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Abstract. In this paper, we present an IR and XRD study of the polypropylene fibrous 

nanoparticles carrier when its surface modified with rare and rare-earth elements nanoparticles 

using microwave irradiation, by the example of SnO2/TiO2 hetero-nanoparticles. The paper 

shows that the smectic mesomorph structure of the non-modified polypropylene fibrous carrier 
transforms into the monoclinic α-crystalline due to microwave irradiation. At the same time, 

the carrier material remains stereoregular and keeps its helical structure.  

1.  Introduction 

Nowadays, polymer melt-blown fibres are widely used for the manufacture of textile goods, insulation 

materials and fibre composites, absorbents of oil, petroleum and heavy metals, filtering materials for 

water and air treatment or as nanoparticles carriers [1-3]. Spheres of its application are determined by 

physical properties, chemical constitution of polymers, structure and redox properties of surface. 

Among these materials, the polypropylene (PP) melt-blown webs have substantial advantages [4]. An 

extensive base of raw materials, constant developing of new methods of modification, and a valuable 

set of physical properties create supportive environment for the manufacture development and 

application of products produced on the basis of these webs. Application of these materials, as the 

filtering and absorbing elements in the water purifying systems, is especially relevant [5-7]. 

Nanosized particles attached to the polymer fibre surface can be used for the transformation of 

organic water pollutants, such as phenols, aromatics, surface-active reagents, and nitro compounds, 

into the compounds safe for humans [3, 8 and 9]. At recent time, a lot of success is achieved in the 

developing the filtering materials – the polypropylene fibres, whose surface is modified with active 

nanoparticles, such as the systems named as “nanoparticles (TiO2, SnO2, TiO2/SnO2) – polypropylene 

fibrous carrier”.  

Attached to the carrier surface hetero-nanoparticles are most advantageous in case of developing 

effective photocatalytic systems on account of generating more free radicals due to spatially separation 

of electron-hole pairs [10, 11]. Structure and properties of modified materials and, consequently, the 

functional features and application sphere largely depend on methods of their obtaining. Thus, arises a 
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need of thorough study all the materials which were obtained using new methods. This work is aimed 

at using the IR spectroscopy technique to investigate the changes in the chemical structure of the 
polypropylene melt-blown web, when modified with SnO2/TiO2 hetero-nanoparticles.  

2.  Materials and methods 

The PP melt-blown webs as a carrier for SnO2/TiO2 nanoparticles were obtained by the direct 

aerodynamic formation, a kind of the melt-blowing process, from melting of isotactic polypropylene 

(iPP) [12]. Such raw materials as the commodity polypropylene 21060-16 and 21080-16 grades issued 

in accordance with TU 2211-016-05796653-95 were used in the research. The selection of samples 

was provided according to the GOST 10213.0-2002. “Staple fibre and tow chemical. Acceptance rules 
and the method of sampling.” The phase composition, crystallite size, and internal elastic strain (Δd/d) 

of the resulting materials were determined by X-ray diffraction (XRD) on an XRD-6000 

diffractometer with CuKα radiation. The surface microstructure of the modified fibers was examined 

by transmission electron microscopy (TEM) on a JEOL JEM_100CXII. Formation the SnO2/TiO2 

hetero-nanoparticles – carrier systems was provided by a mutual precipitation of the stannic and the 

titan chlorides hydrolysis products to the polypropylene carrier surface.  

The starting material for the synthesis of SnO2/TiO2 photocatalytic nanoparticles was water 

solutions of the stannic chloride (II) and the titan chloride (IV) with the chemical purity. 1 gram of the 

carrier was placed in a container with the prepared stannic chloride (II) and titan chloride (IV) 

solution, kept for 15 minutes at room temperature, then withdrawn from the solution, and subjected to 

the microwave radiation to produce the SnO2/TiO2 nanocrystals attached to the fibre surface. The 

irradiation was conducted in a laboratory microwave oven with an output power of 650 W and a 

frequency of 2.45 GHz. The working chamber was a rectangular resonator with a standing wave and a 

rotating sample holder continuously rotating by 360°. The exposure time to the microwave radiation 

was 3 minutes. 

Before and after surface modification with metal nanoparticles, the samples of the carrier were 

submitted to an FTIR analysis to find out the transformation in their chemical structures [13]. All 

spectra were recorded with a Bruker Tensor 27 FT-IR spectrometer using the standard technique in the 

wave number range of 4200 - 400 cm
-1

. The samples for IR spectroscopy were completely dried as a 

result of 21 day keeping in an air-tight glass weighing capsule in the presence of P2O5. 

