УДК 539.2:669; 539.219.3

ИЗОТОПНЫЕ ЭФФЕКТЫ ПРИ ТЕХНОГЕННЫХ ВОЗДЕЙСТВИЯХ НА ПОВЕРХНОСТЬ ТВЕРДЫХ ТЕЛ. Часть 1

Н.Н. Никитенков, И.П. Чернов, Ю.И. Тюрин, Л.Н. Пучкарева

Томский политехнический университет E-mail: nikitenkov@fnsm.tpu.edu.ru

Приведен обзор результатов исследований и новые экспериментальные данные авторов по изменениям изотопного состава в приповерхностных слоях твердых тел в процессах ионного распыления, ионного рассеяния, вторичной ионной эмиссии, ионной имплантации, электролизного насыщения изотопами водорода, термодиффузии из внешнего источника. Во всех перечисленных процессах наблюдаются заметные изменения естественных изотопных распространенностей, как в составе приповерхностных слоях твердых тел в процессах, ионного распыления, ионного рассеяния, вторичной ионной эмиссии, ионной имплантации, электролизного насыщения изотопами водорода, термодиффузии из внешнего источника. Во всех перечисленных процессах наблюдаются заметные изменения естественных изотопных распространенностей, как в составе приповерхностных слоев, так и в составе вторичных (эмитированных, отраженных) частиц. Исследования выполнены методом вторичной ионной масс-спектрометрии и энерго-масс-спектрометрии вторичных ионов на образцах молибдена, никеля имплантированного медью, на различных модификациях титана, на тонкопленочных системах титан-алюминий и других. Выявлены общие закономерности в изменениях изотопного состава в различных процессах. Обсуждаются возможные механизмы этих изменений.

Введение

В статье выполнен обзор опубликованных в последние годы работ и приведены новые экспериментальные данные по изменениям изотопного состава в приповерхностных слоях твердых тел в ходе ионного распыления, отражения ионов от поверхности, вторичной ионной эмиссии, ионной имплантации, электролизного насыщения изотопами водорода, термодиффузии из внешнего источника. Такие исследования обусловлены потребностью материаловедения, энергетики и других прикладных отраслей знаний, использующих технологии модификации приповерхностных слоев, и занимающихся изучением механизмов миграции атомов, трансформации изотопного состава при различных воздействиях на поверхность. Эти исследования представляют и академический интерес как примеры модельных объектов неравновесных физических систем.

Изменения изотопного состава в ионных пучках и приповерхностных слоях твердых тел изучались во многих работах по ионному распылению и вторичной ионной эмиссии [1–10], по рассеянию ионов от поверхности [11, 12], при водородном насыщении и термодиффузии из внешнего источника [13–20], при ионной имплантации [21–23]. В этих явлениях важно выявить основные процессы, обусловливающие изменения изотопного состава в приповерхностных слоях твердых тел.

Экспериментальные результаты и обсуждение

 Изотопные эффекты при ионном распылении и во вторичной ионной эмиссии

Первыми работами, в которых исследовался изотопный эффект (ИЭ) во вторичной ионной эмиссии (ВИЭ), являются, по-видимому, работы авторов [I], хотя обнаружение предпочтительного распыления (preferential sputtering), то есть изотопного эффекта в распылении относят к 1977 году (см. [2] и библиографию этой работы). В [1] обнаружено, что в ВИЭ ряда минералов, металлов, ок-

сида меди и сплава GaAl ионами кислорода отношение выхода ионов легкого изотопа к тяжелому в энергетическом диапазоне 0...20 эВ выше соответствующего стандартного отношение распространенностей изотопов. Наблюдается обогащение "облака" распыленных ионизованных частиц легкими изотопами. Степень обогащения зависит от атомного номера элемента, от матрицы, в которой элемент находится, и скорости ионов.

