Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт ИНЭО

Направление подготовки АБ. 13.03.02. Электроэнергетика и электротехника

Кафедра электроэнергетических систем

БАКАЛАВРСКАЯ РАБОТА

DARAMADI CRANTI ADOTA
Тема работы
Электрооборудование, режимы, релейная защита и автоматика КЭС
мощностью 1200 МВт

УДК 621.316.925.1-52:621.311.4

Студент

Группа	ФИО	Подпись	Дата
3-5A10	Атакулов Ихтияр Раимкулович		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент	Копьев В.Н.	Доцент, к.т.н.		

КОНСУЛЬТАНТЫ:

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

то разделу «т ппаневый менеджиний, ребуровоффективность и ребуровобрежение»						
Должность	ФИО	Ученая степень,	Подпись	Дата		
		звание				
Доцент	Коршунова Л.А.	Доцент, к.т.н.				

По разделу «Социальная ответственность»

	F F				
	Должность	ФИО	Ученая степень,	Подпись	Дата
L			звание		
	Доцент	Бородин Ю.В.	Доцент, к.т.н.		

ДОПУСТИТЬ К ЗАЩИТЕ:

	r 1	1		
Зав. кафедрой	ФИО	Ученая степень,	Подпись	Дата
		звание		
Электрических систем	Сулаймонов А.О.	Доцент, к.т.н.		

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ООП

Код	Результат обучения
результата	(выпускник должен быть готов)
•	Профессиональные компетенции
P1	Применять соответствующие гуманитарные, социально-экономические,
	математические, естественнонаучные и инженерные знания,
	компьютерные технологии для решения задач расчета и анализа
	электрических устройств, объектов и систем
P2	Уметь формулировать задачи в области электроэнергетики и
	электротехники, анализировать и решать их с использованием всех
	требуемых и доступных ресурсов
P3	Уметь проектировать электроэнергетические и электротехнические
	системы и их компоненты.
P4	Уметь планировать и проводить необходимые экспериментальные
	исследования, связанные с определением параметров, характеристик и
	состояния электрооборудования, объектов и систем электроэнергетики
	и электротехники, интерпретировать данные и делать выводы.
P5	Применять современные методы и инструменты практической
	инженерной деятельности при решении задач в области
	электроэнергетики и электротехники.
P6	Иметь практические знания принципов и технологий
	электроэнергетической и электротехнической отраслей, связанных с
	особенностью проблем, объектов и видов профессиональной
	деятельности профиля подготовки на предприятиях и в организациях -
	потенциальных работодателях.
	Универсальные компетенции
P7	Использовать знания в области менеджмента для управления
	комплексной инженерной деятельностью в области электроэнергетики
DO.	и электротехники
P8	Использовать навыки устной, письменной речи, в том числе на
	иностранном языке, компьютерные технологии для коммуникации,
	презентации, составления отчетов и обмена технической информацией
DO	в областях электроэнергетики и электротехники
P9	Эффективно работать индивидуально и в качестве члена или лидера
	команды, в том числе междисциплинарной, в области
D10	электроэнергетики и электротехники.
P10	Проявлять личную ответственность и приверженность нормам профессиональной этики и нормам ведения комплексной инженерной
	деятельности.
D11	
P11	Осуществлять комплексную инженерную деятельность в области
	электроэнергетики и электротехники с учетом правовых и культурных
	аспектов, вопросов охраны здоровья и безопасности
P12	жизнедеятельности.
T 14	Быть заинтересованным в непрерывном обучении и совершенствовании своих знаний и качеств в области электроэнергетики и электротехники.
	своих знании и качеств в области электроэнергетики и электротехники.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт Направление подготовки Кафедра	ИНЭО Электроэнергетика и электротехника Электрических систем				
			УТВЕРЖ, Зав. кафед		
			(Подпись)	(Дата)	(Ф.И.О.)
на вып	олнение выпус	ЗАДАНИЕ жной квали	фикацион	іной раб	ОТЫ
В форме:					
	Бака	алаврской р	работы		
(баканариа)	ой работы, дипломн	IOEO HIDORETA/NAÑO	TIL MODUCTAN	ркой писсер	ranna)
Студенту:	ои рассты, дипломн	юго проекта/рабо	ты, магистерс	жой диссер	ации)
Группа ФИО					
3-5A10	Ат	акулов Ихтия	ір Раимкул	пович	
Тема работы:					
Электрооборудо		ы, релейная эщностью 1			атика КЭС
Утверждена приказом,	циректора (да	ата, номер)	01.0	2.16 N	№ 576/C
			-		
Срок сдачи студентом	выполненной	і работы:	10 и	іюня 2	016 г.
ТЕХНИЧЕСКОЕ ЗАДАН	ИE:				
Исходные данные к работ					
(наименование объекта исследования ил производительность или нагрузка; режи (непрерывный, периодический, циклическ сырья или материал изделия; требован изделию или процессу; особые требован функционирования (эксплуатации) объе плане безопасности эксплуатации, влия.		грическая метры объ		ьекта	

окружающую среду, энергозатратам; экономический

анализ и m. д.).

Перечень подлежащих исследованию, проектированию и разработке вопросов

(аналитический обзор по литературным источникам с целью выяснения достижений мировой науки техники в рассматриваемой области; постановка задачи исследования, проектирования, конструирования; содержание процедуры исследования, проектирования, конструирования; обсуждение результатов выполненной работы; наименование дополнительных разделов, подлежащих разработке; заключение по работе).

- 1. Постановка задачи
- 2. Роль и место защищаемого объекта в энергосистеме
- 3. Выбор устройств релейной защиты и автоматики
- 4. Планирование расчетных аварийных режимов
- 5. Расчет параметров срабатывания устройств релейной защиты и автоматики
- 6. Экономическая часть
- 7. Безопасность жизнедеятельности
- 8. Заключение

Перечень графического материала

(с точным указанием обязательных чертежей)

- 1. Главная электрическая схема электростанции-1л
- 2. Схема подключения защит-1 л

Консультанты по разделам выпускной квалификационной работы

(с указанием разделов)

Раздел	Консультант
Финансовый менеджмент, ресурсоэффективность и ресурсосбережение	Доцент, к.т.н. Коршунова Л.А.
Социальная ответственность	Доцент, к.т.н. Бородин Ю.В.

