Литература

1. Рязанов Я. А. Справочник по буровым растворам. М.: Недра, 1979. – 215 с.

РАЗРАБОТКА ВЫСОКОПРОЧНОГО ТАМПОНАЖНОГО МАТЕРИАЛА С НИЗКОЙ ФИЛЬТРАЦИЕЙ ДЛЯ ВЫСОКОПРОНИЦАЕМЫХ ПЛАСТОВ

А.С. Бубнов, И.А. Бойко, И.Н. Барышев, В.С. Хорев, Р.Н. Насибуллина

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

При первичном вскрытии продуктивных пластов, а также в процессе цементирования происходит негативное воздействие на продуктивные горизонты за счет водоотделения фильтрата тампонажного раствора. Снижение водоотделения до минимальных значений способствует снижению skin-фактора, следовательно, это позволяет снизить время на освоение скважины. Основным способом контроля и снижения водоотделения является использование хим. реагентов.

При разработке тампонажного материала с низкой фильтрацией в качестве образцов были взяты цемент ПЦТ-G-CC-1 и ПЦТ-I-100. При анализе данных образцов цемента, с водоцементным отношением 0,5 были получены результаты, представленные в таблице 1. Данные марки цементов были выбраны как наиболее часто используемые при цементировании нефтяных и газовых скважин.

Основной задачей, которую необходимо было решить, это получение низкого значения водоотделения тампонажного раствора, сохранив при этом прочностные характеристики цементного камня и время загустевания, соответствующие требованиям ГОСТ 1581-96 [1,2,3]

Таблица 1 Значения полученных результатов (без добавления хим. реагентов)

ПЦТ-G- СС-1				
Параметр	Результат			
Водоотделение, мл	6,5			
Время загустевания, мин.	145			
Прочность на изгиб, мПа	7,75			
Плотность, гр/см3	1,83			
ПЦ	T-I-100			
Параметр	Результат			
Водоотделение, мл	4			
Время загустевания, мин.	107			
Прочность на изгиб, мПа	8,4			
Плотность, гр/см3	1,83			

Для снижения водоотделения было принято решение выполнить ряд сравнительных анализов с добавками, способствующими снижению фильтрации. В качестве хим. реагентов регулирующих водоотделение применялись крепь-3, гидроксиэтилцеллюлоза, сайпан, бентонит. Краткое описание хим. реагентов приведено ниже.

Крепь-3 - реагент структурообразователь предназначенный для получения высококачественных тампонажных растворов нормальной плотности, облегченных и сверхлегких (для температур 20-75 С). Применение реагента обеспечивает:

- седиментационную устойчивость (стабильность) растворов;
- изолирующую способность;
- адгезию камня к металлу обсадных колонн и стенкам скважины;
- ускорение сроков начала схватывания растворов;
- повышенную прочность цементного камня.

Гидроксиэтилцеллюлоза - эфир целлюлозы, слабокислотный полиэлектролит. По свойствам близок к Na-КМЦ. Производное целлюлозы, не ионный водорастворимый полимер. Легко растворим в холодной или горячей воде с образованием растворов в широком

диапазоне вязкости. Благодаря не ионному характеру, обладает широким спектром совместимости с другими продуктами, такими как эмульсионные полимеры, природные и синтетические смолы, эмульгаторы и противопенные средства. Применяется в качестве наполнителя, стабилизатора эмульсии, пленкообразователя, регулятора вязкости водной части продукта и понизителя фильтрации.

Сайпан – представляет собой гидролизованный полиакриламид с высокой степенью анионного заряда и низкой молекулярной массой. Сайпан используют как полимерный структурообразователь и понизитель фильтрации буровых и тампонажных растворов.

Бентонит - природный глинистый минерал, имеющий свойство разбухать при гидратации (в 14-16 раз). При ограничении пространства для свободного разбухания в присутствии воды образуется плотный гель, который препятствует дальнейшему проникновению влаги. Добавка бентонита в значительно большей степени повышает сопротивление фильтрации, но в связи с ярко выраженной тиксотропией коагулянтов в структуре монтмориллонита увеличивается вязкость.

Изначально, подбор рецептуры был выполнен на марке цемента ПЦТ-G-CC-1, полученные результаты представлены в таблице 2 [1,4,5] Таблица- 2 параметры тампонажного раствора при использовании реагента крепь-4.

Увеличение дозировки реагента Крепь-3 положительно влияет на значение водоотделения, однако, при этом уменьшается время потери текучести раствора, что является не допустимым по ГОСТ 1581-96.

Результаты использования бентонита марки ПБМБ (производства ООО «ХакБент») с использованием цемента ПЦТ-G- СС-1. представлены в таблице 3.

Для снижения водоотделения в цементное тесто было добавлено 2% бентонита, при этом значение водоотделения составило 1,7 мл. При увеличении концентрации ПБМБ до 3%, получили параметр водоотделения до 0,7мл. значение времени загустевания и прочности при этом составили 120 минут и 7.2мПа соответственно.

