
31

GPU-ACCELERATED MOBILE ROBOT LOCALIZATION

Maxim N. Rud
Tomsk Polytechnic University, Russia, Tomsk

E-mail: rudmax13@gmail.com

Introduction

The problem of localization is one of the most important problems that has to
be solved for autonomous robot control. One of the most effective methods
of robot localization is particle – based Monte – Carlo method. Given the
map of the environment, this algorithm estimates the position and orientation
of robot as it moves and senses the environment. In Monte – Carlo method
system state is represented by set of particles. Each particle is a data object
containing one of the hypothetical robot states from the distribution and a
«weight» value. To maintain an accurate representation of the state
distribution, we must have a large number of particles, which makes the
particle filter computationally intensive. However, the hardest steps in the
particle filter are done independently on each particle, so it is inherently
suitable for parallel processing on graphical processing unit (GPU). CUDA
[1] is a parallel computing platform running on NVIDIA GPUs It is one of
the popular GPGPU (General-Purpose computing on GPU) platforms.

Monte-Carlo localization

The idea of Monte – Carlo localization is representation of possible robot
states by set of particles. These particles can be seen as virtual copies of
robot’s existence. Particles move simultaneously with robot according to
robot’s motion model and have several sensor beams representing robot’s
sensor model.

Our robot operates in the laboratory of robotics and turns with differential
steering, so its state includes three variables – x, y coordinates for robot’s
location and θ ‒ yaw angle for robot’s orientation.

There are main steps of the algorithm are presented below:
1. Generate a set of particle and initialize them with random positions

and weights.
2. Apply robot’s motion model to particles to predict the next robot’s

state.
3. Sense the environment and compare actual measurements with

predicted ones.

32

4. Compute particle weights according on how well each particle
predicted the actual robot’s state.

5. Resample the distribution. Probability of choosing each particle is
proportional to its weight value.

6. Back to step 2.

Results

On fig. 1, you can see comparison of algorithm implementations using CPU
and GPU. We tested a plenty of particle numbers in order to collect an
accurate statistics.

Fig. 1. Performance tests

We can see that using CUDA in Monte – Carlo localization implementation
gives us a great increase in performance. As it was predicted, the weight
calculation step is the most time – consuming step in the algorithm. After
porting it onto CUDA, we obtained approximately 15 times speed – up.
Algorithm was tested in specially created simulator. Now it is ready for using
on real hardware.

References

1. Thrun S. Probabilistic robotics // Wolfram Burgard, 2000.
2. Wilt N. CUDA Handbook: A comprehensive guide to GPU programming //

Addison-Wesley, 2013.
3. Falahati S. OpenNI Cookbook // PACKT Publishing, 2011.
4. NVIDIA Jetson TK1. ‒ URL : http://www.nvidia.ru/object/jetson-tk1-

embedded-dev-kit-ru.html

