-----------|-------|
| 2,0           | 3,325 | 0,32      | 0,011 |
| 2,5           | 3,330 | 0,37      | 0,012 |
| 3,0           | 3,333 | 0,42      | 0,014 |
| 3,5           | 3,337 | 0,50      | 0,017 |
| 4,0           | 3,341 | 0,55      | 0,018 |
| 4,5           | 3,343 | 0,63      | 0,021 |
| 5,0           | 3,347 | 0,70      | 0,023 |
| 5,5           | 3,350 | 0,78      | 0,026 |
| 6,0           | 3,354 | 0,90      | 0,030 |
| 6,5           | 3,359 | 1,02      | 0,034 |
| 7,0           | 3,363 | 1,09      | 0,037 |

**Таблица 1.** Результаты измерений ε', tgδ, ε" для композиции ПЭ+10 об. % ЦТС (Δ=357 мкм)

**Таблица 2.** Результаты измерений ε', tgδ, ε" для композиции ПЭ+30 об. % ЦТС (Δ=542 мкм)

| <i>U</i> , кВ | ε΄        | tgδ, 10⁻²  | ε"    |  |  |
|---------------|-----------|------------|-------|--|--|
| 2,0           | 8,021     | 3,00       | 0,241 |  |  |
| 2,5           | 8,182     | 4,00       | 0,327 |  |  |
| 3,0           | 8,319     | 4,55       | 0,379 |  |  |
| 3,5           | 8,420     | 5,56       | 0,468 |  |  |
| 4,0           | 8,550     | 6,60       | 0,564 |  |  |
| 4,5           | 8,626     | 8,50       | 0,733 |  |  |
| 5,0           | 8,756     | 10,2       | 0,893 |  |  |
| 5,5           | 8,782     | 11,5       | 1,010 |  |  |
| 6,0           | 6,0 9,011 |            | 1,280 |  |  |
| 6,5           | 9,300     | 16,7 1,553 |       |  |  |
| 7,0           | 9,436     | 17,8       | 1,680 |  |  |
| 7,5           | 9,695     | 18,9       | 1,832 |  |  |

**Таблица 3.** Результаты измерений  $\varepsilon'$ , tg $\delta$ ,  $\varepsilon''$  для композиции ПЭ+40 об. % ЦТС ( $\Delta$ =584 мкм)

| <i>U</i> , кВ | ε'         | tg $\delta$ | ε"    |
|---------------|------------|-------------|-------|
| 2,0           | 12,405     | 0,050       | 0,620 |
| 2,5           | 12,709     | 0,065       | 0,826 |
| 3,0           | 13,099     | 0,079       | 1,035 |
| 3,5           | 13,480     | 0,100       | 1,348 |
| 4,0           | 13,545     | 0,110       | 1,490 |
| 4,5           | 13,929     | 0,150       | 2,089 |
| 5,0           | 14,262     | 0,170       | 2,425 |
| 5,5           | 5,5 14,688 |             | 2,938 |
| 6,0           | 15,223     | 0,200       | 3,045 |
| 6,5           | 15,534     | 0,200       | 3,107 |
| 7,0           | 7,0 16,041 |             | 3,208 |

Формально, при  $U \le U_{0\kappa}$ , зависимости  $\varepsilon'' = f(\varepsilon)$ , рис. 1, описываются уравнениями прямых линий с коэффициентом корреляции  $R^2 \ge 0.98$ :

$$\varepsilon''=0,5056\cdot\varepsilon'-1,6709; (C=10 \text{ ob. \%});$$
 (2)

$$\varepsilon''=0,6027\cdot\varepsilon'-4,6063; (C=30 \text{ of. }\%);$$
 (3)

$$\varepsilon''=0.6621\cdot\varepsilon'-7.5998; (C=40 \text{ of. }\%).$$
 (4)

Соответственно, при  $U > U_{0k}$  зависимости  $\varepsilon'' = f(\varepsilon')$  описываются уравнениями окружности:

$$(\varepsilon' - 3,411)^2 + (\varepsilon'' + 0,034)^2 = 0,00734; (C = 10 \text{ ob. \%});$$
 (5)

$$(\varepsilon'-11,08)^2+(\varepsilon''+0,587)^2=7,784; (C=30 \text{ ob}.\%);$$
 (6)