Практически одновременно с работами [1, 2] появилась работа [3], где исследовано пространственное и энергетическое распределения величины измеряемого в ВИЭ изотопного отношения. Работа [3] подтвердила выводы работ [1] относительно обогащенности ВИЭ легкими изотопами и зависимости изотопного отношения вторичных ионов одного и того же элемента от их энергии. Авторами [3] подробно исследовались для ряда чистых металлов зависимости $f_{LH}(E) = N^{+}_{L}(E) / N^{+}_{H}(E)$, где $N^{+}_{L}(E)$ и $N^{+}_{H}(E)$ - энергетические спектры вторичных ионов легкого и тяжелого изотопов. Было установлено, что в зависимости $f_{LH}(E)$ в исследованном диапазоне энергий (от 0 до 80 эВ) имеется пик или плато при разных энергиях для разных металлов. Как правило, этот пик расположен в области низких энергий для легких элементов и смещен к высоким энергиям для тяжелых. Подробно вопрос о зависимости $f_{LH}(E)$ в диапазоне *E*=4...30 эВ изучался также в работе [4] с целью проверки предложенной в этой работе модели эффекта. В дальнейшем закономерности ИЭ в распылении и ВИЭ исследовались в [2, 4-7 и др.]. Для теоретического объяснения ИЭВИЭ в [1-7] сделано следующее. Привлечены известные формулы для вероятности ионизации (в работе [3]) и экспериментальная зависимость вероятности ионизации от скорости атома (v) в виде $\exp(-v_0/v)$, v_0 – константа (в работах [2, 4]). Эффект изменения изотопного состава получается как следствие зависимости вероятности ионизации от массы атома. Это, однако, не объясняет физической сущности механизма эффекта. Целью наших исследований [9, 10] являлось экспериментальное изучение ИЭ ВИЭ и попытка углубления представлений о его механизме. Экспериментально изучены зависимости $f_{LH}(E)$ для металлов, круг которых частично перекрывается с теми, что исследовались в [1, 3–7]. Получено качественное подтверждение экспериментальных выводов указанных работ, хотя в количественном отношении для ряда металлов у нас наблюдался эффект превышающий величины, опубликованные ранее, как видно, например, из рис. 1.

Рис. 1. Зависимость отношения интенсивностей массовых линии ионов изотопов молибдена ⁹²Мо и ¹⁰⁰Мо от их энергии: 1) стандартное изотопное отношение, 2) из работы [6], 3) наши измерения [9, 10]

Результаты наших измерений подтвердили сделанный ранее вывод о существовании пика или плато в зависимости $f_{LH}(E)$, однако, вывод о корреляции энергетического положения пика с массой элемента не подтвердился. Вместе с тем, действительно наблюдается уменьшение максимального значения отношения $f_{LH}(E)$ к стандартному значению отношения распространенностей при уменьшении массы элемента. Кроме того, для изотопов одного элемента, справедливо следующее утверждение: чем больше разница количества нейтронов в ядрах, тем больше величина ИЭ в ВИЭ.

Из установленных к настоящему времени закономерностей наиболее надежными являются следующие: большая вероятность ионизации атома легкого изотопа по сравнению с тяжелым и обратная зависимость величины эффекта от массы в ряду элементов. Последняя закономерность, очевидно, коррелирует с относительным изменением массы и объема ядра при одинаковой величине дефицита или излишка нейтронов в ядрах при переходе от легких элементов к тяжелым. Данное обстоятельство указывает, что ИЭ ВИЭ связан с различиями строения электронных оболочек атомов-изотопов. Различия в строении электронных оболочек обусловлено изотопическим смещением (ИС) энергетических уровней электронов в атомах. ИС в основном зависит от двух факторов: конечности массы и пространственной протяженности ядра.