Названия разделов, которые должны быть написаны на русском и иностранном языках:

Дата выдачи задания на выполнение выпускной	01.02.16
квалификационной работы по линейному графику	

Залание выдал руковолитель:

эаданис выдал руковод	ждание выдал руководитель.							
Должность	ФИО	Ученая степень, звание	Подпись	Дата				
Доцент	Копьев В.Н.	Доцент, к.т.н.		29.01.16				

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
3-5A10	Атакулов Ихтияр Раимкулович		29.01.16

Реферат

Выпускная квалификационная работа содержит 106 страниц, 9 рисунков, 20 таблиц, 11 источников.

Ключевые слова: энергосистема, короткое замыкание подстанция, турбогенератор, автотрансформатор, релейная защита, автоматика, дистанционная защита, расчет защит, токовая направленная защита нулевой последовательности, газовая защита, повреждение, реле, шкаф защит, уставка, чувствительность.

Цель проекта: объектом разработки является релейная защита и автоматика основного электрооборудования КЭС мощностью 1200 МВт.

Выбор силового оборудования электрической станции, релейной защиты блока генератор - трансформатор мощностью 200Мвт, расчет уставок выбранных защит.

Выпускная квалификационная работа выполнена с помощью программ MathCAD, VISIO, текстовый редактор MSWord 2010.

Определения, обозначения, сокращения, нормативные ссылки

АВР – автоматический ввод резерва

АПВ – автоматическое повторное включение

АТ – автотрансформатор

ВН – высокое напряжение

ДЗТ – дифференциальная защита трансформатора

ДО – дифференциальная отсечка

КЗ – короткое замыкание

МТЗ – максимальная токовая защита

НН – низкое напряжение

ОВПФ – опасные и вредные производственные факторы

ОПУ - общеподстанционный пункт управления

ОРУ – открытое распределительное устройство

ПА – противоаварийная автоматика

ПС – подстанция

ПТЭ – правила технической эксплуатации электроустановок потребителей

ПУЭ – правила устройства электроустановок

РЗА – релейная защита и автоматика

РПН – регулировка напряжения под нагрузкой

СН – среднее напряжение

СТЗНП – ступенчатая токовая защита нулевой последовательности

ТЗНП – токовая защита нулевой последовательности

ТЗОП – токовая защита обратной последовательности

ТЭО – технико-экомическое обоснование

УРЗА – устройство релейной защиты и автоматики

УРОВ – устройство резервирования отказа выключателя

В настоящей работе представлены ссылки на следующие стандарты:

- 1. ГОСТ 12.0.003-74 ССБТ. Опасные и вредные производственные факторы. Классификация.
- 2. ГОСТ 12.1.019-79 ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты.
- 3. ПОТ РМ-016-2001, РД 153-34.0-03.150-00. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок.
- 4. ГОСТ 12.2.013-91 ССБТ. Машины ручные электрические. Общие требования безопасности и методы испытания.
- 5. ПОТ РМ-012-2000. Межотраслевые правила по охране труда при работе на высоте.
- 6. ГОСТ 12.2.003-91 ССБТ. Оборудование производственное. Общие требования безопасности.
- 7. ПОТ РМ-007-98. Межотраслевых правил по охране труда при погрузочно-разгрузочных работах и размещении грузов.
- 8. ГОСТ 12.3.009-76 ССБТ. Работы погрузочно-разгрузочные. Общие требования безопасности.
- 9. ГОСТ 12.1.005-88. Общие санитарно-гигиенические требования к воздуху рабочей зоны.
- 10. СанПиН 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений.
- 11. ГОСТ 12.1.005-88. Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны.
- 12. СП 52.13330.2011 «СНиП 23-05-95 Естественное и искусственное освещение, нормы проектирования».
- 13. Назаренко О.Б. Безопасность жизнедеятельности. Расчёт искусственного освещения. Методические указания к выполнению индивидуальных заданий для студентов дневного и заочного обучения всех специальностей. Томск: Изд. ТПУ, 2000.

- 14. ГОСТ 12.1.006 84 ССБТ. «ССБТ. Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля».
- 15. СанПиН 2.2.4.1191-03 "Электромагнитные поля в производственных условиях".
- 16. ГОСТ 12.1.003-83 (1999) ССБТ. Шум. Общие требования безопасности.
- 17. ГОСТ 12.1.012-90 ССБТ. Вибрационная безопасность. Общие требования.
- 18. ГОСТ 12.1.004-91 ССБТ. Пожарная безопасность. Общие требования.
- 19. Федеральный закон от 22.07.2008 N 123-ФЗ (ред. от 13.07.2015) "Технический регламент о требованиях пожарной безопасности"
- 20. НПБ 105-03 Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности
- 21. Постановление Правительства РФ от 25.04.2012 N 390 «О противопожарном режиме».
- 22. Пособие к СНиП 11-01-95 по разработке раздела проектной документации "Охрана окружающей среды".
- 23. СанПиН 2.2.1/2.1.1.1200-03. Санитарно- зашитные зоны и санитарная классификация предприятий, сооружений и иных объектов.
- 24. ГОСТ Р 22.0.02-94. Безопасность в чрезвычайных ситуациях. Термины и определения основных понятий.