 $(\varepsilon'-16,54)^2+(\varepsilon''+0,0517)^2=11,325;$  (C=40 of %). (7)

Прямая линия пересекает полуокружность в двух точках. Первая точка пересечения соответствует значению напряжения  $U_{0k}$ , выше которого начинается нелинейная зависимость  $\varepsilon''=f(U)$ , вторая — соответствует уровню напряжения  $U_{\kappa}$ , при котором наблюдаются максимальные значения  $\varepsilon''_{max}$  и tg $\delta_{max}=\varepsilon''_{max}/\varepsilon'_{u}$ , где  $\varepsilon'_{u}$  — значение действительной составляющей комплексной диэлектрической проницаемости, соответствующее центру полуокружности.



Рис. 1. Зависимости є"=f(є') для КПМ на основе ПЭНП с различной концентрацией наполнителя ЦТС: а) 10; б) 30; в) 40 об. %. Диапазон от 2,0 до 7,5 кВ

С другой стороны, линейная часть зависимости  $\varepsilon''=f(\varepsilon)$  при  $U \le U_{0k}$  описывается уравнением:

$$\varepsilon_i'' = \overline{\alpha} \varepsilon_i' U_i / U_{0\kappa}, \qquad (8)$$

где  $\varepsilon_i$ " и  $\varepsilon'_i$  — значения мнимой и действительной составляющих комплексной диэлектрической проницаемости при *i*-ом уровне напряжения  $U_i$ ;  $\overline{\alpha}$  — коэффициент пропорциональности.

Нелинейная часть зависимости  $\varepsilon''=f(\varepsilon')$  при  $U>U_{0\kappa}$  с достаточно хорошим приближением аппроксимируется уравнением дебаевского типа:

$$\varepsilon_i'' = \frac{\Delta \varepsilon}{1 + (U_{\kappa}/U_i)^2},\tag{9}$$

где  $\Delta \varepsilon$  — ширина дисперсии комплексной диэлектрической проницаемости.

При  $U_i = U_{0\kappa} \varepsilon'_i = \varepsilon'_{u}$ , а  $\varepsilon_i'' = \varepsilon''_{max}$ , поэтому точка пересечения (8) и (9) должна соответствовать условию

$$\overline{\alpha}\varepsilon_i'U_i/U_{0\kappa}\frac{\Delta\varepsilon}{1+(U_\kappa/U_i)^2} = \frac{\Delta\varepsilon}{2}.$$
 (10)

Гак как 
$$\Delta \varepsilon = 2 \cdot \varepsilon''_{\text{max}}$$
, то из (10) находим  
 $U_{\kappa} = U_{0\kappa} \varepsilon''_{\text{max}} / (\varepsilon'_{u} \overline{\alpha}) = U_{0\kappa} \text{tg} \delta_{\text{max}} / \overline{\alpha},$  (11)

здесь 
$$\overline{\alpha} = \frac{\sum_{i=1}^{N} \operatorname{tg} \delta_i U_i / U_{0\kappa}}{N}$$
, где  $\operatorname{tg} \delta_i - \operatorname{значение}$  тан-

генса угла диэлектрических потерь при  $U_i$ ; N – количество дискретных измерений.

Для КПМ с различным объемным содержанием наполнителя значения  $\overline{\alpha}$ ,  $\varepsilon''_{max}$  и  $\varepsilon'_{u}$ , рассчитанные из (2)–(9), составляют:  $\overline{\alpha}$ =0,0073;  $\varepsilon''_{max}$ =0,05;  $\varepsilon'_{u}$ =3,41 – при *C*=10 об. %;  $\overline{\alpha}$ =0,00796;  $\varepsilon''_{max}$ =2,2;  $\varepsilon'_{u}$ =11,2 – при *C*=30 об. % и  $\overline{\alpha}$ =0,1182;  $\varepsilon''_{max}$ =3,5;  $\varepsilon'_{u}$ =16,3 – при *C*=40 об. %.