ИС электронных уровней, связанное пространственной протяженностью ядра обусловлено тем, что волновая функция внешнего *s*-электрона перекрывается с волновыми функциями ядра. В этом случае сравнительно велика вероятность нахождения электрона в области пространства, занимаемой ядром (т.е. в объеме ядра) [24, 25]. Пространственная протяженность ядер характеризуется среднеквадратичным (протонным) радиусом ядра $< r^2 >$. Величина протонного радиуса зависит от количества нейтронов в ядре (см. рис. 2). Следовательно, от изотопа к изотопу для одного и того же элемента варьируется перекрытие волновых функций внешних электронов и ядер. Таким образом, размеры ядер-изотопов через волновую функцию внешнего электрона влияют на величину 1-го потенциала ионизации атома, а следовательно и на вероятность ионизации атома при распылении. Это влияние может проявляется через различия: 1) величин потенциалов ионизации, 2) длины взаимодействия (γ) атомов с поверхностью при отлете, изменяющихся вследствие неодинаковых величин <*r*²> для ядеризотопов, поскольку $\gamma \sim a \sim \langle r^2 \rangle$, где a – радиус атома.

Рис. 2. Зависимость среднеквадратичного радиуса ядра от числа нейтронов для изотопов рубидия [26]

Наблюдаемые изотопические сдвиги частот спектральных линий некоторых оптических переходов достигают $10^{-5}...10^{-4}$ эВ [24]. Энергии ионизации (*I*) атомов-изотопов должны различаться на величину ИС, наблюдаемых в оптике. Вероятность ионизации в ВИЭ экспоненциально зависит от *I*. Это позволяет оценить относительную разницу вероятностей ионизации атомов-изотопов. В соответствии с [26] вероятность ионизации R^+ определяется соотношением:

$$R^{+}(E) \sim E^{n} \cdot \exp\left[-\frac{(I-\varphi) \cdot c}{E^{\frac{1}{2}}}\right], \qquad (1)$$

где E – кинетическая энергия иона, I – потенциал ионизации атома, φ – работа выхода электрона, $c = \pi/2\gamma\hbar$, \hbar – постоянная Планка; $n = \gamma_a \delta/4\gamma kT_s$, $\gamma_a = a_p/v$, a_p – величина порядка постоянной решетки, v – скорость отлетающего атома, δ – константа, k – постоянная Больцмана; T_s – температура электронной подсистемы в области развития каскада; $1/\gamma_a$ – длина взаимодействия между отлетающим атомом и поверхностью. На основании (1), величина относительной разности вероятностей ионизации двух атомов, различающихся потенциалами ионизации на величину ΔI и длиной взаимодействия на величину $\Delta \lambda = \Delta(1/\gamma_a)$, равна:

$$R(E) = \frac{R_1^+ - R_2^+}{R_2^+} = \frac{R_1^+}{R_2^+} - 1 = E^{(\Delta\lambda)\kappa_1} \cdot \exp\left[\frac{\Delta I \cdot \kappa_2}{E^{1/2}}\right] - 1, \quad (2)$$

где κ_1 и κ_2 – константы размерности (ниже при расчетах полагалось $\kappa_1 = \kappa_2 = 1$).

Рис. 3. Сравнение расчетных и экспериментальных зависимостей относительных вероятностей ионизации изотопов вторичных ионов от их энергии: 1) экспериментальные данные, обработанные в соответствии с (4); 2) и 3) расчет, соответственно, по формулам (2) и (3)

На рис. 3 представлены теоретические кривые R(E), рассчитанные по (2) – кривая 2, а также по формуле (кривая 3):

$$R(E) = \frac{\Delta R^+}{R^+} = E^{\Delta\lambda} - 1.$$
(3)

При расчетах полагалось, что $\kappa_1 \cdot \Delta \gamma \approx \kappa_2 \cdot \Delta I \approx 10^{-4}$. Кроме того, на рис. 3 (кривая 1) представлена измеренная экспериментально для изотопов серебра ¹⁰⁷Аg и ¹⁰⁹Аg величина

$$R'(E) = \frac{\Delta M}{M} \cdot \left| \frac{R_{\scriptscriptstyle \mathcal{B}CD.}}{R_{\scriptscriptstyle CD.}} - 1 \right|,\tag{4}$$

