Несмотря на то, что на обоих графиках, представленных на рисунке, корреляционный пик отчётливо различим, заметно, что на правом графике уровень шумов существенно ниже, что свидетельствует об увеличении эффективности частотно-временного корреляционного метода.

Список литературы

- 1. Тихонов В.И. Оптимальный прием сигналов. М.: Радио и связь, 1983. –320 с.
- 2. Shuaiyong Li, Yumei Wen, Ping Li, Jin Yang and other. Leak location in gas pipelines using cross-time-frequency spectrum of leakage-induced acoustic vibrations // Journal of Sound and Vibration. 2014. Vol. 333. p. 3889–3903
- 3. Faerman V.A., Avramchuk V.S., Luneva E.E. Overview of frequency bandwidth determination techniques of useful signal in case of leaks detection by correlation method [Electronic resource] // IOP Conference Series: Material Science and Engineering. 2014. Vol. 66.
- 4. Кулаичев А.П. Об информативности когерентного анализа // Журнал высшей нервной деятельности. 2009. Т. 59. № 6. С. 766—775.
- 5. Cheremnov A.G., Avramchuk V.S., Luneva E.E. Increasing the Efficiency of Using Hardware Resources for Time-Frequency Correlation Function Computation // Advanced Materials Research. 2014. Vol. 1040.

ROBOTIC ARM'S EXECUTIVE SYSTEM PARAMETERS DEFINING DURING FORCED MOTION

V.A. Onufriev

Tomsk Polytechnic University, Russia, Tomsk

Аннотация — Показано решение задачи идентификации параметров соединенного с двигателем двухзвенного робототехнического манипулятора, для чего использовались относительные углы поворота звеньев и значение движущего момента на оси.

The problem of the two linked robotic manipulator's [1] executive subsystem parameters determining is much complicated by second link's impact to the motions' law. But the solutions like [2] are quite difficult, so there is a need to find simpler ways of solving this task.

During the forced motion, the manipulator's operator-block diagram was converted to the form shown in fig. 1. It was obtained from the standard block diagram of robot's electromechanical executive subsystem [3]:

Fig. 1. Executive system's scheme from input τ and output q_1 : τ – the motor's torque, q_1 – relative first link's angle, $R_{_{\rm M}}$ – the armature resistance, $T_{_3}$ – electromagnetic constant; $c_{_{\rm e}}$, $c_{_{\rm M}}$ – constructive motor's parameters; J – inertia moment on a motor's axle; $k_{_{\rm D}}$ – gear's transfer coefficient; $M_{_{\rm C}}$ – modulus of resistance

The τ signal is considered as input signal for fig. 1 system and q_1 , q_2 (relative second link's angle) are two output signals (fig. 2).

Fig. 2. Input and output signals

During the forced motion the gravitation moment M_c also influences [4]. The angular motion's resulting equation can be shown in form of $q_1 = W_{\theta\tau}(p)\tau + W_{\theta M_c}(p)M_c$.

During the forced motion an identification is implemented using $W(p)\big|_{p=0}$ [5], and then the $\frac{K_p}{p}$ multiplier can be used as K_p , because the total gravitation moment M_c has greater impact on the motion's law (fig. 2). Then the transfer functions change to coefficients: $W_{0\tau}(p) = \frac{R_s K_p}{C_e C_M}$, $W_{0M_c}(p) = -\frac{R_s K_p}{C_e C_M}$, so $q_1 = \frac{R_s K_p}{C_e C_M} \tau - \frac{R_s K_p}{C_e C_M} M_c$. However, the work [4] says, that M_c can be shown in form of $M_c = k_2 \cdot \sin(q_1) + k_3 \cdot \sin(q_2)$, so

$$q_1 = \frac{R_s K_p}{C_e C_M} \tau - \frac{R_s K_p}{C_e C_M} \cdot k_2 \cdot \sin(q_1) - \frac{R_s K_p}{C_e C_M} \cdot k_3 \cdot \sin(q_2).$$

And solving this task using the method of least, we get a model: $q_1 = 3.8477 \cdot 10^{-4} \tau - 0.9379 \cdot \sin(q_1) - 0.0776 \cdot \sin(q_2)$, which has the absolute error $\Delta(t) = |q_{1m}(t) - q_1(t)|$ as in fig. 3.

Fig. 3. Identification error in form of absolute error

As a conclusion, the model is computed. So, the next step is to develop control system, which can make manipulator's links move the fixed trajectory. It can be done by adding PID-regulators to the fig. 1 circuit.

References

- 1. Advanced algorithms for control and communications (2015, January 2). Nonlinear control of underactuated mechanical systems. Retrieved from. URL: http://aa4cc.dce.fel.cvut.cz/content/nonlinear-control-underactuated-mechanical-systems
- 2. Gautier M., Poignet Ph. Extended Kalman filtering and weighted least squares dynamic identification of robot // Control Engineering Practice 9 (2001), pp. 1361–1372.
- 3. Юревич Е.И. Основы робототехники. 2-е изд., перераб. и доп. СПб. : БХВ-Петербург, 2005. 416 с.: ил.
- 4. Landau L.D., Lifshitz E.M. Mechanics / Course of Theoretical Physics, Vol. 1, Second Edition, Pergamon Press, 1969.
- 5. Бесекерский В.А. Теория систем автоматического управления: учеб. пособие. СПб. : Профессия, 2007.

GUI MOBILE DEVICE – IDENTIFIER OF CONTROL OBJECTS

Lai Trung Tien, Tran Van Nam, I.O. Ilyin

Tomsk Polytechnic University, Russia, Tomsk

E-mail: bkmsx.tien@gmail.com, trannambk90@gmail.com, ilyin88ok@gmail.com

Abstract – The authors consider creation of convenient and functional graphical user interface for the identifier of control objects on the basis programmable logic controllers of two types.

Introduction

When you configure automatic control systems, the identification of control objects (OC) is very important. The identification process provides a mathematical model of control objects that in the future will provide the coefficients for the accurating configuration of regulators. In this connection was established mobile device management object identifier [1, 4]. To ensure fast and convenient use of the identifier must be simple and intuitive human-machine interface. In modern society, the most widely used graphics device to work at work and at home is the touchpad. Thus parts of the cell identifier