Результаты расчета  $U_{0k}$ ,  $U_k$ ,  $E_{0k} = U_{0k}/\Delta$ ,  $E_k = U_k/\Delta$ ,  $\varepsilon_{0k}$  и  $\varepsilon_k = \varepsilon'_{u}$  для КПМ различной толщины приведены в табл. 4, где  $V = S \cdot \Delta = \pi r^2 \cdot \Delta$  – объем диэлектрика, ограниченный площадью измерительного электрода с радиусом r=20 мм.

| Таблица 4. | Расче | тные зна | ачения | критически | іх парам | етров д | ιля |
|------------|-------|----------|--------|------------|----------|---------|-----|
|            | КΠМ   | основе   | ПЭНП   | с различно | ой конце | ентраци | ей  |
|            | напол | пнителя  |        |            |          |         |     |

| С, об.<br>% | <i>U</i> <sub>0к</sub> ,<br>10 <sup>3</sup> В | <i>U</i> к, 10 <sup>3</sup><br>В | <i>E</i> <sub>0к</sub> , 10 <sup>6</sup><br>В/м | <i>Е</i> <sub>к</sub> , 10 <sup>6</sup><br>В/м | <i>Е</i> Ок | $\mathcal{E}_{K}$ | Примечание                                                                      |
|-------------|-----------------------------------------------|----------------------------------|-------------------------------------------------|------------------------------------------------|-------------|-------------------|---------------------------------------------------------------------------------|
| 10          | 4,182                                         | 8,365                            | 16,73                                           | 33,46                                          | 3,35        | 2 /1              | Δ=2,5·10 <sup>-4</sup> м;<br>V=3,14·10 <sup>-7</sup> м <sup>3</sup> ;           |
|             | 5,0                                           | 10,0                             | 14,0                                            | 28,0                                           |             |                   | Δ=3,57·10 <sup>-4</sup> м;<br><i>V</i> =4,486·10 <sup>-7</sup> м <sup>3</sup> ; |
|             | 5,9                                           | 11,83                            | 11,80                                           | 23,66                                          |             | 5,71              | Δ=5·10 <sup>-4</sup> м;<br>V=6,283·10 <sup>-7</sup> м <sup>3</sup> ;            |
|             | 8,365                                         | 16,73                            | 8,37                                            | 16,73                                          |             |                   | ∆=1·10 <sup>-3</sup> м;<br>V=1,257·10 <sup>-6</sup> м <sup>3</sup> ;            |
|             | 2,925                                         | 7,344                            | 9,75                                            | 24,45                                          | 8,55        |                   | Δ=3·10 <sup>-4</sup> м;<br>V=3,767·10 <sup>-7</sup> м³;                         |
| 30          | 4,0                                           | 9,873                            | 7,38                                            | 18,20                                          |             | 5 11,2            | Δ=5,42·10 <sup>-4</sup> м;<br><i>V</i> =6,81·10 <sup>-7</sup> м <sup>3</sup> ;  |
|             | 4,705                                         | 11,611                           | 6,274                                           | 15,48                                          |             |                   | ∆=7,5·10 <sup>-4</sup> м;<br>V=9,42·10 <sup>-7</sup> м³;                        |
|             | 5,434                                         | 13,41                            | 5,434                                           | 13,41                                          |             |                   | Δ=1·10 <sup>-3</sup> м;<br>V=1,257·10 <sup>-6</sup> м <sup>3</sup> ;            |
| 40          | 2,77                                          | 4,923                            | 9,814                                           | 17,58                                          | 13,55       |                   | Δ=2,8·10 <sup>-4</sup> м;<br>V=3,518·10 <sup>-7</sup> м <sup>3</sup> ;          |
|             | 4,0                                           | 7,267                            | 6,85                                            | 12,44                                          |             | 16.3              | Δ=5,84·10 <sup>-4</sup> м;<br>V=7,338·10 <sup>-7</sup> м <sup>3</sup> ;         |
|             | 4,768                                         | 8,664                            | 5,745                                           | 10,44                                          |             | 10,5              | Δ=8,3·10 <sup>-4</sup> м;<br>V=1,043·10 <sup>-6</sup> м <sup>3</sup> ;          |
|             | 5,234                                         | 9,51                             | 5,234                                           | 9,51                                           |             |                   |                                                                                 |

На рис. 2 представлены экспериментальные зависимости средних значений пробивного напряжения  $U_{np}$  КПМ от толщины. Видно, что при одной и той же толщине диэлектрика  $\Delta = 1$  мм повышение концентрации наполнителя в 4 раза приводит к уменьшению  $U_{np}$  примерно в 1,7 раза.