где $R_{3\kappa cn} = I^+ L(E) / I^+_H(E), I^+_i (i=L,H)$ – интенсивности массовых линий изотопов в соответствующих энергетических спектрах, $R_{cm.}$ – стандартное отношение изотопных распространенностей, $\Delta M/M$ – относительная разность масс изотопов. Формула (3) получена аналогично (2) с использованием зависимости $R^+ \sim E^n$ вместо (1). Такие зависимости также получены в ряде моделей ионизации вторичных атомов. Таким образом, кривые 2 и 3 рис. 3 характеризуют проявление в ИЭ ВИЭ двух процессов, один из которых описывается степенной, а другой экспоненциальной функцией, а кривая 1, возможно, характеризует суперпозицию этих процессов. На рис. 4 представлены зависимости величин R'(E) (4) для ряда элементов, полученные в наших экспериментах и построенных по результатам работы [6]. Сравнение рис. 3 и рис. 4 показывает, что форма каждой из экспериментальных кривых в основных своих чертах соответствует одной из теоретических кривых. Различия в положении острых минимумов на экспериментальных и теоретических кривых можно объяснить, во-первых, экспериментальными погрешностями, основная из которых связана с использованием энергоанализаторов с относительно широким энергетическим окном (~1 эВ), во-вторых, недостаточной обоснованностью использованных при расчетах величин $\Delta\lambda = \Delta(1/\gamma_a) = 10^{-4}$. Абсолютные значения сравниваемых экспериментальных и теоретических величин совпадают лишь в области энергий 10^{-4} ... 10^{-2} эВ.

Рис. 4. Экспериментальные зависимости (R_{3ксп}/R_{ст})—1 от энергии вторичных ионов: а) по результатам наших измерений для изотопов: 1) ²⁴Mg и ²⁶Mg , 2) ⁹²Mo и ⁹⁴Mo, 3) ⁵⁰Cr и ⁵²Cr, 4) ¹¹⁴Sn и ¹¹⁵Sn; 6) по результатам работы [6] для изотопов: 1) Si²⁸ и Si³⁰, 2) Cr⁵⁰ и Cr⁵², 3) Mg²⁴ и Mg²⁵

Проведенное сопоставление теории и эксперимента, несмотря на значительные расхождения в положении особенностей кривых по шкале энергий, указывает на возможность резонанса в зависимости $R^{+}(E)$ для атомов в области энергий 0...10⁻² эВ.

2. Изотопные эффекты при отражении ионных пучков

Изотопные эффекты в потоке обратно рассеянных от поверхностей металлов ионов изучены в основном для пар ионов ${}^{3}\text{He}^{+}-{}^{4}\text{He}^{+}$ и ${}^{20}\text{Ne}^{+}-{}^{22}\text{Ne}^{+}$ [11, 12]. Исследования проводились методом двойной спектроскопии ионного рассеяния (ДСИР). В ДСИР компоненты указанных пар присутствуют в первичном пучке в равных концентрациях. Использовался также метод поочередного напуска в разрядную камеру ионного источника указанных изотопов. Энергия первичных ионов варьировалась от ~200 до ~3000 эВ, плотности тока ~ 0,1...500 нА, углы падения и углы отражения – от нормальных до скользящих. На рис. 5 представлены сводные данные из работы [12] по изотопному эффекту для пары ионов ³He⁺-⁴He⁺. Выход рассеяния (*Y*) на данном рисунке дан в произвольных единицах, хотя относительные разности интенсивностей пар ³He⁺-⁴He⁺ для каждого из металлов соответствуют эксперименту. Начала осей абсцисс для каждого из металлов (Zn, Pb, In, Sn) показаны чертой под соответствующим символом. По оси абсцисс отложены обратные скорости (1/v=m/2Ve, m и e – масса и заряд иона, V – ускоряющий потенциал). Хорошо развитая структура максимумов на кривых ДСИР, для случаев Pb, In и Sn на рис. 5, объяснена в [27] как результат конкуренции между ростом сечения рассеяния и вероятности нейтрализации, по мере уменьшения энергии пучка. В области низких значений обратной скорости для всех комбинаций ион-мишень ток рассеянных ионов ³He⁺ выше, чем ток ⁴He⁺. Это ожидаемо, легкие бомбардирующие частицы имеют большее сечение рассеяния по сравнению с тяжелыми при прочих равных условиях (например, силовое поле, вероятность нейтрализации). При высоких значениях обратной скорости имеется тенденция к тому, что ток рассеянных ионов ⁴Не⁺ превышает ток рассеянных ионов ³Не⁺ для всех изученных систем. Это возможно, если при низких энергиях ионы ⁴Не⁺ нейтрализуются с гораздо меньшей вероятностью по сравнению с ³Не⁺. Очевидное различие между этими двумя изотопами, имеющими одну и ту же скорость, состоит в различии их импульсов, которое, в свою очередь, создает небольшие различия (намного меньше 1 ед. Бора) в их траекториях столкновения. Поскольку считается, что основные процессы нейтрализации (оже-нейтрализация и резонансная туннельная нейтрализация) происходят сравнительно далеко от поверхности (около 4 ед. Бора), трудно понять, как такие малые различия траекторий могут влиять на относительную вероятность нейтрализации ионов изотопов.

