СПИСОК ЛИТЕРАТУРЫ

- Дмитриев Ю.Г., Устинов Ю.К. Математические модели растущих систем // Вычислительные технологии. – 2007. – Т. 12. – Спец. вып. № 1. – С. 68–75.
- Алексеев Ф.Н. О распределении запасов рудных месторождений // Доклады АН СССР. – 1978. – Т. 240. – № 2. – С. 387–388.
- Алексеев Ф.Н., Ростовцев В.Н. Теория образования месторождений полезных ископаемых и практика ее применения. – Томск: STT, 2004. – 315 с.
- Дмитриев Ю.Г., Тарасенко П.Ф. Автоматизированная система «Октава» для геологического прогнозирования // Вычислительные технологии. – 2003. – Т. 8. – Спец. вып. – С. 74–91.
- Алексеев Ф.Н. Теория накопления и прогнозирования запасов полезных ископаемых. – Томск: Изд-во Том. ун-та, 1996. – 175 с.

- Тарасенко П.Ф. Знаковые процедуры анализа растущих систем // Вычислительные технологии. – 2007. – Т. 12. – Спец. вып. № 1. – С. 76–85.
- Koenker R., Bassett G. Regression quantiles // Econometrica. 1978. – V. 46. – № 1. – P. 33–50.
- Корнеев В.Д. Параллельное программирование в MPI. Новосибирск: Изд-во СО РАН, 2002. – 214 с.
- 9. Антонов А.С. Введение в параллельные вычисления. М.: НИВЦ МГУ, ТЕИС, 2002. 70 с.

Поступила 27.10.2008 г.

УДК 550.053.510.2+550.053.681.3(571.16)

АНАЛИЗ ФУНКЦИИ КАЧЕСТВА АЛГОРИТМОВ ФАЗОЧАСТОТНОГО ПРОСЛЕЖИВАНИЯ СЕЙСМИЧЕСКИХ ВОЛН

В.П. Иванченков, А.И. Кочегуров, О.В. Орлов

Томский политехнический университет E-mail: kai@cc.tpu.edu.ru

Рассмотрено обобщенное определение функции качества при фазочастотном прослеживании сейсмических волн. Показана высокая разрешающая способность алгоритма фазочастотного прослеживания, а также наличие связи функции качества с петрофизическими параметрами сейсмических сред.

Ключевые слова:

Сейсмическая трасса, фазочастотное прослеживание, функция качества.

1. Определение функции качества

Прослеживание сейсмических волн является одной из центральных задач структурной сейсморазведки. Не менее важное значение оно имеет и для решения задач прогноза геологического разреза, в том числе прогноза залежей углеводородов.

В настоящее время для анализа волновых сейсмических полей широко применяются динамические параметры волн, связанные с амплитудой и энергией отражений. В значительно меньшей степени используются фазочастотные характеристики (Φ YX) отраженных волн. Между тем, в фазовых спектрах сейсмических сигналов заложена важная информация о местоположении отражающих границ, поглощающих и дисперсионных свойствах слоистых сред [1–3]. На этой основе построены *фазочастотные* алгоритмы обработки сейсмических данных, позволяющие в условиях априорной неопределенности относительно формы сейсмических волн обнаруживать и разрешать сигналы на фоне интенсивных помех [4–6].

В [4] был предложен оптимальный фазочастотный алгоритм прослеживания сейсмических волн на фоне гауссовых помех, который реализуется как процедура поиска положения максимума функции правдоподобия вида:

$$G(\tau) = \sum_{i=1}^{n} \gamma(f_i) \cos[\Delta \phi(f_i) - 2\pi f_i \tau].$$
(1)

В данном выражении $\gamma(f_i)$ определяет отношение сигнал к шуму, а $\Delta \phi(f_i)$ – отклонение фазового спектра сигнала от фазового спектра смеси сигнала и шума на частоте f_i .

При практическом применение оптимального фазочастотного алгоритма прослеживания возникают определенные трудности, связанные, в частности, с оценкой функции $\gamma(f_i)$ в выбранном диапазоне частот. Поэтому в [7] был предложен фазочастотный алгоритм, полученный из оптимального алгоритма (1) путем замены в нем весовой функции $\gamma(f_i)$ на другие, специально подобранные функции. В общем случае, *функция качества* (критерий оценки местоположения сигналов) для таких алгоритмов фазочастотного прослеживания (ФЧП) может быть представлена в виде:

$$L(\tau) = \sum_{i=1}^{n} W(f_i) \cos[\phi(f_i) - 2\pi f_i \tau],$$
 (2)

где $W(f_i)$ — некоторая весовая функция, $\phi(f_i)$ — текущий фазовый спектр, вычисленный в скользящем окне анализа. При этом временное положение волн оценивается по положению экстремума функции $L(\tau)$, которая формируется при перемещении окна анализа вдоль сейсмической трассы, рис. 1.