Следует отметить, что вязкость приготовленного раствора была минимальной, это в свою очередь влияет на способность продавки тампонажного раствора по заколонному пространству.

Таблица 2

Дозировка,	Водоотделение,	Вр.загустеван	Прочность на	Заключение
%	ΜЛ	ия, мин.	изгиб, мПа	
0.25	5,9	*	*	Не годен,
				большое в/о
0.5	4,6	*	*	Не годен,
				большое в/о
0.75	3,3	*	*	Не годен,
				большое в/о
1	2,2	95	*	Не годен,
				большое в/о,
				время
				загустевания
				находится на
				грани
				допустимого
				значения по
				ГОСТ 1581-96
1.25	1,5	82	*	Не годен,
				маленькое
				вр.загустевания
1,5	0	70	*	Не годен,
				маленькое
				вр.загустевания

При исследовании цементного теста с добавлением сайпана, были сделаны анализы с процентным содержанием равным 0,1%, 0,3%, 0,6% и 1,5%. Результаты измерения водоотделения первых трех анализов показали, не удовлетворительные значения 5 мл, 4,9 мл, 2,5мл.

Таблица 3 Параметры тампонажного раствора при использовании реагента ПБМБ

Дозировк	Водоотделение, мл	Вр.загустевания,	Прочность	Заключение
a, %		мин.	на изгиб,	
			мПа	
0.5	5,1	*	*	Не годен,
				большое в/о
1	3,2	*	*	Не годен,
				большое в/о
2	1,7	*	*	Не годен,
				мало текуч
3	0,7	120	7,2	Не текуч, не
				годен

Результат водоотделения при добавлении сайпана 1,5% составил 0,8мл. При измерении прочности цементного камня и варьировании дозировки химической добавки, было обнаружено, что увеличение концентрации сайпана снижает прочность цементного камня. Результаты испытаний приведены в таблице 4.

Таблица 4 Параметры тампонажного раствора при использовании реагента сайпан

Дозировка,	Водоотделение,	Вр.загустева	Прочность на	Заключение
%	МЛ	ния, мин.	изгиб, мПа	
0,1	5	*	*	Не годен, большое
				в/о
0,3	4,9	*	*	Не годен, большое
				в/о
0,6	2,5	*	5,47	Не годен, большое
				в/о
1,5	0,8	*	0,15	Не годен, маленькое
				значение прочности
				на изгиб

Можно предположить, что при введении гидролизованного полиакриламида в цементную смесь полимер образует пространственную фазовую сетку, что приводит к формированию в смеси коагуляционной структуры, обеспечивающей тиксотропные свойства смеси. В то же время, в связи с тем, что формирование

структуры происходит за счет слабых физических сил, она легко разрушается при воздействии механических нагрузок.

Таблица 5 Параметры тампонажного раствора при использовании реагента гидроксиэтилцеллюлоза

Дозировка	Водоотд	Вр.загустев	Прочность на	Заключение
, %	еление,	ания, мин.	изгиб, мПа	
	МЛ			
0,3	0	*	*	Использование не
0,2	0	*	*	целесообразно в
0,2	U	-		связи с хорошими
0,1	0	*	*	результатами
				меньшей дозировки
0,05	0,5	165	6,73	Годен
0,01	4	*	*	Не годен

Дальнейшее исследование, направленные на снижение показателя водоотделения, были проведены cиспользованием реагента гидроксиэтилцеллюлоза от 0,1 до 0,3%. Были проведены опыты с добавлением 0,1%, 0,2% и 0,3%. Во всех случаях водоотделение составило 0 мл. При уменьшении содержания гидроксиэтилцелюлозы до значений от 0,01% до 0,05% водоотделение тампонажного раствора составило при 0.01% - 4 мл и 0.05% - 0.5 мл соответственно. Получив положительные результаты водоотделения, было измерено время загустевания, которое составило 165 минут при прочности цементного камня изгиб равное 6,73 мПа раствора дозировкой гидроксиэтилцеллюлозы 0,05%. Результаты испытаний приведены в таблице 5

Получив положительные результаты на цементе марки ПЦТ-G-СС-1 с использованием гидроэтилцеллюлозы, были выполнены аналогичные эксперименты на цементе марки ПЦТ-I-100. Результаты экспериментов представлены в таблицах 6-9.

Таблица 6 Результаты эксперимента с использованием реагента Крепь-4

	· · · · · · · · · · · · · · · · · · ·			F
Дозировка,	Водоотделени	Вр.загустевани	Прочность	Заключение
%	е, мл	я, мин.	на изгиб,	
			мПа	
0.25	4,4	*	*	Не годен, большое в/о
0.5	3,4	*	*	Не годен, большое в/о
0.75	2,7	*	*	Не годен, большое в/о
1	2,3	*	*	Не годен, большое
				в/о, мало текуч
1.25	0,7	*	*	Не годен, не текуч
1,5	0	*	*	Не годен, не текуч

Небольшие дозировки реагента Крепь-3 не значительно влияют на параметра водоотделения. При увеличении процентного содержания добавки раствор становится не текучем.