При сравнении экспериментальных данных (рис. 2) с результатами расчета (табл. 5) можно заметить, что значения  $U_{\rm np}$  (в пределах доверитель-

ных границ) соответствуют  $U_{\kappa}$ , рассчитанным по (11).

Это означает, что  $U_{0k}$  соответствует напряжению начала ионизационных процессов в КПМ за счет усиления локального поля на границе раздела полимер — наполнитель, а  $U_k$  является критическим уровнем напряжения, при котором происходит пробой диэлектрика. Другой интересный факт заключается в том, что средние значения  $\varepsilon_{0k}$  и  $\varepsilon_k$  для КПМ различной толщины, соответствующие  $U_{0k}$  и  $U_k$ , с ошибкой, не превышающей 5 %, являются величинами постоянными и зависящими только от концентрации наполнителя в полимерной матрице.



Рис. 2. Зависимость U<sub>пр</sub>=f(∆) для КПМ на основе ПЭНП с различной концентрацией наполнителя: 1) 10; 2) 30; 3) 40 об. %

Отметим, что установленные закономерности изменения действительной и мнимой составляющих комплексной диэлектрической проницаемости от напряженности внешнего электрического поля при f=50 Гц с достоверностью 95 % позволяют прогнозировать величину пробивного напряжения или электрической прочности КПМ на основе ПЭНП без их пробоя.

### Заключение

В композиционных полимерных материалах на основе полиэтилена низкой плотности наблюдаются две области дисперсии комплексной диэлектрической проницаемости: при напряженности поля *E*<*E*<sub>0к</sub> связь между мнимой и действительной составляющими комплексной диэлектрической проницаемости описывается линейной функцией, а при *Е*≥*E*<sub>0к</sub> – функцией дебаевского типа. Пробой диэлектриков наблюдается тогда, когда мнимая составляющая комплексной диэлектрической проницаемости в нелинейной области достигает максимального значения  $\varepsilon''_{max} = \Delta \varepsilon/2$ . Оценка параметров в линейной и нелинейной областях спектра диэлектрической релаксации позволяет рассчитать электрическую прочность композиционных полимерных материалов с достоверностью не менее 95 %.

### СПИСОК ЛИТЕРАТУРЫ

- Гефле О.С., Лебедев С.М., Ткаченко С.Н. Применение метода диэлектрической спектроскопии для контроля состояния полимерных диэлектриков в электрическом поле // Известия томского политехнического университета. – 2006. – Т. 309. – № 2. – С. 114–117.
- Тареев Б.М. Физика диэлектрических материалов. М.: Энергоиздат, 1982. – 320 с.
- Справочник по электротехническим материалам / Под ред. Ю.В. Корицкого и др. – 3-е изд. перераб. – М.: Энергоатомиздат, 1986. – Т. 1. – 368 с.
- Бронштейн И.Н., Семендяев К.А. Справочник по математике. – М.: Наука, 1981. – 720 с.
- Липатов Ю.С. Структура, свойства наполненных полимерных систем и методы их оценки // Пластмассы. – 1976. – № 11. – С. 6–10.
- Lewis T.J. Interfaces and nanodielectrics are synonymous // Proc. Intern. Conf. on Solid Dielectrics. – Toulouse, France, July 5–9, 2004. – V. 2. – P. 792–795.

Поступила 14.04.2008 г.

