УДК 547.539.04

КВАНТОВО-ХИМИЧЕСКИЙ РАСЧЕТ ЗАВИСИМОСТИ ЭНЕРГИИ ГИББСА РЕАКЦИИ ДЕЗИОДИРОВАНИЯ ИОДАРЕНОВ ОТ рК, КИСЛОТ И ОТ σ^{+} -КОНСТАНТ ГАММЕТА

А.А. Функ, В.К. Чайковский

Томский политехнический университет E-mail: eiffel555@rambler.ru

При помощи DFT (B3LYP/3-21G(d,p)) метода рассчитана термодинамика реакции дезиодирования пара-замещенных аренов кислотами. Сопоставлением вычисленных свободной энергии Гиббса и геометрических параметров с экспериментальными значениями σ⁺_{пара}-констант Гаммета выявлена близкая к линейной зависимость. Показано, что ΔG линейно зависит от показателя кислотности соответствующей кислоты.

Ключевые слова:

Иодирование-дезиодирование, электрофильное замещение, метод функционала плотности, квантово-химические расчеты.

В работе [1] нами показана возможность частичного дезиодирования иодбензола, *n*-иоданилина и *n*-иоднитробензола действием HI и HCl, а также в рамках метода PM3 рассчитана термодинамика этих реакций. В данной работе сообщается об использовании метода функционала плотности B3LYP/3-21G(d,p) для расчета ΔG образования σ -комплекса (I) дезиодирования иодаренов *n*-RC₆H₄I действием различных кислот (схема).

Оптимизированные структуры σ -комплексов различных *пара*-замещенных аренов приведены на рисунке. Диэдральный угол I–C(sp²)–C(sp³)–C(sp²) и длины связей C(sp³)–I, C(sp³)–H оказались линейно зависимыми от σ^{+}_{napa} -констант Гаммета заместителей. При увеличении электроноакцепторного влияния заместителя величина диэдрального угла I–C(sp²)–C(sp³)–C(sp²) и длина связи C(sp³)–H уменьшаются, в то время как длина связи C(sp³)–I увеличивается в соответствии со снижением термодинамической стабильности σ -комплексов. В табл. 1 приведены величины диэдрального угла I–C(sp²)–C(sp³)–C(sp²), длины связи C(sp³)–I, C(sp³)–H и статистические параметры линейных зависимостей.

Значения σ^+_{napa} -констант Гаммета, приведенные в таблицах в скобках, взяты из [2]. Наблюдается линейная зависимость между значениями ΔG образования σ -комплекса реакций дезиодирования иодаренов и величинами pK_a кислот, а также между значениями ΔG и σ^+_{napa} -констант Гаммета (табл. 2).

В заключение мы сообщаем о применении метода DFT B3LYP/3-21G(d,p) для расчета энергии Гиббса образования σ -комплекса реакции дезиодирования различных *пара*-замещенных аренов. ΔG реакции образования σ -комплекса линейно за-

висит от характера субстрата (σ⁺_{пара}-констант Гаммета заместителей) и величинами pK_a кислот. Также линейная зависимость найдена между некоторыми геометрическими парамерами σ-комплексов и σ⁺_{пара}-констант Гаммета заместителей.

Таблица 1. Геометрические параметры σ-комплексов типа (I) с различными заместителями

Заместитель	$\Delta(I-C(sp^2)-C(sp^3)-C(sp^2)),$	∆C(sp³)−I,	∆C(sp³)−H				
$(\sigma^{+}{}_{\scriptscriptstyle napa})$	град,	Å					
NH ₂ (-1,30)	115,07	2,2610	1,0879				
OH (-0,92)	112,90	2,2709	1,0876				
CH₃ (−0,31)	109,56	2,2819	1,0872				
F (-0,07)	109,60	2,2838	1,0872				
H (0,00)	107,08	2,2931	1,0870				
COOH (0,42)	106,32	2,2968	1,0868				
CN (0,66)	106,78	2,2970	1,0867				
NO ₂ (0,79)	104,97	2,3023	1,0865				
Δ (I-C(sp ²)-C(sp ³)-C(sp ²))=108,62-4,58· σ^{+}_{napa} , r=0,971, S=0,9, n=8							
$\Delta C(sp^3)$ -I=2,29+0,02· σ^+_{napa} , r=0,982, S=0,0, n=8							
$\Delta C(sp^3)$ -H=1,087?0,001· σ^{+}_{napa} , r=0,982, S=0,0, n=8							