 

3.  Results and discussion 

Assuming that the spectroscopic properties of the nanoparticle carrier (NC) do not change in the 

process of the nanoparticles attachment, it is worthwhile to begin analysing the IR spectrograms of NC 

before modification and to check up the changes afterward. The spectrograms of a non-modified 

carrier in the wave number range of 1200–800 cm-1 show several strong and medium absorption 

bands that correspond to the stretching vibrations of CH group, symmetric bending vibration of СН2 

group (=1435 cm-1), antisymmetric bending vibration of CH3 group (=1454 cm-1 and 1460 cm-1), 

and symmetric bending vibration of CH3 group (=1380 cm-1). The IR spectra of the non-modified 

NC also show the clearly pronounced absorption bands 1366, 1328, 1302, 1258, 1224, 1103, 1045, 

998, 975, 899, 842, and 810 cm-1 that give evidence of isotactic structure of the carrier material. 

Optical micrograph of the fibrous carrier is presented in figure 1. 
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Figure 1. Optical micrograph of the fibrous carrier 

The appearance of the 975 cm
-1

 band is caused by an interaction of the methyl group rocking 
vibration and the stretching vibration of the –СН–СН2– group. The band at 975 cm

-1
 is slightly related 

to the vibrations of the CH2 group and –СН–СН2– groups adjacent to a molecular chain and does not 

depend on the conformation of macromolecules. The band at 998 cm
-1

 is caused by an interaction of 
the methylene group rocking vibration and stretching vibration of the –СН–СН3 group. The power of 

this interaction depends on the conformation of macromolecules and, consequently, on the isotacticity 

degree. The degree of isotacticity is considered to mean the ratio of the intensities of the absorption 

bands 998 and 975 cm
–1

 in the IR spectra. The ratio of intensities of these bands is 0.86. According to 

[14], the band at 840 cm
-1

, typical of the polypropylene spectra, defines the number of molecular 
chains which consist of the sequenced trans-gosh-conformers (Т–G)n n>10. The band at 975 cm

-1
 

defines a content of conformers (T–G)n n>4 in the amorphous areas of a high-molecular crystallising 

polymer. The presence of segments with helical conformation is proved by the band at 998 cm
-1

. The 

coiled conformation, which can be identified by the band at 1155 cm
-1

, is absent. The ratio of 

intensities of the absorption bands 975 and 840 cm
–1

 shows that the structure of NC is represented 

mainly by the long segments (n>10) in a helical trans-gosh-conformation, which lead to the formation 

of a long-length lamellar structure [15]. Hence, we can conclude that before the modification, the 

material of the nanoparticle carrier is isotactic polypropylene with high degree of isotacticity. 

In addition, the IR spectrogram contains the following bands: a weak band at 1720 cm
-1

 belonging to 
the stretch vibration of С=О group that gives evidence of the oxygen-containing groups formation and 

absorption bands in the range of 2500–3700 cm
-1

 with the maximum of absorption at 3400–3460 cm
-1

, 
which correspond to the stretch vibrations of ОН groups in accordance with the results published in 

literature [16, 17]. See table 1. The appearance of these bands can be explained by the fact that when 

the melt of PP is blown, free radicals are formed due to the presence of the methylene groups in the PP 

macromolecular chains with low bond energy containing hydrogen at the tertiary carbon atom. In the 

presence of the air oxygen, thermal destruction goes by the radical-chain mechanism with the 

formation of the peroxide radicals and peroxides. It leads to the formation of the structure defects in 

the material including the unsaturated and oxygen-containing functional groups, not typical of initial 

polymer, such as hidroperoxides, carbonyl, ether, etc. [18] 

Table 1. Absorption bands for initial polypropylene melt-blown web. 