		C.
	Введение	11
	Обзор литературы	13
1	Структурная схема станции	14
	1.1 Описание структурной схемы электрических соединений	
	электростанции	14
	1.2 Выбор турбогенераторов, трансформаторов и	
	автотрансформаторов	15
	1.2.1 Выбор турбогенераторов	15
	1.2.2 Выбор трансформаторов блоков и автотрансформаторов	
	СВЯЗИ	19
	1.3 Выбор сборных шин и токопроводов	20
	1.3.1 Выбор сборных шин 220 кВ	20
	1.3.2 Выбор сборных шин 500 кВ	21
	1.3.3 Выбор проводов длинных связей 500 кВ	22
	1.3.4 Выбор проводов длинных связей 220 кВ	23
	1.3.5 Выбор токопроводов	23
	1.4 Выбор электрических аппаратов	24
	1.4.1Выбор выключателей	24
	1.4.2Выбор трансформаторов тока	30
	1.4.3 Выбор трансформаторов напряжения	31
	1.5 Выбор схем электрических соединений распределительных	34
	устройств электростанции и основные конструктивные решения	
2	Роль и место защищаемого объекта в энергосистеме	35
	2.1Краткая характеристика станции на которой находится	37
	защищаемый объект	
3	Выбор устройств релейной защиты и автоматики	39
	3.1 Повреждения генераторов	39
	3.2Анормальные режимы работы генераторов	41

	3.3 Выбор защит	42
	3.4 Повреждения трансформаторов	43
4	Расчет параметров срабатывания устройств релейной защиты и	44
	автоматики	
	4.1 Расчет токов КЗ	45
5	Расчет защит	48
	5.1 Поперечная дифференциальная защита	48
	5.2 Продольная дифференциальная защита	49
	5.3 Дистанционная защита	50
	5.4 Защита обратной последовательности	51
	5.5 Защита от симметричных перегрузок обмотки статора	52
	5.6 Защита от потери возбуждения	53
	5.7 Защита от перегрузки ротора	53
	5.8 Защита от замыканий на землю в обмотке ротора	53
	5.9 Защита от повреждений на выводах и внутренних	54
	повреждений трансформатора	
	5.10 Токовая отсечка от междуфазных коротких замыканий	57
	5.11 Защита от внешних КЗ на землю	57
	5.12 Газовая защита трансформатора	58
	5.13 Защита от повреждений на выводах и внутренних повреждений трансформатора	59
6	Дистанционная защита	62
7	Финансовый менеджмент, ресурсоэффективность и	64
	ресурсосбережение	
	7.1 Планирование научно-технического исследования	65
	7.2 Расчёт научно-технической эффективности	66

	7.3 Расчёт затрат на проектирование РЗ	69
	7.4 Бюджет научно-технического исследования	74
	7.5 Определение капитальных вложений в РЗ и А	78
8	Социальная ответственность	80
	8.1 Производственная безопасность	81
	8.2 Техника безопасности	84
	8.3 Производственная санитария	86
	8.4 Пожарная безопасность	94
	8.5 Экологическая безопасность	100
	8.6 Чрезвычайные ситуации	102
	Заключение	104
	Список использованных источников	105
	Приложение А	106

Введение

В энергосистемах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередач и электроустановок потребителей электрической энергии.

Повреждения энергосистемах сопровождаются В значительным тока И глубоким понижением напряжения элементах энергосистемы. Повышение тока сопровождается большим выделением тепла, разрушения месте повреждения вызывающее В И опасный неповрежденных линий и оборудования, по которым этот ток проходит. Понижение напряжения нарушает нормальную работу потребителей устойчивость параллельной работы электроэнергии генераторов энергосистемы в целом.

Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.

Таким образом, эти повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы энергосистем создают возможность возникновения повреждений или расстройства работы.

Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.

Релейная защита является это основной вид электрической автоматики, без которой невозможна нормальная и надежная работа современных

энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.

При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, которые воздействует на специальные силовые выключатели, предназначенных для размыкания токов повреждения.

В современных энергетических системах значение релейной защиты особенно возрастает в связи с бурным ростом мощности энергосистем, объединением их в единые электрически связанные системы в пределах нескольких областей, всей страны, и даже нескольких государств.

Промышленность выпускает комплектные устройства РЗА для всех элементов ЭЭС для любых классов напряжения. Проектирование РЗА сводится к выбору типовых комплексов и к привязке их к конкретному объекту, работающему в конкретной ЭЭС. Устройства релейной защиты должны соответствовать основным требованиям, таким как селективность, устойчивость и надежностью функционирования.

Данная дипломная работа включает выбор защит для блока генератортрансформатор, планирование и расчет типичных аварийных режимов, расчет ставок защит и оценка их чувствительности.

Обзор литературы

Релейная защита является важной частью автоматики, которая используется в современных энергосистемах. Рассмотрев существующие работы в данной области можно сделать вывод, что изучению релейной защиты уделяется большое внимание. На сегодняшний день опубликовано большое количество изданий, в которых содержится информация для разработки защит электроустановок. Обязательные требования к релейной защите описаны в ПУЭ [2]. Однако в данном источнике приведены только основные понятия. Более подробно схемы защит рассматриваются в работе Бурнашева А.Н.[10].

В связи с тем, что основные принципы релейной защиты остаются неизменными, не теряют свой актуальности труды таких авторов, как Неклепаев Б. Н., Крючков И. П. [11], Федосеев А. М., Федосеев М. А. [12].

Тем не менее, устройства РЗА постоянно развиваются, поэтому необходимо обновлять знания персонала для эффективной работы с современным оборудованием. Такая возможность существует благодаря публикации производителями УРЗА документации на своих официальных сайтах.

Применение специализированных компьютерных программ существенно облегчает расчёт параметров ЭЭС и уставок релейной защиты. Описание одной из таких программ (ТКЗ-3000) рассмотрено в работе Шмойлова А.В.[13].

Раздел ВКР «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение» был выполнен на основании методики, приведенной в работе Коршуновой Л.А., Кузьминой Л.Г.[14].

Раздел «Социальная ответственность» был разработан с помощью нормативных документов, посвящённых теме безопасности жизнедеятельности[1-24].