Таблица 2. ΔG реакции образования *σ*-комплекса (ккал/моль) при взаимодействии аренов п-RC₆H₄I с различными кислотами (в скобках приведены значения pK₃)

Заместитель (σ^{*}_{napa})	Кислота				2	
	CF3SO3H	³ SO ₃ H −14) HI (−11)	H_2SO_4	CF₃COOH	Ния а	
	(-14)		(-3)	(0,23)		
NH ₂ (-1,30)	103,80	111,97	118,04	129,27	126,49	
OH (-0,92)	119,17	127,34	133,42	144,64	141,86	
CH ₃ (−0,31)	124,99	133,15	139,23	150,46	147,68	
F (-0,07)	132,60	140,77	146,84	158,07	155,29	
H (0,00)	133,15	141,32	147,39	158,62	155,84	
COOH (0,42)	137,64	145,81	151,88	163,11	160,33	
CN (0,66)	143,28	151,44	157,52	168,75	165,97	
NO ₂ (0,79)	148,11	156,28	162,36	173,59	170,81	
$\Delta G=1,54 \cdot \text{pK}_{a}+a, r=0,959, S=3,7 (n=4); \Delta G=18,89 \cdot \sigma_{\text{napa}}^{+}+a,$						
r=0,983, S=2,8 (n=8)						
Значения а	132,07	140,23	146,31	157,54	-	

Рисунок. Структуры σ-комплексов типа (I) различных пара-замещенных аренов, оптимизированные методом B3LYP/3-21G(d,p)

Экспериментальная часть

Все расчеты были проведены с использованием пакета программ GAUSSIAN 98W (revision A7) [3]. Для расчетов по методу функционала плотности был выбран гибридный метод B3LYP с обменным функционалом Беке (B3) [4] и корреляционным функционалом Ли, Янга и Пара (LYP) [5] в валентно-расщепленном базисе 3-21G(d,p) [6], учитывающим все электроны, с добавлением поляризационных функций, применимым для расчета структур,

СПИСОК ЛИТЕРАТУРЫ

- Чайковский В.К., Функ А.А., Козлова Н.С., Кец Т.С. Взаимодействие замещенных арилиодидов с протонными кислотами // Известия Томского политехнического университета. – 2007. – Т. 310. – № 1. – С. 162–165.
- Hansch C., Leo A., Taft R.W. A survey of Hammett substituent constants and resonance and field parameters // Chem. Rev. – 1991. – V. 91. – № 2. – P. 165–195.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. GAUSSIAN 98. Revision A. Gaussian. Inc.. Pittsburg (PA), 1998.
- Becke A.D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. – 1993. – V. 98. – Is. 7. – P. 5648–5652.

содержащих атомы иода [7]. Полная оптимизация геометрии проведена для всех структур с использованием схемы Берни. Отсутствие мнимых частот колебаний подтвердило стационарный характер полученных структур. Энергии рассчитанных соединений скорректированы с учетом нулевой колебательной энергии (ZPVE) и приведены к стандартным условиям (298,15 К, 1 атм.) с использованием термической поправки к энтальпии и свободной энергии. Для визуализации полученных структур использовали программу ChemCraft 1,4.

- Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density // Phys. Rev (B). – 1988. – V. 37. – № 2. – P. 785–789.
- Binkley J.S., Pople J.A., Hehre W.J. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements // J. Am. Chem. Soc. – 1980. – V. 102. – № 3. – P. 939–947.
- Hay P.J., Wadt W.R. *Ab initio* effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals // J. Chem. Phys. – 1985. – V. 82. – № 1. – P. 299–310.

Поступила 19.09.2008 г.