Рис. 5. Зависимость выхода упруго рассеяния ионов ³Не⁺ и ⁴Не⁺ Y от их обратной скорости для поверхностей цинка, свинца, индия и олова; угол рассеяния — 90° [12]

Отметим также, что более тяжелые ионы, вызывают более сильное модифицирование поверхности в результате имплантации, поверхностного травления и очистки. Однако, эти процессы не дают приемлемого объяснения характера кривых ДСИР при низких энергиях.

Осцилляции кривых ДСИР рис. 5 для ионов гелия, рассеиваемых на поверхности свинца, индия и олова, были приписаны [28] квазирезонансному электронному переносу. При рассмотрении этих кривых можно заметить, что положение максимумов и минимумов при рассеянии ³He⁺ и ⁴He⁺ на одной и той же поверхности соответствуют приблизительно одним и тем же значениям обратной скорости [28]. Более детальное рассмотрение показывает, что в действительности в области низких энергий наблюдаются значительные смещения в положениях максимумов и минимумов. В случае бомбардировки поверхности свинца (рис. 5, в) изотопный сдвиг пика при значении обратной скорости около 12·10⁸ с/см согласуется с данными по исследованию угловых распределений [29]. То есть, увеличение угла рассеяния при постоянстве энергии и массы бомбардирующей частицы оказывает такое же влияние, что и увеличение ее массы при постоянстве скорости и угла рассеяния. В обоих случаях уменьшается расстояние наибольшего сближения. Интересно отметить, что сдвиги низкоэнергетического пика для индия и олова (рис. 5, *c*, *d*) имеют другой знак по сравнению со сдвигами для свинца.

Из рис. 5 также видно, что высоты пиков, для ³Не⁺ и ⁴Не⁺ не идентичны и не пропорциональны друг другу. Некоторые различия высот пиков в низкоэнергетических спектрах от олова, вероятно, обусловлены различиями общей формы кривых. Наиболее отчетливо это демонстрируют неосцилляторные данные для цинка (рис. 5, а). В целом кривые имеют форму параболы с синусоидальной модуляцией. Исключением из этого правила является кривая рассеяния ионов ³He⁺ от Pb, имеющая небольшой пик при значении обратной скорости около 8,5·10⁸ с/см, связанный, по-видимому, с квазирезонансным электронным переносом. Количественно, токи отраженных ионов легких изотопов могут в случае ³Не⁺ и ⁴Не⁺ примерно в 2 раза превышать токи тяжелых изотопов. В случае ²⁰Ne⁺ и ²²Ne⁺ это превышение составляет около 20 %. То есть, чем тяжелее элемент, тем меньше величина эффекта. Это коррелирует с величиной относительной разности масс изотопов (как и в случае ИЭ в ВИЭ, см. выше).