1 Выбор турбогенераторов

Условия выбора: тип генератора выбираем на основании исходных данных по параметрам номинальных машины:

- Активной мощности;
- Напряжению на выводах обмотки статора.

Выбираем 6 генераторов одного типа ТВВ-200-2АУЗ [2,стр. 76, табл. 2.1]:

Таблица 1 – Данные выбранного турбогенератора

Исходные данные

	Генераторь	I		Энерго	система	
Nº задания	Число и мощность Напряжение		Мощность	Напряжение	Реактивноес опротивлени	Количество линий связи
1	2	3	4	5	6	7
	Шт.х МВт	кВ	MB [.] A	кВ	%	Шт.
5	6x200	x200 15,75		500	250	2

Нагрузки потребителей								Вели	чина
Присоединение наU1			Пр	Присоединение наU2			Резе	ерва	
U1	Число и мощностьли	Коэффициен т системы	Коэффициен т мощности	UZ	Число и мощностьли пий	Коэффициен т системы	Коэффициен т мощности	Настанции	В системе
8	9	10	11	12	13	14	15	16	17
кВ	Шт.х	-	-	кВ	Шт.х	-	-	МВт	МВт
	МВт				МВт				
220	4x95	0,81	0,89	500	2x650	0,86	0,91		лансу ности

Продолжение таблицы 1

Расшифровка и обозначений турбогенератора:

- Т Турбогенератор;
- В непосредственное охлаждение обмотки статора водой;
- ${f B}$ непосредственное охлаждение обмотки ротора водородом
- 200 номинальная активная мощность генератора, МВт;
- **2** число полюсов;
- А обозначает, что генератор предлежит унифицированной серии;
- У генератор принадлежит к использованию для "умеренного" климата;
- 3 в закрытом помещении сестественной вентиляцией.

Расчетные параметры генератора

$$\begin{split} Q_{\Gamma} &= P_{\Gamma} \cdot tg(arc\cos\varphi_{\Gamma}) = 200 \cdot tg(arc\cos0,85) = 123,95 \quad \textit{MBap} \\ S_{\Gamma} &= \sqrt{P_{\Gamma}^{\ 2} + Q_{\Gamma}^{\ 2}} = \sqrt{200^2 + 123,95^2} = 235,29 \quad \textit{MBA} \\ P_{C.H.} &= 0,1 \cdot P_{\Gamma} = 0,1 \cdot 200 = 20 \quad \textit{MBA} \\ Q_{C.H.} &= P_{C.H.} \cdot tg(arc\cos\varphi_{C.H.}) = 20 \cdot tg(arc\cos0,85) = 12,39 \quad \textit{MBap} \\ S_{C.H.} &= \sqrt{P_{C.H.}^{\ 2} + Q_{C.H.}^{\ 2}} = \sqrt{20^2 + 12,39^2} = 23,53 \quad \textit{MBA} \\ P_{C.H.BB} &= 0,04 \cdot P_{\Gamma} = 8 \quad \textit{MBm} \end{split}$$

Расчет установившихся режимов: аналитический расчет.

1) Баланс активной и реактивной мощности при нормальном режиме на максимальной нагрузке

Нагрузка потребителей, присоединенных к шинам среднего напряжения U_I =220 кВ

$$P_{1} = K_{CU1} \sum_{i=1}^{n} n_{i} P_{i} = 0,81 \cdot 4 \cdot 95 = 308MBm$$

$$Q_{1} = P_{1} \cdot tg(arc\cos\varphi_{1}) = 308 \cdot tg(arc\cos0,89) = 158 \quad MBap$$

Полный переток мощности через один автотрансформатор

$$\begin{split} S_{max} &= \sqrt{\left(2 \cdot P_{\Gamma} - 2 \cdot P_{c.H.} - P_{1}\right)^{2} + \left(2 \cdot Q_{\Gamma} - 2 \cdot Q_{c.H.} - Q_{1}\right)^{2}} = \\ &= \sqrt{\left(2 \cdot 200 - 2 \cdot 20 - 308\right)^{2} + \left(2 \cdot 124 - 2 \cdot 12, 4 - 158\right)^{2}} = 83,4 \quad MBA \end{split}$$

2) Баланс активной и реактивной мощности в нормальном режиме при минимальной нагрузке

Нагрузка потребителей, при соединенных к шинам среднего напряжения U_I =220 кВ

$$P_{\min 1} = P \cdot k_{\min} = 308 \cdot 0, 7 = 215,6 \quad MBA$$

$$Q_{\min 1} = P_{\min 1} \cdot tg(arc\cos\varphi_1) = 215.6 \cdot tg(arc\cos 0.89) = 110.5$$
 MBA

Полный переток мощности через один автотрансформатор(АТ).

$$S_{\min} = \sqrt{\left(2 \cdot P_{\Gamma} - 2 \cdot P_{c.H.} - P_{\min 1}\right)^{2} + \left(2 \cdot Q_{\Gamma} - 2 \cdot Q_{c.H.} - Q_{\min 1}\right)^{2}} =$$

$$= \sqrt{\left(2 \cdot 200 - 2 \cdot 20 - 215,6\right)^{2} + \left(2 \cdot 124 - 2 \cdot 12,4 - 110,5\right)^{2}} = 146,2 \quad MBA$$

3) Баланс активной и реактивной мощности в аварийном режиме при максимальной нагрузке.

Отключаем один блок на шинах 220 кВ.