#### УДК 535.215.12

## ФОТОВОЛЬТАИЧЕСКИЙ ЭФФЕКТ В ПИРО- И ПЬЕЗОЭЛЕКТРИЧЕСКИХ КРИСТАЛЛАХ

Б.Х. Каримов

Ферганский государственный университет, Узбекистан E-mail: karimov1948@rambler.ru

Обнаружен и исследован фотовольтаический эффект в пиро- и пьезоэлектрических кристаллах. Определены фотовольтаические коэффициенты  $k_{ijk}$  для пироэлектрических кристаллов ZnO и кубических кристаллов ZnS. Определены величины  $K_{31}$ =2·10<sup>-10</sup> A·cm·(BT)<sup>-1</sup>,  $K_{33}$ =2·10<sup>-9</sup> A·cm·(BT)<sup>-1</sup> при  $\lambda$ =460 нм и  $K_{31}$ =1·10<sup>-10</sup> A·cm·(BT)<sup>-1</sup>,  $K_{33}$ =3·10<sup>-10</sup> A·cm·(BT)<sup>-1</sup> при  $\lambda$ =600 нм для ZnO, а также фотовольтаический коэффициент  $K_{14}$ =2·10<sup>-9</sup> A·cm·(BT)<sup>-1</sup> для кубических кристаллов ZnS.

#### Ключевые слова:

Фотовольтаический эффект, фотовольтаический ток, фотовольтаический тензор, фотовольтаические коэффициенты, пироэлектрический кристалл, ZnO, ZnS, спектральное распределение, оптическое поглощение.

### Введение

При освещении короткозамкнутого сегнетоэлектрика через него протекает стационарный ток, который в [1, 2] назван фотовольтаическим. Было показано, что именно фотовольтаический ток приводит к аномальному фотовольтаическому (АФ) эффекту в сегнетоэлектрике.

Аномальный фотовольтаический эффект, обнаруженный для сегнетоэлектриков впервые в [1, 2], является частным случаем АФ эффекта, описываемого для кристаллов без центра симметрии тензором третьего ранга  $\alpha_{iik}$  [2, 3]

$$J_i = \alpha_{iik} E_j E_k^*. \tag{1}$$

Согласно (1), при равномерном освещении линейно поляризованным светом однородного кристаллов без центра симметрии (сегнето-, пиро- или пьезоэлектрического кристалла) в нем возникает фотовольтаический ток  $J_i$ , знак и величина которого зависят от ориентации вектора поляризации света с проекциями  $E_i$ ,  $E_k^*$ .

Компоненты тензора  $\alpha_{ijk}$  отличны от нуля для 20 ацентричных групп симметрии. Если электроды кристалла разомкнуть, то фотовольтаический ток  $J_i$ 

генерирует фотонапряжение  $U_i = \frac{J_i}{\sigma_T + \sigma_{\phi}} l$ , где  $\sigma_T$ 

и  $\sigma_{\phi}$  соответственно темновая и фотопроводимость, l – расстояние между электродами. Генерируемые фотонапряжения достигают 10<sup>3</sup>...10<sup>5</sup> В.

В соответствии с (1) и симметрией точечной группы кристалла можно написать выражения для фотовольтаического тока  $J_i$ . Сравнение экспериментальной угловой зависимости  $J_i(\beta)$  с (1) позволяет определить фотовольтаический тензор  $\alpha_{ijk}$  или

фотовольтаический коэффициент  $K_{ijk} = \frac{1}{\alpha^*} \alpha_{ijk}$ ( $\alpha^*$  – коэффициент поглощения света).

### 1. АФ эффект в пироэлектрических кристаллах ZnO

Все исследуемые кристаллы без центра симметрии представляли собой диэлектрики с широкой запрещённой зоной ( $E_g$ =2...7 эВ) и низкой проводимостью ( $\sigma$ =10<sup>-8</sup>...10<sup>-15</sup> Ом<sup>-1</sup>·см<sup>-1</sup>). Поэтому требования, которые предъявлялись к методике эксперимента, в первую очередь обуславливались малыми величинами измеряемых токов (10<sup>-9</sup>...10<sup>-15</sup>A).

В работе использовался двухэлектродной метод непосредственного отклонения [2].

К кристаллам ZnO – полупроводникового соединения группы А<sup><sup>11</sup></sup>В<sup>11</sup>, обладающего высокой пьезоэлектрической активностью, проявляется повышенный интерес в связи возможностью их исполь-