3. Изотопные эффекты при ионной имплантации

Результаты наших исследований изменения изотопного состава меди, имплантированной в никель, опубликованы в [21–23]. Ионную имплантацию меди в поликристаллический никель со средним размером зерна около 20 мкм проводили на имплантере "Диана-2" [30], оснащенном вакуумно-дуговым ионным источником, работающим в импульсно-периодическом режиме с длительностью импульса

150...200 мкс и частотой следования 50 Гц. Имплантация осуществлялась при давлении ~6.10-3 и 4·10⁻² Па с плотностью ионного тока в импульсе 125 мкА·см⁻² и средней плотностью тока на мишени порядка 1 мкА·см⁻². Дозы имплантации – 2·10¹⁶ и 2·10¹⁷ ион·см⁻², разница во времени между набором указанных доз около 6 ч. Ионы ускорялись в поле 50 кВ. Образцы никеля, предварительно электрохимически полированные, укреплялись металлическим держателем так, чтобы обеспечивался плотный контакт с поверхностью металлической подложки. Температура образца в процессе имплантации не превышала 50 °С. На рис. 6 приведены профили распределения изотопов меди ⁶⁵Cu и ⁶³Cu по глубине образца никеля и суммарный ⁶⁵Cu+⁶³Cu профиль после имплантации дозой $2 \cdot 10^{17}$ ион см⁻² при давлении $6 \cdot 10^{-3}$ Па. Видно, что характер распределения изотопов различен: спадающая кривая для изотопа 65Cu, и нарастающая - для изотопа ⁶³Cu, т.е. в поверхностном слое, примерно до 100 нм происходит накопление изотопа ⁶⁵Си. И только после выхода на максимум интенсивности линии изотопа 63Си начинается выравнивание изотопного состава, приближаясь к их природному соотношению на глубине 250 нм. Для большей наглядности по данным рис. 6 на рис. 7 представлены отклонения концентраций (C_i) изотопов меди по глубине, рассчитанные как $C_i = I_i / \Sigma I_i$ (*i* – изотоп, *I* – интенсивность), от их природных распространенностей (*R*_i). Видно, что на глубине примерно 330 нм полученные значения распространенностей изотопов имплантированной меди совпадают с природными значениями. Максимальное отклонение от природной распространенности изотопов (около 54 %) наблюдается на поверхности. По данным рис. 6 и 7, выявляются 3 характерные области изменения изотопного состава: 1 – от 0 до 80...100 нм, 2 – от 100 до 250 нм, 3 - глубже 250 нм. Видно, что изменение изотопного состава наиболее значительно в приповерхностном слое. Здесь наблюдается нарастание концентрации имплантированных ионов с выходом на максимум на глубине ~100 нм (рис. 6). Области резкого снижения концентрации имплантированной меди в слое 120...250 нм соответствует переход к природному соотношению распространенностей изотопов. И, наконец, диффузионному "хвосту" на профиле имплантированной меди соответствует область выравнивания изотопного состава с природным. Таким образом, максимальные нарушения изотопного состава происходят на участке наибольших потерь энергии имплантированных ионов и максимального накопления концентрации имплантированной меди.

На рис. 8 представлены кривые, аналогичные рис. 7, но для дозы 2·10¹⁶ ион·см⁻². Из сравнения рис. 7 и 8 видно, что характер послойного изменения изотопного состава с увеличением дозы не изменяется, но для более высокой дозы изменения изотопного состава распространяются на большую глубину. Это, возможно, связано с увеличением общей концентрации имплантированной меди и возрастанием ее концентрации на большей глубине в результате радиационно-стимулированной диффузии. Эксперимент был повторен при дозе ионной имплантации $2 \cdot 10^{17}$ ион·см⁻² при давлении ~ $4 \cdot 10^{-2}$ Па. В этом случае эффект трансформации изотопного состава меди качественно не изменяется, однако, обнаруживаются различия в форме профилей изотопов имплантированной меди (рис. 8). Они становятся более узкими, стягиваясь к поверхности образца.

Рис. 7. Отклонения концентраций (С,) изотопов меди по глубине от их природных распространенностей (R,)

Рис. 8. Отклонения концентраций изотопов меди по глубине образца никеля от их природных распространенностей.