Нагрузка потребителей, присоединенных к шинам среднего напряжения U_I =220 кВ.

$$P_1 = K_{CU1} \sum_{i=1}^{n} n_i P_i = 0,81 \cdot 4 \cdot 95 = 308MBm$$

$$Q_1 = P_1 \cdot tg(arc\cos\varphi_1) = 308 \cdot tg(arc\cos 0.89) = 158$$
 MBap

Полный переток мощности через один автотрансформатор(АТ)

$$S_{ab} = \sqrt{(P_{\Gamma} - P_{c.H.} - P_1)^2 + (Q_{\Gamma} - Q_{c.H.} - Q_{max1})^2} =$$

$$= \sqrt{(200 - 20 - 308)^2 + (124 - 124 - 158)^2} = 136.2 \quad MBA$$

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ»

Студенту

Группа	ФИО
3-5A10	Атакулов Ихтияр Раимкулович

V	тут ЭНИН Кафедр		ЭСПП
Уровень образования	Бакалавр	Направление/специальность	Электроэнергетика и
			электротехника
Исходные данные	к разделу «Финансовый	менеджмент, ресурсоэ	ффективность и
ресурсосбережени	e»:		
1. Стоимость ресурс	ов научного исследования (НИ).	: - стоимость матер	иалов и оборудования;
материально-техн	ических, энергетических, финан	нсовых, - квалификация испо	лнителей;
информационных и	человеческих	- трудоёмкость раб	оты.
2. Нормы и норматив	вы расходования ресурсов	- нормы амортизаці	ıu;
		- размер минимально	ой оплаты труда.
-	ема налогообложения, ставки	- отчисления в социс	альные фонды.
налогов, отчислент	ий, дисконтирования и кредито	<i>рвания</i>	
	ов, подлежащих исследов		
	кого потенциала, перспективно		риантов решения с учётом
	едения НИ с позиции	научного и техничес	кого уровня
	ости и ресурсосбережения		
2. Планирование исследований	и формирование бюджета на		-
	a nagua u anaduua naana6 amuu a	- расчёт бюджета п	на проектирование, ьных вложений в основные
внедрения ИР	е плана и графика разработки і	средства.	ьных вложении в основные
4. Определение ресурс	сной (ресурсосберегающей),	- определение научно	э-технической
финансовой, бюдж эффективности ис	етной, социальной и экономиче следования	еской эффективности	
Перечень графиче	еского материала (с точным)	указанием обязательных чертежей)	:
1. График проведения	НИ		
_			

Задание выдал консультант:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент	Коршунова Лидия Афанасьевна	К.Т.Н.		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
3-5A10	Атакулов Ихтияр Раимкулович		

5. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение.

Целью обоснование данного раздела является технико-экономическое проектирование электрооборудования, режимов, релейной защиты автоматики КЭС 1200 МВт. Реконструкция позволит повысить быстродействие, селективность, чувствительность и надежность релейной защиты и, как следствие, повысить надёжность электроснабжения потребителей. Для целей достижения ЭТИХ выбираем современное микропроцессорное оборудование типа Новшество: Шкаф цифровой защиты ШЭ1111 $\Pi\Pi\Pi$ «ЭКРА».

Для ТЭО проведения анализа произведем необходимые расчеты:

- 1. Планирование научно-технического исследования;
- 2. Расчет затрат на проектирование релейной защиты основного оборудования станции;
- 3. Расчет затрат на оборудование и монтаж.

5.1 Планирование научно-технического исследования

Таблица13.1. Перечень этапов, работ и распределение исполнителей

Основные этапы	№	Содержание работ	Исполнитель
Разработка технического задания	1	Составление и утверждение технического задания	Руководитель
Выбор направления исследований	2	Подбор и изучение материалов по теме	Инженер
постодования	3	Выбор направления исследований	Руководитель Инженер
	4	Календарное планирование работ по теме	Руководитель
Проведение	5	Анализ исходных данных	Инженер
теоретических расчетов	6	Предварительный выбор защит	
и обоснований	7	Расчет уставок	
		дифференциальной защиты	
	8	Расчет защиты от перегрузки	
	9	Расчет дополнительных защит	
Обобщение и оценка	10	Оценка эффективности	Инженер
результатов		полученных результатов	
Контроль и	11	Контроль качества выполнения	Руководитель
координирование		проекта и консультирование	
проекта		исполнителя	
Разработка технической	12	Разработка блок-схемы,	Инженер
документации и		принципиальной схемы	
проектирование			
Оформление отчета по	13	Составление пояснительной	Инженер
НИР (комплекта		записки (эксплуатационно-	
документации по ОКР)		технической документации)	

5.2 Расчёт научно-технической эффективности

В идеале, любое проектирование должно начинаться с выявления требований потенциальных потребителей. После такого анализа становится возможным вычислить единичный параметрический показатель

$$q = \frac{P}{P_{100}} \cdot p,$$

где q – параметрический показатель;

P – величина параметра реального;

 P_{100} — величина параметра гипотетического (идеального) объекта, удовлетворяющего потребность на 100%;

p — вероятность достижения величины параметра; вводится для получения более точного результата с учетом элемента случайности, что позволяет снизить риск осуществления проекта, принимаем p=0,9

Каждому параметрическому показателю по отношению к объекту соответствует некий вес d, разный для каждого показателя. После вычисления всех единичных показателей становится реальным вычисление обобщенного (группового показателя), характеризующего соответствие объекта потребности в нем (полезный эффект или качество объекта):

$$Q = \sum_{i=1}^{n} q_i d_i,$$

где Q – групповой технический показатель (по техническим параметрам);

 q_i – единичный параметрический показатель по i-му параметру;

 d_i – вес i-го параметра;

n – число параметров, подлежащих рассмотрению.

$$Q_n = \sum_{i=1}^n q_i d_i = 0.9$$
 (13.3)

$$Q_{\kappa} = \sum_{i=1}^{n} q_i d_i = 0,135$$
 (13.4)

Показатель конкурентоспособности новшества по отношению к базовому объекту будет равен

$$K_{\text{Ty}} = \frac{Q_{\text{H}}}{Q_{\text{V}}} = \frac{0.9}{0.135} = 6.67$$

где $K_{\text{ту}}$ – показатель конкурентоспособности нового объекта по отношению к конкурирующему по техническим параметрам (показатель технического уровня);

 $Q_{\rm H}$, $Q_{\rm K}$ — соответствующие групповые технические показатели нового и базового объекта.

