

УДК 544.022.347

ВЛИЯНИЕ ОТКЛОНЕНИЯ ОТ СТЕХИОМЕТРИИ НА КИНЕТИКУ СПЕКАНИЯ ИОННЫХ ТВЕРДЫХ ТЕЛ

А.Ф. Шиманский

Сибирский федеральный университет «Институт цветных металлов и материаловедения», г. Красноярск E-mail: shimanaf@mail.ru

Показано, что отклонение от стехиометрии состава ионных кристаллов определяет скорость массопереноса на начальной стадии твердофазного спекания и движущую силу процесса в присутствии жидкой фазы. Предложена модель, описывающая взаимосвязь нестехиометрии и спекаемости ионных твердых тел.

Ключевые слова:

Нестехиометрия, кинетика, твердофазное спекание, спекание в присутствии жидкой фазы.

Скорость процесса спекания, плотность и микроструктура керамических материалов в значительной степени определяются концентрацией и подвижностью дефектов кристаллического строения [1]. Поскольку одним из наиболее важных типов структурных несовершенств являются дефекты нестехиометрического происхождения, рассмотрим влияние отклонения от стехиометрии на кинетику спекания ионных твердых тел.

Влияния отклонения от стехиометрии на кинетику твердофазного спекания

Анализ влияния нестехиометрии на массоперенос в ионных твердых телах на заключительном этапе спекания, в течение которого происходит залечивание изолированных пор, проведен П.Д. Рейджненом [2]. Настоящая работа посвящена изучению влияния отклонения от стехиометрии на кинетику спекания в начальный период на стадии припекания.

Теоретический анализ процесса спекания традиционно проводят с различной степенью приближения на идеализированных моделях. В частности, полидисперсный порошок представляют в виде правильных сфер одинакового размера. При этом исходят из предположения о преобладании одного из возможных механизмов массопереноса. Ведущую роль в процессе спекания ионных твердых тел играет диффузия [1–3], в связи с этим, рассмотрим на примере двух сферических частиц, находящихся в контакте (рисунок), закономерности диффузионного массопереноса в ходе припекания нестехиометрических ионных твердых тел.

Рисунок. Геометрия сферических частиц на начальной стадии спекания

В качестве примера выберем нестехиометрический оксид типа $M_{1-x}O_{1-y}$ с разупорядочением по Шоттки, в кристаллах которого имеются анионные V_0 и катионные V_M вакансии, концентрации которых не равны, т. е. $C_{V_0} \neq C_{V_M}$.

Массоперенос в рассматриваемой системе протекает по вакансионному механизму вследствие наличия разности концентрации вакансий ΔC_{ν} вблизи искривленной поверхности шейки и в объеме частиц [3]:

$$\Delta C_{\nu} = C_{\nu}^{r} - C_{\nu}^{o} = \frac{2\sigma\omega}{kTr}C_{\nu}^{o}, \qquad (1)$$

где C_v^r и C_v^o – концентрации вакансий вблизи поверхности шейки и в объеме частиц, r – радиус кривизны поверхности шейки, σ – поверхностная энергия, ω – мольный объем,

Диффузия вакансий происходит в направлении от поверхности шейки в объем частиц, где они аннигилируют на стоках. Встречный поток вещества приводит к росту шейки, со сближением центров частиц и уплотнением системы, — спеканием.

Очевидно, что в диффузионном транспорте участвуют, как катионные, так и анионные вакансии. Оба этих потока соответствуют катион-анионному отношению матрицы, так как контактный перешеек заполняется электрически нейтральным веществом. Если один тип ионов диффундирует быстрее, возникает градиент электрического потенциала $\nabla \phi$, способствующий перемещению медленно мигрирующего компонента. С учетом этого факта катионный и анионный потоки можно выразить, используя уравнение Вагнера,

$$J_{M} = -D_{V_{M}} \nabla C_{V_{M}} - \left| q_{V_{M}} \right| u_{V_{M}} C_{V_{M}} \nabla \phi \tag{2}$$

И

$$J_O = -D_{V_O} \nabla C_{V_O} + \left| q_{V_O} \right| u_{V_O} C_{V_O} \nabla \phi,$$

где u_{V_0} , u_{V_M} , и C_{V_0} , C_{V_M} , – подвижность и коэффициенты диффузии катионных и анионных вакансий, q_i – их заряд. Из условия квазистационарности процесса следует, что

$$-D_{V_M} \nabla C_{V_M} - \left| q_{V_M} \right| u_{V_M} C_{V_M} \nabla \phi =$$

=
$$-D_{V_O} \nabla C_{V_O} + \left| q_{V_O} \right| u_{V_O} C_{V_O} \nabla \phi.$$
(3)

С учетом этого, градиент электрического потенциала можно выразить соотношением

$$\nabla \phi = -\frac{1}{|q_i|} \frac{D_{V_M} \nabla C_{V_M} - D_{V_O} \nabla C_{V_O}}{u_{V_M} C_{V_M} + u_{V_O} C_{V_O}}.$$
 (4)