Таблица 7 Результаты эксперимента с использованием реагента ПБМБ

<u> </u>				
Дозировка,	Водоотделение,	Вр.загустевания,	Прочность	Заключение
%	МЛ	мин.	на изгиб,	
			мПа	
0.5	4,5	*	*	Не годен, большое
				в/о
1	2,5	*	*	Не годен, большое
				в/о
2	1,5	*	8,2	Не годен, мало
				текуч
3	1,2	*	7,8	Не годен, не текуч

Таблица 8 Результаты эксперимента с использованием реагента сайпан

Дозировка,	Водоотделение,	Вр.загустевания,	Прочность	Заключение
%	МЛ	мин.	на изгиб,	
			мПа	
0,1	4,6	*	*	Не годен, большое
				в/о
0,3	3,9	*	*	Не годен, большое
				в/о
0,6	2,3	*	4,6	Не годен, большое
				в/о
1,5	0,6	*	0,52	Не годен,
				маленькое
				значение
				прочности на
				изгиб

Видно, что увеличении дозировки реагента ПБМБ не значительно влияет на уменьшение водоотделения, При этом подвижность тампонажного раствора падает, что делает раствор не пригодным для закачки в скважину.

Сайпан является хорошим стабилизатором дисперсных систем, поэтому снижает фильтрацию. Но увеличение содержания реагента значительно уменьшает прочность цементного камня

Таблица 9
Результаты эксперимента с использованием реагента
гидроксиэтилиеллюлоза

Дозировка,	Водоотделение,	Вр.загустевания,	Прочность	Заключение
%	МЛ	мин.	на изгиб,	
			мПа	
0,3	0	*	*	Не годен, не текуч
0,2	0	*	*	Не годен, не текуч
0,1	0,8	138	6,44	Годен
0,05	2,3	*	5,91	Не годен, большое
				в/о
0,01	4,2	*	*	Не годен, большое
				в/о

При добавлении в цементную смесь ГЭЦ стабилизирует дисперсную систему, что приводит к уменьшению выделения несвязной воды из цементного раствора в процессе седиментации, при этом незначительно влияет на остальные параметры.

Выполненные эксперименты по исследованию параметра водоотделения цементов марки ПЦТ-I-100 и ПЦТ-G-CC-1. при использовании полимерных добавок показали, что наиболее оптимальным реагентом может выступать гидроксиэтилцеллюлоза, так как использование данного реагента обеспечивает наиболее низкие значения параметра водоотделения. При сравнении цементов ПЦТ-I-100 и ПЦТ-G-CC-1 использование гидроксиэтилцеллюлозы показало, что

наиболее лучше результаты получаются при использовании марки ПЦТ-G-СС-1 с концентрацией гидроксиэтилцеллюлозы 0.1%.

Литература

- 1. Смолич А.К., Бурлов В.В.. Химическая стойкость материалов в средах нефтехимии и нефтепереработки. Том 1-2: 390 с. 2012
- 2. ГОСТ 1581-96 Портландцементы тампонажные технические условия.
- 3. ГОСТ 26798.1-96 Цементы тампонажные методы испытаний.
- 4. Булатов А.И., Данюшевский В.С. Тампонажные материалы; Недра, 1987. 280c
- 5. Ивачев Л.М. Промывочные жидкости и тампонажные смеси; Недра, 1987. 242c.

ОПТИМИЗАЦИЯ ТЕХНОЛОГИИ БУРЕНИЯ ИНТЕРВАЛОВ ПОД НАПРАВЛЕНИЯ НА ДУЛИСЬМИНСКОМ МЕСТОРОЖДЕНИ ИРКУТСКОЙ ОБЛАСТИ

К.В.Бузанов

Научный руководитель доцент К.И.Борисов Национальный исследовательский Томский политехнический университет, г. Томск, Россия

В последние годы в отечественной промышленности значительное развитие получил нефтегазовый сектор Восточной Сибири, т.к. на ее территории сосредоточены значительные запасы углеводородного Так сырья. извлекаемые запасы нефти на Верхнечонском месторождении оцениваются в 196 млн. тонн, а суммарные запасы Толоканском и Юрубчено-Тохомском месторождениях составляют более 170 млн. тонн [1]. Однако, все резервы углеводородов, сосредоточенные в Восточной Сибири, сопряжены с тяжелыми условиями бурения, в связи со сложным геологическим строением недр региона.

Опыт ведения буровых работ показал, что процесс углубки нефтяных скважин на Дулисьминском месторождении Иркутской области ведется при системном наличии несовместимых условий