Объяснение трансформации изотопного состава имплантированной меди невозможно в рамках

традиционных механизмов диффузии. Известно, что отношение коэффициентов диффузии изотопов обратно пропорционально корню квадратному из отношения их масс, т.е. ~1,02. Наблюдаемый эффект в несколько раз выше.

Заключение

Представленные в первой части статьи экспериментальные результаты касаются лишь немногих техногенных воздействий на поверхность, приво-

СПИСОК ЛИТЕРАТУРЫ

- Slodzian G., Lorin J.C., Havette A. Isotopic effect on the ionization probabilities in secondary ion emission // J. Phys. Lett. – 1980. – V. 41. – P. L555–L558.
- Lorin J.C., Havette A., Slodzian G. Isotopic effect on the ionization probabilities in secondary ion emission // Secondary Ion Mass Spectr.: Abstr. of Conf. – Berlin: Springer, 1982. – P. 140.
- Shapiro M.H., Haff P.K., Tombrello T.A., Harrison D.E. Simulation of isotopic mass effects in sputtering // Nucl. Instr. and Meth. in Phys. Res. – 1985. – V. B12. – P. 137–145.
- Gnaser H., Hutcheon J.D. Preferential emission of lighter isotopes in the initial stage of sputtering // Surf. Sci. – 1988. – V. 195. – P. 499–511.
- Gnaser H., Oechsner H. Isotopic mass effects in sputtering: dependence on fluence and emission angle // Nucl. Instr. and Meth. in Phys. Res. - 1990. - V. B48. - P. 544-548.
- Shimizu N., Hart S.R. Isotope fractionation in secondary ion mass spectrometry // J. Appl. Phys. -1982. -V. 53(3). -P. 1303-1311.
- Gnaser H., Hutcheon J.D. Velosity-dependend isotope fractionation in secondary ion emission // Phys. Rev. B. – 1987. – V. 35. – № 1. – P. 877–879.
- Shwarz S.A. Measurement of the secondary ion mass spectrometry isotope effect // J. Vac. Sci. Technol. – 1987. – V. A5(3). – P. 308–312.
- Никитенков Н.Н., Косицын Л.Г., Маркова Н.М., Шулепов И.А. Изотопический эффект в энергетических спектрах ионизованной компоненты распыления // Физика взаимодействия заряженных частиц с кристаллами: Тез. докл. XVIII Всес. совещ. – М.: МГУ, 1987. – С. 110.
- Никитенков Н.Н., Косицын Л.Г., Маркова Н.М., Шулепов И.А. О изотопическом эффекте во вторичной ионной эмиссии // Вторичная ионная и ионно-фотонная эмиссия: Тез. докл. Всес. семинара. –Харьков: ХГУ, 1988. – Ч. 1. – С. 69–71.
- Helbig H.F., Orvek K.J. Isotope Effects in Elastic Ion-Surface Scattering; He⁺ and Ne⁺ on Solid and Liquid Ga // Nucl. Instrum. and Meth. – 1980. – V. 170. – P. 505.
- Helbig H.F., Adelman P.J. Isotope Effects in Ion-Scattering Double Spectroscopy // J. Vac. Sci. and Thechn. – 1977. – V. 14. – P. 488–493.
- Чернов И.П., Никитенков Н.Н., Пучкарева Л.Н. и др. Изменение изотопного состава металлов при насыщении водородом // Известия вузов. Физика. – 1999. – № 4. – С. 61–65.
- Chernov I.P., Nikitenkov N.N., Puchkareva L.N., Kolobov Yu.R. Change Isotopic Composition of Metals at Deuterium Charge // Cold Fusion (ICCF-7): Proc. of the 7th Intern. Conf. – Vancouver, 1998. – Copyright 1998 ENECO. – Inc. Salt Lake City, Utah. – USA, 1998. – P. 441–446.
- Chernov I.P., Nikitenkov N.N., Puchkareva L.N., Kolobov Yu.R. Change Isotopic Composition of Palladium and Titanium induced by Hydrogen Isotopes // Science and Technol.: Abstracts the Second Russian-Korean Intern. Symp. – Tomsk, 1998. – P. 164.
- Чернов И.П. Никитенков Н.Н. Кренинг М. Баумбах Х. Исследования процессов в металлах при насыщении водородом //

дящих к изменению ее изотопного состава, а именно, процессов ионного распыления, рассеяния ионов от поверхности и ионной имплантации. Основная закономерность, наблюдаемая в этих процессах и относящаяся к изменению природного изотопного состава, связана с обогащением поверхности тяжелыми изотопами. Данная закономерность объясняется особенностями атомных столкновений и электронных взаимодействий в системе атом-поверхность.

