ИССЛЕДОВАНИЕ СТРУКТУРЫ СПЕЧЕННОГО КОМПОЗИТА ZrO₂(Mg)-MgO

А.С. Буяков ^{1,2},

Научный руководитель: профессор, д.ф.-м.н., С.Н. Кульков ^{1,2,3}

¹Национальный исследовательский Томский государственный университет,

Россия, г. Томск, пр. Ленина 36, 634050

²Институт физики прочности и материаловедения СО РАН

Россия, г. Томск, пр. Академический 2/4, 634055

³Национальный исследовательский Томский политехнический университет

Россия, г. Томск, пр. Ленина 30, 634050

E-mail: <u>alesbuyakov@gmail.com</u>

STRUCTURE STUDYING OF SINTERED ZrO₂(Mg) -MgO COMPOZITE

A.S. Buyakov 1,2

Scientific Advisor: Prof., Dr. S.N. Kulkov 1,2,3

¹National Research Tomsk State University, Russia, Tomsk, Lenin str., 30, 634050

²Institute of Strength Physics and Materials Science SB RAS, Russia, Tomsk, Akademicheskiy str., 2/4, 634055

³National Research Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050

E-mail: alesbuyakov@gmail.com

Abstract. Composite material $ZrO_2(Mg)$ -MgO with different magnesia concentrations and 50 % of porosity were studied. Were measured intensity of the crystalline lattice peaks and composite porosity. It is shown that intensity of ZrO_2 cubic phase decrease with increasing of MgO concentration. Material has a bimodal porosity distribution which does not depend on the composition and equal to 30 and 100 micrometers.

Формирование иерархических структур в композиционных материалах является актуальной задачей современного материаловедения. Композиты ZrO₂-MgO вызывают интерес и в качестве конструкционного материала, и в качестве материала функционального назначения, например, как пенокерамический материал для реконструкции костной ткани или пористый фильтрующий материал [1-3].

Целью проводимых исследований является исследование структуры керамического композиционного материала ZrO₂-MgO с пористостью 50 %.

В работе изучены керамические материалы с различной концентрацией MgO от 0 до 100%, с объемом порового пространства 50 %, спеченные при температуре 1600 °C. Такой уровень пористости был достигнут путем добавления 50 % (от общего объема) частиц сверхвысокомолекулярного полиэтилена (СВМПЭ) в исходные дисперсные составы, который был удален выдержкой в течение 1 часа при 300 °C во время спекания.

Исследована тонкая кристаллическая структура методом рентгеноструктурного анализа и поровое строение изучаемых керамик с помощью растровой электронной микроскопии (РЭМ) (Рис. 1).

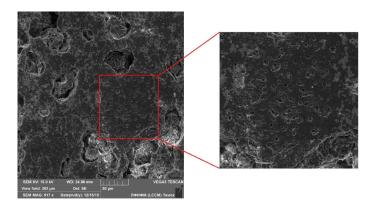


Рис. 1. РЭМ снимки шлифованной поверхности композита с 50 % MgO в составе

В работе изучены материалы пяти составов. Формование и спекание керамических образцов происходило при идентичных условиях. Методом случайных секущих определен средний размер и распределение пор. На основе полученных данных можно выделить два уровня пористости: макропоры, образованные частицами СВМПЭ, со средним размером порядка 100 мкм, и микропоры, средний размер которых варьировался около 30 мкм (Таблица 1).

Таблица 1 Зависимость среднего размера пор от состава

Состав	ZrO ₂ (Mg)	75 % ZrO ₂ (Mg)	50 % ZrO ₂ (Mg)	25 % ZrO ₂ (Mg)	MgO
		25 % MgO	50 % MgO	75 % MgO	
Средний	29 мкм	30 мкм	27 мкм	26 мкм	28 мкм
размер пор	110 мкм	104 мкм	87 мкм	101 мкм	105 мкм

Исследована кристаллическая структура материалов. Показано, что интенсивность кубической фазы ZrO₂ увеличивается, с ростом концентрации ZrO₂ в составе, обратно пропорционально интенсивности MgO (Puc. 2). Средний размер областей когерентного рассеяния кубической фазы ZrO₂ увеличивается с ростом концентрации MgO в составе, в то же время микроискажения кристаллической решетки ZrO₂ и средний размер областей когерентного рассеяния и микроискажения кристаллической решетки MgO уменьшаются (Puc. 3) [4].

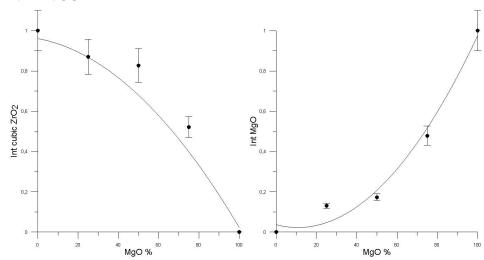
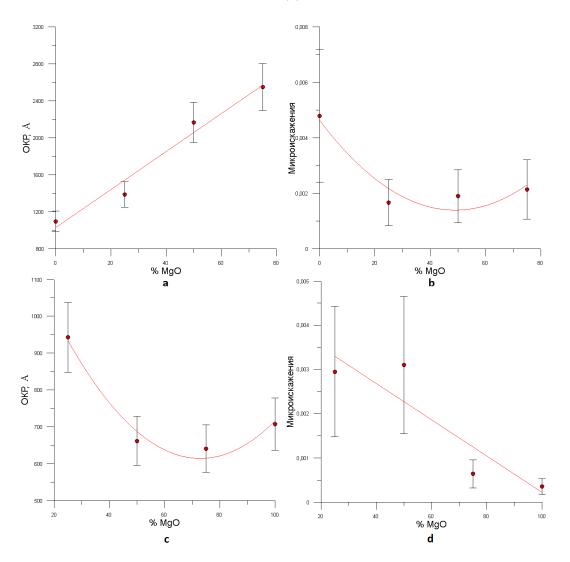



Рис. 2. Зависимость интенсивностей фаз ZrO2 и MgO от состава

Puc. 3. Зависимость областей когерентного рассеяния и микроискажений кристаллической решетки ZrO₂ и MgO от состава

СПИСОК ЛИТЕРАТУРЫ

- Duangsupa C., Kulkov S. N. Structure and mechanical properties of ZrO 2 (MgO)—CaSiO 3 composites // Strategic Technology (IFOST), 2012 7th International Forum on IEEE, 2012. – C. 1-4.
- 2. Буякова С.П., Кульков С. Н. Фазовый состав и особенности формирования структуры в нанокристаллическом ZrO2//Российские нанотехнологии. 2007. Т. 2. С. 1-2.
- 3. Буякова С.П. Свойства, структура, фазовый состав и закономерности формирования пористыхнаносистем на основе ZrO2: Автореф. дис. докт. техн. наук. Томск, 2008.
- 4. Уманский Я.С. и др Кристаллография, рентгенография и электронная микроскопия / Я.С. Уманский и др. М.: Металлургия, 1982. 632 с. 26.