Таблица 13.2 - Оценка технического уровня новшества

Характеристики	Вес показателей ШЭ 1111		Устаревшие эл.механич.УРЗА		Идеальное УРЗА		
	d_i	P_i	q_i	P_i	q_i	P_{100}	q_{100}
1. Полезный эффект							
новшества (интегральный		Q	H	Q	Q_{κ}	Q_{100}	=1
показатель качества), Q							
1.1 Возможность							
оперативного изменения							
уставок защит и переход с	0,3	100	0,9	50	0,45	100	0,9
одной характеристики на							
другую, (%)							
1.2Срок службы (Год)	0,2	12	0,4	25	0.9	25	0,9
1.3 Возможность ведения							
отчёта о срабатывании	0,2	100	0,9	0	0	100	0,9
защит, (%)							
1.4 Возможность							
выполнения							
самодиагностики и	0,2	100	0,9	0	0	100	0,9
диагностики первичного							
оборудования, (%)							
1.5 Возможность							
подключения в сеть ЭВМ,	0,1	100	0,9	0	0	100	0,9
(%)							

Таблица 13.3 – Объяснение величин параметров.

Характеристики	Новшество: Шкаф	Конкурент:
Характеристики	1	5 1
	цифровой защиты ШЭ1111	Устаревшие
	НПП «ЭКРА»	эл.механич.УРЗА
Возможность	Широкий спектр выбора	Узкий спектр выбора
оперативного изменения	изменяемых уставок с	изменяемых уставок без
уставок защит и переход с	возможностью	возможности
одной характеристики на	оперативного изменения	оперативного изменения
другую.	характеристик.	характеристик.
Срок службы	Заявленный срок службы	Срок службы 25 лет
	12 лет.	
Возможность ведения	Есть возможность	Нет возможности
отчёта о срабатывании		
защит.		
Возможность выполнения	Есть возможность	Нет возможности
самодиагностики и		
диагностики первичного		
оборудования		
Возможность	Есть возможность	Нет возможности
подключения в сеть ЭВМ.		

Превосходство над оппонентами обеспечивается за счет того, что продукция данного производителя широко распространена на отечественном рынке и пользуется заслуженной популярностью. Этого удалось достичь, в первую очередь, за счет надежности и качества. Преимуществ у микропроцессорных защит много: это меньшие габаритные размеры, постоянная самодиагностика, совмещение в одном устройстве функций различных защит, управления, измерения, регистрации событий, возможность интеграции в АСУ ТП, оперативное внесение изменений в программы защит, в том числе и для исправления проектных ошибок и прочее.

Таблица 13.4. - Оценка научного уровня разработки

Показатели	Значимость показателя d_i	Достигнутый уровень $K_{дуi}$	Значение i -го фактора $K_{дуi} \cdot d_i$	
1. Новизна полученных или предполагаемых результатов (критерий оценки: обобщен имеющийся опыт)	0,1	0,3	0,03	
2.Перспективность использования результатов (критерий оценки: использование для предварительного рабочего проектирования в расчётных группах РЗА ОДУ, РДУ)	0,4	0,1	0,04	
3. Завершенность полученных результатов (критерий оценки: написан отчет по теме)	0,3	0,1	0,03	
4. Масштаб возможной реализации полученных результатов	0,2	0,1	0,02	
Результативность	$K_{\text{ну}} = \sum (K_{\text{ду}i} \cdot d_i) = 0,14$			

5.3 Расчёт затрат на проектирование РЗ

5.3.1 Определение трудоемкости выполнения работ

Трудовые затраты в большинстве случаях образуют основную часть стоимости разработки, поэтому важным моментом является определение трудоемкости работ каждого из участников научного исследования.

Для определения ожидаемого (среднего) значения трудоемкости $t_{\text{ож}}$ используем следующую формулу:

$$t_{\text{ожі}} = \frac{3t_{\min i} + 2t_{\max i}}{5} = \frac{3*2 + 2*4}{5} = 2.8$$
чел — дни

Где $t_{\text{ож}i}$ — ожидаемая трудоемкость выполнения i-ой работы человеко-дни;

 $t_{\min i}$ — минимально возможная трудоемкость выполнения заданной i-ой работы, человеко-дни;

 $t_{\max i}$ — максимально возможная трудоемкость выполнения заданной i-ой работы, человеко-дни.

Исходя из ожидаемой трудоемкости работ, определяем продолжительность каждой работы в рабочих днях $T_{\rm p}$, учитываем параллельность выполнения работ несколькими исполнителями

$$T_{p_i} = \frac{t_{\text{ожi}}}{\mathbf{U}_i} = \frac{2.8}{1} = 2.8$$
дней

где T_{pi} — продолжительность одной работы, раб. дн.;

 $t_{\text{ож}i}$ — ожидаемая трудоемкость выполнения одной работы, человеко-дни.

 \mathbf{H}_{i} — численность исполнителей, выполняющих одновременно одну и ту же работу на данном этапе, чел.

5.3.2 Разработка графика проведения научного исследования

Коэффициент календарности определяем по следующей формуле:

$$k_{\text{\tiny KAJI}} = \frac{T_{\text{\tiny KAJI}}}{T_{\text{\tiny KAJI}} - T_{\text{\tiny Bbix}} - T_{\text{\tiny IID}}} = \frac{365}{365 - 52 - 14} = 1.22$$

где $T_{\text{кал}}$ — количество календарных дней в году;

 $T_{\text{вых}}$ — количество выходных дней в году;

 $T_{\rm np}$ — количество праздничных дней в году.

Для определения календарных дней выполнения работы необходимо воспользоваться следующей формулой:

$$T_{_{\mathrm{K}i}} = T_{_{\mathrm{D}i}} \cdot k_{_{\mathrm{KAJT}}} = 2,8*1,22 = 3$$
дней

где $T_{\kappa i}$ — продолжительность выполнения i-й работы в календарных днях;

 $T_{\rm p}i$ — продолжительность выполнения i-й работы в рабочих днях;

 $k_{\text{кап}}$ — коэффициент календарности.