ХХVIII Междунар. конф. по физике взаимодействия заряженных частиц с кристаллами: Тез. докл. — М.: МГУ, 1998. — С. 116.

- Чернов И. П., Никитенков Н. Н., Крёнинг М, Баумбах Х. Изменение изотопного состава лития в тонкопленочных структурах при насыщении водородом // XXVIII Междунар. конф. по физике взаимодействия заряженных частиц с кристаллами: Тез. докл. – М.: МГУ, 1999. – С. 131.
- Chernov I.P., Nikitenkov N.N., Puchkareva L.N. et al. Changes in Isotopic Composition of Metals Enriched in Hydrogen // Russian Phys. Journ. – 1999. – V. 42. – № 4. – P. 947–951.
- Чернов И.П., Никитенков Н.Н., Крёнинг М., Баумбах Х. Изменения изотопного состава лития в тонкопленочных структурах при насыщении водородом // Известия РАН, сер. Физическая. – 2000. – Т. 64. – № 11. – С. 2181–2185.
- Чернов И.П., Никитенков Н.Н., Крёнинг М., Баумбах Х. Исследования механизма изменения изотопного состава металлов при насыщении водородом // Известия Томского политехнического университета. – 2000. – Т. 303(3). – № 11. – С. 62–71.
- Пучкарева Л.Н., Чернов И.П., Никитенков Н.Н. Исследования изменений изотопного состава меди при ионной имплантации меди в никель // Ion-Surface Interaction: Матер. XV Междунар. конф. Звенигород, 27–31 августа 2001 г. М., 2001. Т. 2. С. 178–183.
- Никитенков Н.Н., Чернов И.П., Пучкарева Л.Н. Изотопные эффекты при ионной имплантации и других воздействиях на поверхность // Физика взаимодействия заряженных частиц с кристаллами: Тез. докл. XXXII Междунар. конф. — М.: МГУ, 2002. — С. 155.
- Пучкарева Л.Н., Чернов И.П., Никитенков Н.Н. Изменения изотопного состава меди при ионной имплантации в никель // Известия РАН, сер. Физическая. – 2002. – Т. 66. – № 8. – С. 1219–1222.
- Гангрский Ю.П., Марков Б.Н. Ядра в лучах лазера. М.: Знание, 1984. — 64 с.
- 25. Физическая энциклопедия. М.: Советская энциклопедия, 1990. Т. 2. С. 121.
- 26. Никитенков Н.Н. Теоретические и экспериментальные исследования энергетических распределений вторичных ионов при распылении мишеней сложного состава ионами килоэлектронвольтных энергий: Автореф. дис. ... канд. физ.-мат. наук. — М.: МГУ, 1987. — 17 с.
- Smith D.P. Analysis of surface composition with low-energy backscattered ions // Surf. Sci. – 1971. – V. 25. – P. 171–191.
- Erikson R.I., Smith D.P. Electronic processes in low-energy ionsurface scattering // Phys. Rev. Lett. – 1975. – V. 34. – P. 297–300.
- Tolk N.H., Tully J.C., Kraus J. et al. Angular dependence of oscillatory structure in low-energy ion-surface scattering // Phys. Rev. Lett. - 1976. - V. 36. - P. 747-750.
- Аксенов А.И., Бугаев С.П., Емельянов В.А. и др. Получение широкоапертурных пучков ионов металлов // Приборы и техника эксперимента. – 1987. – № 3. – С. 139–142.