Wavenumber  

(sm
–1

) 
Intensity Absorbing group and type of vibration 

809 weak r (СН2) 

842 average r (СН3) 

975 average r (СН3); (С  С) 
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998 average r (СН3) ;  (С СН3) 

1155 average  (С СН3) 

1168 average r (СН3);  (С  С) 

1380 strong s (СН3) 

1435 average s (СН2) 

1460 average a (СН3) 

1645 weak  (С  O) 

1720 weak  (С  O) 

2720 weak, narrow  (ОН) 

2838 average s (СН2) 

2879 average a (СН2) 

2921 very strong  (СН) 

2950 very strong a (СН3) symmetric  

to Н  С СН3 plane 

2959 very strong a (СН3), antisymmetric  

to Н  С СН3 plane 

3400 weak, broad  (ОН) 

The presence of oxygen-containing groups on the NC surface makes it possible to carry out its 

modification by the method that includes the smearing of the carrier surface with an active component 

obtained as a result of the tin-salts hydrolysis. The active component is stabilized on the carrier surface 

due to the bonding of the metal cations by carboxylic groups coupled with the formation of hydrogen 

bonds between the carboxylic group hydroxyl hydrogen and the hydrolysed tin salt oxygen. These 

processes take place only at low pH. Formation and immobilisation of the tin dioxide nanoparticles on 

the NC surface occur due to the microwave irradiation. [19]. The results of an XRD study indicate that 

the supramolecular structure of the non-modified polypropylene fibrous carrier is represented by 33% 

of the smectic mesomorph phase, which can be identified by the presence of two wide peaks, situated 

at the 2 = 14.8°(5.99) и 21.4°(4.19) (figure 2.1). Furthermore, the supramolecular structure of the 

modified NC is represented by 42% of the monoclinic α-crystalline phase (figure 2.2). 

 
Figure 2. XRD spectra of polypropylene fibrous carrier before and after modification: 

1 - non-modified NC; 2 - modified with SnO2/TiO2 nanoparticles NC 

After modification, the IR spectra of NC samples demonstrate new absorption bands in the wave 

number range below 750 cm
-1

. For the carrier material, weak bands located in this range are related to 
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the skeleton bending vibration and internal chain rotation. In addition, the authors of [20, 21] 

identified the absorption bands in this range as related to the SnO2 nanoparticles. With respect to these 

works, we can recognise the bands at the 427 cm
-1

, 530 cm
-1

, and 679 cm
-1

 as related to the metal – 
oxygen stretch vibrations (νO–Sn–O), which can be identified as the Sn–O bonds vibrations with 

various coordination saturability of tin. Moreover, new absorption bands appeared at the 417 cm
-1
 and 

519 cm
-1

, which correspond to the titan dioxide in the rutile structure. The TEM micrograph (figure 3) 

shows microfibers with (TiO2/SnO2) nanocrystals attached to their surface. 

 
Figure 3. TEM micrograph of TiO2/SnO2 hetero-nanoparticles 

attached to the surface of a polypropylene fiber.  

The spectra of the modified NC exhibit the clearly pronounced absorption bands 1366, 1328, 1302, 

1258, 1224, 1103, 1045, 998, 975, 899, 842, and 810 cm
-1

 that indicate that the structure of the carrier 

material is isotactic. The ratio of intensities of the absorption bands 975 and 840 cm
–1

 remains 

unchanged. Consequently, after modification, the structure of NC is still represented mainly by long 

segments (n>10) in a helical trans-gosh-conformation. This is indicative of the fact that the steric 

configuration is largely unchanged. Furthermore, modification of the carrier surface does not lead to 

the destruction of chemical bonds. The ratio of intensities of the absorption bands 975 and 998 cm
-1

 in 

the spectra of the modified NC remained the same – 0.86. Thus, superficial modification of NC with 

the tin dioxide nanoparticles does not change its chemical structure. 

4.  Summary 

Thus, this work has demonstrated the changes taken place as a result of the polypropylene melt-blown 
web superficial modification with the SnO2/TiO2 nanoparticles using microwave irradiation. These 

changes are manifested in an appearance of new absorption bands in the IR spectra. These bands do 

not overlap with the bands in the IR spectra of the unmodified carrier, and despite their weak intensity, 
can be surely identified as the bands of the SnO2/TiO2 nanoparticles. Having analysed the XRD 

analysis data, it has been concluded that the mesomorph structure of the carrier material transforms 

into the monoclinic α-crystalline due to microwave irradiation. Moreover, we have found out that the 

carrier material keeps its helical-chain conformation and remains stereoregular after modification. 

Therefore, the material of the carrier is not destructed under modification possessing the initial set of 

properties and attains new functional properties due to the presence of active nanoparticles attached to 

its surface. 

Our findings lead us to the conclusion that a new opportunity appears of developing a new class of 

effective and safety filtering materials for the fresh and waste water purification using the 

polypropylene melt-blown webs modified with rare and rare-earth elements nanoparticles. 
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