Рис. 1. Схема фазочастотного прослеживания сейсмических волн; τ – текущее положение центра окна анализа, T – протяженность окна анализа

2. Обобщенное определение функции качества

Используемое при фазочастотном прослеживании (ФЧП) определение функции качества (ФК) предназначено для численной реализации алгоритмов ФЧП. С целью теоретического анализа алгоритма ФЧП перейдем от дискретного представления ФК к непрерывному.

Пусть прослеживаемый сигнал *s*₀(*t*) описывается следующим образом:

$$s_0(t) \leftrightarrow S_0(f) = |S_0(f)| \cdot e^{j\phi_s(f)},$$

F

где $\phi_s(f)$ — фазовый спектр сигнала; F — операция преобразования Фурье. Определение *функции ка-чества* (2) можно переписать следующим образом:

$$L(t) = \sum_{i=0}^{\infty} w_0(f_i - f_0) \cdot \cos[\phi(f_i, t)].$$
(3)

Здесь $\phi(f,t) = \phi_s(f) + 2\pi ft$; член $2\pi ft$ обусловлен сдвигом сигнала относительно центра скользящего окна анализа на величину t; $w_0(f)$ – весовая функция; f_0 – центральная частота весовой функции; $f_i = i \cdot \Delta f$; Δf – шаг дискретизации по частоте.

Из теории преобразования Фурье известно, что $\phi_s(f)$ – нечетная функция. Следовательно, $\phi(f,t)$ – также нечетная функция. Продолжим весовую функцию $w_0(f)$ четным образом в область отрицательных частот:

$$w(f) = \frac{1}{2} \{ w_0(f - f_0) + w_0[-(f + f_0)] \}.$$

Тогда в *непрерывной форме* определение (3) можно записать в виде:

$$L(t) = \int_{-\infty}^{\infty} w(f) \cos[\phi(f,t)] df.$$

Таким образом, функция качества является обратным преобразованием Фурье спектра сигнала $S_0(f) = |S_0(f)| \cdot e^{i\phi_n(f)}$, в котором вместо амплитудного спектра сигнала $|S_0(f)|$ помещена весовая функция w(f), дополненная четным образом в области отрицательных частот:

$$L(t) = \mathbf{F}^{-1}\{w(f) \cdot e^{j\phi_s(f)}\} = \int_{-\infty}^{\infty} w(f) \cdot e^{j\phi_s(f)} \cdot e^{j2\pi f t} df.$$
(4)

Легко показать, что в дискретной форме утверждение (4) также справедливо. Следовательно, изменяя форму весовой функции, мы в определенной степени можем менять форму ФК, то есть управлять видом функции качества.

3. Функция качества сигнала на выходе линейной системы

Пусть импульс $s_0(t)$ распространяется через линейную систему с передаточной функцией H(f).

Сигнал на выходе данной системы можно представить в виде

$$s(t) = \mathbf{F}^{-1} \{ S(f) \} = \mathbf{F}^{-1} \{ S_0(f) \cdot H(f) \} =$$

= $s_0(t) \otimes h(t).$ (5)

Здесь

 $h(t) = F^{-1}{H(f)}$ – весовая функция линейной системы, (6)

 \otimes – операция свертки.

Пусть $H(f) = |H(f)| \cdot e^{i\phi_H(t)}$. Тогда сигнал на выходе системы можно переписать следующим образом:

$$s(t) = \mathbf{F}^{-1}\{ [|S_0(f)| \cdot |H(f)| \cdot e^{j\phi_s(f)}] \cdot e^{j\phi_H(f)} \}.$$

Отсюда в соответствии с (4) ФК на выходе системы можно записать в виде:

$$L(t) = \mathbf{F}^{-1}\{[w(f) \cdot e^{j\phi_s(f)}] \cdot e^{j\phi_H(f)}\}.$$
 (7)

Введем обозначения: $L_0(t) = F^{-1}\{w(f)| \cdot e^{j\phi_k(t)}\} - \Phi K$ входного сигнала; $H_L(f) = e^{j\phi_k(t)} = H(f)/|H(f)|$; $h_L(t) = F^{-1}\{H_L(f)\}$ – весовая функция линейной системы с передаточной функцией $H_L(f)$.

Тогда выражение (7) для ФК на выходе системы примет вид:

$$L(t) = L_0(t) \otimes h_L(f).$$
(8)

Сравнивая выражения (5) и (8), можно сформулировать следующий вывод.