Рассчитанные значения в календарных днях по каждой работе $T_{\vec{k}i}$ округляем до целого числа.

Все рассчитанные значения сводим в таблицу.

Таблица 13.5 - Временные показатели проведения научного исследования

№	Название	Трудоёмкость работ				TE X E X			×		
п/п работы		t _{min,} человеко-	дни	tmax,	человеко- дни	t _{ожі} человеко-	дни	Длительность	раост в рабочих днях Т _{рі}	Длительность работ в	календарных днях _{Ты}
		Руковод.	Инженер	Руковод	Инженер	Руковод.	Инженер	Руковод.	Инженер	Руковод.	Инженер
1	Составление и утверждение технического задания	2		4		2,8	0	2,8	0	3	0
2	Подбор и изучение литературы по теме		8		12	0	9,6	0	9,6	0	12
3	Выбор направления исследований	2	2	3	3	2,4	2,4	1,2	1,2	1	1
4	Календарное планирование работ по теме	1	1	2	1	1,4	1,4	1,4	1,4	2	2
5	Анализ исходных данных		5		8	0	6	0	6	0	7
6	Предварительный выбор защит		5		8	0	5	0	5	0	6
7	Расчет уставок дифференциальной защиты		5		8	0	6,2	0	6,2	0	9
8	Расчет защиты от перегрузок		4		6	0	4,8	0	4,8	0	5
9	Расчет дополнительных защит		7		10	0	8,2	0	8,2	0	11
10	Анализ полученных результатов		4		6	0	4,8	0	4,8	0	6
11	Контроль качества выполнения проекта и консультация исполнителя	8		10		8,8	0	8,8	0	11	11
12	Разработка блок-схемы, принципиальной схемы		6		8	0	6,8	0	6,8	0	8
13	Составление пояснительной записки (эксплуатационно- технической документации)		7		10	0	8,2	0	8,2	0	10
14									Итого:	17	88

Таблица 13.6 – Календарный план проведения научного исследования по теме

№ раб от	Вид работы	Исполнители	<i>Т</i> _{кі} , кал. дн.
1	Составление и утверждение технического задания	Руководитель	3
2	Подбор, изучение литературы	Инженер	15
3	Выбор направления исследований	Инженер Руководитель	16
4	Календарное планирование работ по теме	Руководитель	18
5	Анализ исходных данных	Инженер	25
6	Предварительный выбор защит	Инженер	31
7	Расчет уставок дифференциальной защиты	Инженер	40
8	Расчет защиты от перегрузок	Инженер	45
9	Расчет дополнительных защит	Инженер	56
10	Анализ полученных результатов	Инженер	62
11	Контроль качества выполнения проекта и консультация исполнителя	Руководитель Инженер	73
12	Разработка блок-схемы, принципиальной схемы	Инженер	81
13	Составление пояснительной записки (эксплуатационно-технической документации)	Инженер	91

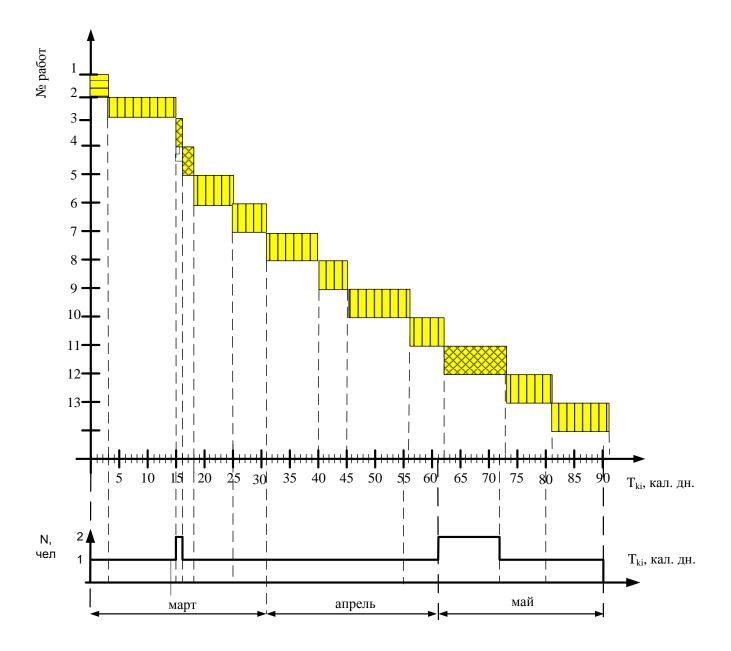


Рисунок 13.1 – Календарный график и график занятости исполнителей проведения научного исследования по теме

5.4 Бюджет научно-технического исследования

При планировании бюджета должно быть обеспечено полное и достоверное отражение всех видов расходов, связанных с его выполнением. В процессе формирования бюджета научного исследования используется следующая группировка затрат по статьям:

- материальные затраты научного исследования;
- оплата труда;
- отчисления во внебюджетные фонды (страховые отчисления);
- амортизация
- прочие расходы
- накладные расходы.

5.4.1 Расчет материальных затрат

Данная статья включает стоимость всех материалов, используемых при разработке проекта.

Таблица 13.7 – Расходы на канцелярские товары

Наименование	Цена, руб.	Кол-	Общая стоимость, руб.
1. Бумага	2	200	400
2. Карандаш	25	4	100
3. Ластик	12	1	12
4. Ручка	20	4	80
5. Линейка	10	1	10
6. Картридж	700	1	700
7. Калькулятор	300	1	300
Итого			1602

5.4.2 Заработная плата исполнителей темы

В данную тему включается заработная плата научных и инженернотехнических работников, непосредственно участвующих в выполнении работ по данной теме. Величина расходов по заработной плате определяется исходя из трудоемкости выполняемых работ и действующей системы окладов и тарифных ставок. Расчет заработной платы приведён ниже.