После подстановки выражения (4) для $\nabla \phi$ в уравнение диффузионного потока катионных вакансий (2) получаем

$$J_{M} = -D_{V_{M}} \nabla C_{V_{M}} + \frac{u_{V_{M}} C_{V_{M}} (D_{V_{M}} \nabla C_{V_{M}} - D_{V_{O}} \nabla C_{V_{O}})}{u_{V_{M}} C_{V_{M}} + u_{V_{O}} C_{V_{O}}}.$$
 (5)

Подобное выражение можно записать для потока анионных вакансий

$$J_{o} = -D_{V_{o}} \nabla C_{V_{o}} - \frac{u_{V_{o}} C_{V_{o}} (D_{V_{M}} \nabla C_{V_{M}} - D_{V_{o}} \nabla C_{V_{o}})}{u_{V_{M}} C_{V_{M}} + u_{V_{o}} C_{V_{o}}}.$$
 (6)

Исходя из равенства (3), воспользовавшись соотношениями (5) и (6), выразим общий диффузионный поток:

$$J = -\frac{2\left(D_{V_{M}}u_{V_{O}}C_{V_{O}}\nabla C_{V_{M}} + D_{V_{O}}u_{V_{M}}C_{V_{M}}\nabla C_{V_{O}}\right)}{u_{V_{M}}C_{V_{M}} + u_{V_{O}}C_{V_{O}}}.$$
(7)

Подставим в выражение (7) соотношение Нернста-Эйнштейна $u_k T = |q_i| D_i$,

$$J = -\frac{2 \left(D_{V_{M}} D_{V_{O}} C_{V_{O}} \nabla C_{V_{M}} + D_{V_{O}} D_{V_{M}} C_{V_{M}} \nabla C_{V_{O}} \right)}{D_{V_{M}} C_{V_{M}} + D_{V_{O}} C_{V_{O}}}$$

и примем, что

$$\nabla C_{V_M} = \frac{\Delta C_{V_M}}{x}$$
 и $\nabla C_{V_O} = \frac{\Delta C_{V_O}}{x}$

где x — эффективный диффузионный путь, равный радиусу шейки.

Далее, в соответствии с геометрией двух сфер, находящихся в контакте (рисунок), выразим ради-

ус кривизны шейки соотношением $r \cong h \cong \frac{x^2}{2r_q}$, а

эффективное сечение диффузионного потока в виде $S = \frac{\pi^2 x^3}{r}$ или $S = 2\pi^2 xr$, где r_q – радиус частиц.

Тогда полный диффузионный поток с учетом условия электронейтральности для диффузионной зоны:

$$\left| q_{V_{M}} \right| \nabla C_{V_{M}} = \left| q_{V_{O}} \right| \nabla C_{V_{O}}$$

и ур. (1), можно описать выражением

$$P = \frac{16\pi^{2}\sigma\omega}{kT} \left(\frac{D_{V_{M}}D_{V_{O}}C_{V_{O}}C_{V_{M}}}{D_{V_{M}}C_{V_{M}} + D_{V_{O}}C_{V_{O}}} \right)$$

Обозначив $\frac{16\pi^2 \sigma \omega}{kT} = L$, представим полный

диффузионный поток на начальной стадии спекания при фиксированной температуре в более простом виде:

$$P = L\left(\frac{D_{V_M} D_{V_O} C_{V_M} C_{V_O}}{D_{V_M} C_{V_M} + D_{V_O} C_{V_O}}\right).$$
 (8)

Данное равенство подобно приведенному в работе [2] выражению для диффузионного потока вакансий от изолированной поры в процессе ее залечивания.

Проанализируем, по аналогии с [2], соотношение (8) для двух полярных случаев.

1. Пусть
$$D_{V_0} >> D_{V_0}$$
, тогда (8) принимает вид:

$$P = LD_{V_0}C_{V_0} \tag{9}$$

ИЛИ

или

$$P = LD_o^*, \tag{10}$$

где D_0^* – коэффициент самодиффузии кислорода. 2. Когда $D_{Y_u} << D_{Y_o}$,

$$P = LD_{V_M}C_{V_M} \tag{11}$$

$$P = LD_{12}^* \tag{12}$$

где D_{M}^{*} – коэффициент самодиффузии катиона.

Полученные выражения (9)–(12) указывают на то, что полный диффузионный поток вещества в процессе спекания пропорционален коэффициенту самодиффузии наиболее медленно движущихся ионов, и скорость спекания увеличивается при повышении концентрации дефектов с меньшей подвижностью.

Влияние нестехиометрии на кинетику спекания в присутствии жидкой фазы

Основной составляющей процесса жидкофазного спекания является растворение и последую-

щая кристаллизация вещества, что приводит к уплотнению системы и увеличению среднего размера зерен [4]. Влияние отклонения от стехиометрии состава твердой фазы на спекаемость на стадии «растворение — осаждение», как правило, не учитывается.

Рассмотрим систему, состоящую из двух сферических бездефектных частиц стехиометрического состава с радиусами r_1 и r_2 , находящихся в контакте с жидкостью при условии частичной растворимости.