Функция качества сигнала на выходе линейной системы с передаточной функцией H(f) может рассматриваться как результат преобразования функции качества $L_0(t)$ входного сигнала $s_0(t)$ системой, частотная характеристика которой $H_L(f)$ определяется только ФЧХ исследуемой толщи.

Из (8), в частности, следует, что при уменышении длительности функции качества входного сигнала $L_0(t)$ функция качества на выходе линейной системы $L_c(t)$ приближается к весовой функции системы $h_l(t)$:

$$\lim_{L_0(t)\to\delta(t)} L(t) \to h_L(f).$$
(9)

Это в ряде случаев позволяет увеличить разрешающую способность алгоритмов $\Phi \Psi \Pi$ путем выбора соответствующей весовой функции $w_0(f)$.

4. Взаимосвязь функции качества с характеристиками среды

Покажем влияние свойств среды на функцию качества, используя модель слоистой поглощающей среды. Один из широко распространенных в настоящее время подходов к построению таких моделей связан с представлением среды в виде линейной системы, вносящей определенные изменения в проходящие через нее колебания [1].

В рамках такого подхода в [8] было проведено исследование влияния акустических жесткостей и поглощающих свойств сред на фазовые спектры отраженных волн. Исследование проводилось для моделей поглощающих сред, состоящих из ряда однородных слоев с плоскопараллельными границами при нормальном падении плоских волн. Частотная характеристика системы, описывающая свойства таких сред, может быть представлена (без учета коэффициентов преломления)как

$$H(f) = K_{N-1}(f) + \sum_{i=0}^{N-2} K_i(f) \cdot \prod_{n=i+1}^{N-1} H_n(f).$$
(10)

Здесь N – количество слоев; $H_n(f)$ – частотная характеристика N-го слоя, зависящая от поглощения; $K_i(f)$ – комплексный коэффициент отражения от кровли *i*-го слоя.

В результате исследования было показано, что фазовые спектры $\phi_{H}(f)$ отраженных волн существенно зависят от акустических свойств среды. Это позволяет использовать данные спектры в качестве диагностических признаков при прогнозе геологического разреза осадочных толщ.

Рассмотрим влияние свойств среды на параметры функции качества, используя модель слоистой толщи, параметры которой приведены в таблице.

Падающая волна при моделировании определялась сейсмоимпульсом с колокольной огибающей $s_0(t)$:

$$s_0(t) = e^{-b^2 t^2} \cos(2\pi f_0 t), \quad f_0 = 30 \ \Gamma \mu, \quad b = 45 \ \Gamma \mu$$

. .

Таблица. Модель слоистой толщи (8 отражающих границ)

Толщина	Скорость,	Плотность,	Параметр по-	Время, с
слоя, м	м/с	Г/СМ ³	глощения, 10⁻⁵	
00	1900	2,4	0,05	0,070
12	2000	2,5	1	0,082
14	2100	2,8	2	0,096
10	2200	2,9	3	0,104
9	2300	3,1	4	0,112
17	2400	3,4	5	0,126
15	2500	3,7	6	0,138
21	2600	3,9	7	0,154
00	2700	4,2	8	-

Импульсная сейсмотрасса (весовая функция h(t)), вычисленная для рассматриваемой модели среды (10) в соответствии с (6), а также выходной сигнал s(t), изображены на рис. 2. На графике импульсной сейсмотрассы отчетливо отображаются все 8 отражающих границ. В то же время наличие интерференции *не позволяет* выделить данные границы на результирующей сейсмотрассе (выходном сигнале).

Для большей наглядности весовая функция при фазочастотном прослеживании выбрана совпадающей по форме с амплитудно-частотной характеристикой (АЧХ) входного сигнала:

$$w_0(f-f_L) = e^{-\frac{\pi^2}{b_L^2}(f-f_L)^2}, \quad f_L = 90 \ \Gamma u, \quad b_L = 180 \ \Gamma u.$$

Выбор параметров функции качества f_L и β_L осуществлялся на основании требуемого разрешения отражающих границ и позволил существенно уменьшить длительность ФК по отношению к сигналу (рис. 3).

Рис. 2. Выходной сигнал s(t) и весовая функция среды h(f)

Рис. 3. Входной сигнал $s_0(t)$ и ΦK входного сигнала $L_0(t)$

Рис. 4 иллюстрирует подобие весовой функции среды h(t) и весовой функции $h_L(t)$. Можно отметить хорошее согласование данных характеристик. Видно, что на $h_L(t)$ практически точно выделяется местоположение каждой из 8-и отражающих границ.