Изменение энергии Гиббса для твердой фазы определяется выражением

$$dG = d(n_i \mu_i) = -SdT + VdP + \sum \mu_i dn_i.$$
(13)

При постоянной температуре (dT=0) и неизменном числе молей в системе ($dn_i=0$) после интегрирования, используя уравнение Лапласа, при i=1получаем известные соотношения

$$\Delta G_s = 2\sigma \,\omega \left(\frac{1}{r_2} - \frac{1}{r_1}\right) \tag{14}$$

И

$$RT \ln \frac{C_{r_2}}{C_{r_1}} = 2\sigma \ \omega \left(\frac{1}{r_2} - \frac{1}{r_1}\right),$$

где C_{r_1} и C_{r_2} — растворимость частиц разного радиуса в жидкой фазе. Очевидно, что $C_{r_1} \neq C_{r_2}$. Следствиями разной растворимости частиц являются градиент концентрации растворенного вещества и диффузионный массоперенос в объеме жидкости, уплотнение и рост зерен твердой фазы. Движущая сила массопереноса, соответственно — спекания, тем самым и скорость процесса, в данном случае обусловлены стремлением системы к минимуму энергии Гиббса за счет возрастания кривизны частиц и уменьшения площади межфазных границ. Изменение энергии Гиббса ΔG_s , соответствующее спеканию порошка с размерами частиц около 1 мкм, составляет приблизительно 4 Дж/г [4].

В том случае, если спекание сопровождается изменением дефектности и, как следствие, степени нестехиометричности твердой фазы в процессе перекристаллизации, в ур. (13) необходимо учитывать слагаемое, отражающее изменение состава. При этом условии для квазиоднокомпонентной системы интегрирование выражения (13) в расчете на 1 моль вещества приводит, в итоге, к равенству

$$\Delta G = \Delta G_{\rm s} + \Delta G_{\rm N}, \qquad (15)$$

где ΔG_N — вклад в изменение энергии Гиббса, соответственно, — дополнительная движущая сила спе-

СПИСОК ЛИТЕРАТУРЫ

- Третьяков Ю.Д. Химия нестехиометрических оксидов. М.: МТУ, 1974. – 364 с.
- Рейджнен П.Д. Нестехиометрия и спекаемость ионных твердых тел // Проблемы нестехиометрии / Под ред. А. Рабенау. – М.: Металлургия, 1975. – 304 с.
- Пинесс Б.Я. Очерки по металлофизике Харьков: Изд-во ХГУ, 1961. – 315 с.

кания, обусловленная изменением степени нестехиометричности твердой фазы.

Предположим, что кристаллы твердой фазы характеризуются разупорядочением по Шоттки, и отклонение от стехиометрии обусловлено преобладанием одного типа вакансий с концентрацией C_{ν} . Тогда в приближении невзаимодействующих дефектов для двух состояний 1 и 2, различающихся степенью отклонения от стехиометрического состава, различие энергии Гиббса для моля вещества можно выразить соотношением

$$\Delta G_N = \pm RT \ln \frac{C_{V_1}}{C_{V_2}}.$$
(16)

Неопределенность знака в уравнении (16) вызвана тем, что, независимо от величины соотношения C_r/C_r , приближение системы к состоянию термодинамического равновесия в ходе спекания, вследствие изменения нестехиометричности, должно сопровождаться убылью энергии Гиббса. После подстановки (16) в (15) с учетом (14) в итоге получаем

$$\Delta G = 2\sigma \ \omega \ \left(\frac{1}{r_2} - \frac{1}{r_1}\right) \pm RT \ln \frac{C_{V_1}}{C_{V_2}}.$$

По уравнению (16) в работе [5] с использованием экспериментальных данных рассчитана величина изменения энергии Гиббса, обусловленная нестехиометрией двойного оксида висмута-германия Bi₁₂GeO_{20-x}, значение которой составило 3 Дж/г, что, очевидно, сравнимо с вкладом, обусловленным различием кривизны поверхностей контактирующих частиц.

Таким образом, изменение содержания дефектов нестехиометрии в твердом веществе в течение спекания в присутствии жидкой фазы приводит к увеличению скорости процесса, поскольку на величину движущей силы массопереноса в системе действует дополнительный фактор, не связанный с кривизной поверхности частиц.

Выводы

Контролируемое изменение содержания дефектов нестехиометрии позволяет направленно воздействовать на процесс спекания. Скорость твердофазного спекания можно повысить путем увеличения концентрации дефектов с меньшей подвижностью. Изменение степени нестехиометричности ионных твердых тел в течение спекания в присутствии жидкой фазы вносит дополнительный вклад в движущую силу процесса и интенсифицирует его.

- Kingeri W.D. Densification during sintering in the presence of a liquid phase. P. 1. Theory // J. Appl. Phys. – 1959. – V. 30.3. – № 3. – P. 301–310.
- Шиманский А.Ф., Васильева М.Н. Нестехиометрия и спекаемость двойных оксидов висмута-германия в присутствии жидкой фазы // Огнеупоры и техническая керамика. – 2001. – № 1. – С. 22–24.

Поступила 10.02.2009 г.