Вместе с тем имеются отличия в амплитуде сравниваемых функций. Они обусловлены тем, что, как показано в [8], амплитуда весовой функции $h_L(t)$ при фазочастотном прослеживании отраженных волн непосредственно зависит от фазового спектра выходного сигнала, который в свою очередь определяется петрофизическими параметрами слоистой поглощающей толщи.

Рис. 4. Сравнение весовой функции среды h(t) и весовой функции h_i(t)

Рис. 5. Сравнение весовой функции $h_{L}(t)$ и выходной функции качества L(t)

На рис. 5 изображены выходная ΦK и весовая функция $h_{l}(t)$. Видно, что вследствие малой протя-

СПИСОК ЛИТЕРАТУРЫ

- Авербух А.Г. Изучение состава и свойств горных пород при сейсморазведке. – М.: Недра, 1982. – 232 с.
- Худзинский Л.А. Об определении некоторых параметров однородных слоев по их фазовым спектральным характеристикам // Известия АН СССР. Физика Земли. – 1996. – № 5. – С. 68–77.
- Трапезникова Н.А. Методика спектральных вариаций для прогнозирования свойств геологического разреза // Геофизика. – 1997. – № 2. – С. 12–16.
- Иванченков В.П., Кочегуров А.И. Определение временного положения сейсмических сигналов по оценкам их фазочастотных характеристик // Геология и геофизика. – 1988. – № 9. – С. 77–83.
- Иванченков В.П., Кочегуров А.И. Фазочастотные алгоритмы оценки местоположения пространственно-временных сигналов в условиях априорной неопределенности // Известия вузов. Физика. – 1995. – Т. 38 – № 9. – С. 100–104.

женности ФК входного сигнала в соответствии с принципом (9) данные характеристики практически не отличаются друг от друга.

Приведенный пример иллюстрирует высокую разрешающую способность фазочастотных алгоритмов. Это позволяет говорить о возможности определения временного местоположения отражающих границ при фазочастотном прослеживании с высокой точностью. Кроме того, подобие импульсной сейсмотрассы $h_L(t)$ и выходной функции качества (как по амплитуде, так и по форме) позволяет сделать вывод, что ФК непосредственно связана с параметрами слоистой поглощающей толщи и несет информацию об ее петрофизических характеристиках.

- Иванченков В.П., Шлотгауэр В.А. Применение спектральных характеристик для решения некоторых задач автоматической обработки сейсмограмм // Известия вузов. Геология и разведка. – 1977. – № 3. – С. 108–116.
- Иванченков В.П., Вылегжанин О.Н., Орлов О.В. и др. Фазочастотный анализ сейсмических сигналов и его применение в задачах прогноза геологического разреза // Инновационные методы и технологии нефтегазопоисковых работ и возможные пути их реализации в юго-восточных районах Западной Сибири. – Томск: ЦНТИ, 2000. – С. 62–74.
- Иванченков В.П., Вылегжанин О.Н., Орлов О.В. и др. Методы фазочастотного анализа волновых полей и их применение в задачах обработки данных сейсморазведки // Известия Томского политехнического университета. – 2006. – Т. 309. – № 7. – С. 65–70.

Поступила 06.11.2008 г.

УДК 550.053.510.2+550.053.681.3(571.16)

ФАЗОЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ СЕЙСМИЧЕСКИХ ВОЛН И ОСНОВНЫЕ ПРЕДПОСЫЛКИ ИХ ПРИМЕНЕНИЯ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПРОГНОЗА ГЕОЛОГИЧЕСКОГО РАЗРЕЗА

В.П. Иванченков, А.И. Кочегуров, О.В. Орлов

Томский политехнический университет E-mail: kai@cc.tpu.edu.ru

На основе анализа информационной модели слоистых поглощающих сред рассмотрены основные предпосылки и возможности применения фазочастотных характеристик отраженных сейсмических волн для прогноза геологического разреза. Исследовано поведение обобщенных фазовых спектров коэффициентов отражения. Показано, что наибольшие изменения фазовых спектров коэффициентов отражения наблюдаются для газонасыщенного коллектора.

Ключевые слова:

Линейная система, фазочастотные характеристики, модель поглощающей среды, коэффициенты отражения и преломления.

Повышение эффективности разведки месторождений нефти и газа в сложных сейсмогеологических условиях обуславливает необходимость создания новых методов прогноза геологического разреза на основе наиболее информативных параметров регистрируемых сейсмических волн. В настоящее время предложен широкий спектр методов, в которых в качестве информативных признаков широко используются динамические характеристики сейсмических волн, связанные прежде всего с их