Месячный должностной оклад работника:

$$3_{M} = 3_{TC} \cdot k_{II} \cdot k_{P}$$

Где

 3_{TC} – заработная плата по тарифной ставке, руб.;

 $k_{\int \!\!\!\!/} = 1,16$ — коэффициент дополнительной заработной платы руководителя;

 $k_{ \it \Pi} = 1,08 -$ коэффициент дополнительной заработной платы инженера;

 $k_{P} = 1,3$ — районный коэффициент для Томска.

Месячный должностной оклад инженера, руб.:

$$3_{M} = 16751 + 2000 \cdot 1,08 \cdot 1,3 = 19559$$

Среднедневная заработная плата инженера, руб.:

$$3_{OH} = \frac{19559}{30} = 652$$

Заработная плата инженера, руб.:

$$3 = 652 \cdot 88 = 57376$$

Месячный должностной оклад руководителя, руб.:

$$3_{M} = 23264,9 + 2200 \cdot 1,16 \cdot 1,3 = 26582,5$$

Среднедневная заработная плата руководителя, руб.:

$$3_{OH} = \frac{26582,5}{30} = 886,08$$

Заработная плата руководителя, руб.:

$$3 = 886,08 \cdot 17 = 15063,36$$

Итого по зарплате: 57376+15063,36=72439,36 руб.

5.4.3 Отчисления во внебюджетные фонды (страховые отчисления)

В данной статье расходов отражаются обязательные отчисления по установленным законодательством Российской Федерации нормам органам государственного социального страхования (ФСС), пенсионного фонда (ПФ) и медицинского страхования (ФФОМС) от затрат на оплату труда работников.

Величина отчислений во внебюджетные фонды определяется по следующей формуле:

$$3_{\rm gue f} = k_{\rm gue f} \cdot 3$$

где $k_{\text{внеб}}$ — коэффициент отчислений на уплату во внебюджетные фонды (пенсионный фонд, фонд обязательного медицинского страхования и пр.).

2016 году водится пониженная ставка – 30%*.

Отчисления во внебюджетные фонды, руб.:

$$3_{\text{внеб}} = k_{\text{внеб}} \cdot 3 = 0,30 \cdot 72439,36 = 21731,80$$

Итого: 21731,80 руб.

5.4.4 Амортизация

Затраты, связанные с приобретением специального оборудования, необходимого для проведения работ по конкретной теме. Определение стоимости спецоборудования производится по действующим прейскурантам, а в ряде случаев по договорной цене. Расчет затрат по данной статье занесён в таблицу 13.8.

Таблица 13.8. Расчет бюджета затрат на приобретение основных средств

No	Наименование	Кол-во	Цена	Общая стоимость
Π/Π	оборудования	единиц	единицы	оборудования, руб.
		оборудован	оборудовани	
		ия	я, руб.	
1	Лицензия на программное обеспечение Microsoft Office	1	3 500	3 500
2	Оргтехника, комплект	2	40000	80 000
3	Мебель, комплект	2	20000	40 000
Итого):	L	1	113500

В связи с длительностью использования, стоимость основных средств учитывается с помощью амортизации:

$$A = \frac{cmoumocmb \cdot N_{\text{днейиспользования}}}{cpoкcлужбы \cdot 365}$$

Амортизация оргтехники, программного обеспечения

$$A_{\text{\tiny KOMIN}} = \frac{(80000 + 3500) \cdot 90}{5 \cdot 365} = 4117,81 \text{ pyb.}$$

Амортизация мебели

$$A_{\text{\tiny Meo}} = \frac{40000 \cdot 90}{10 \cdot 365} = 986,30 \text{ pyb.}$$

Итого: 5104,11 руб.

5.4.5 Прочие расходы

Прочие затраты организации, не попавшие в предыдущие статьи расходов: печать и ксерокопирование материалов исследования, оплата услуг связи, электроэнергии, почтовые и телеграфные расходы, копирование документов и составляют 400% от заработной платы исполнителей. Их величина определяется по следующей формуле:

Накладные расходы, руб.:

$$3_{\mu\alpha\kappa\pi} = 3 \cdot 4$$

$$3_{\text{накл}} = 72439, 36 \cdot 4 = 289757, 4$$

Определение бюджета затрат на научно-техническое исследование приведено в таблице 13.9.

Таблица 13.9 – Расчет бюджета затрат научного исследования

Наименование статьи	Сумма, руб.
1. Материальные затраты НИ	1602
2. Затраты по заработной плате исполнителей темы	72439,36
3. Отчисления во внебюджетные фонды	21731,80
4. Амортизация	5104,11
 Прочие расходы ((п.1+п.2+п.3+п.4)*0,1) 	10087,727
6. Накладные расходы	289757,4
7. Итого себестоимость разработки (п.1+п.2+п.3+п.4+п.5+п.6)	299845,1
8. Прибыль (п. 7*0,2)	59969,1
9. Договорная цена (п. 7+п. 8)	359814,2

5.5 Определение капитальных вложений в РЗА

Материальные затраты на оборудование:

Сумма стоимости всех устройств релейной защиты и автоматики КЭС 1200 МВт, для энергоблоков генератор-трансформатор мощностью 200 МВт, материальной базы для монтажа спроектированных устройств составляет:. (цены договорные по прейскуранту Новшество: Шкаф цифровой защиты ШЭ1111 НПП «ЭКРА»).

$$K = K_{npoekm} + K_{ofopyd} + K_{mohmax}$$

К_{проект} – затраты на выполнение проекта

 K_{ofonyd} — стоимость комплектов защит

 $K_{{}_{\!\scriptscriptstyle MOH mack}}$ — затраты на монтаж и отладку оборудования

Наименование	Тип,	Едини		Цена за	
оборудования и	марка	-ца	Количест	единицу	Стоимость, руб.
материалов		измер	во		
		ения			
Кабель	АПВВ	Μ.	120	654	78480
	НΓ				
	3				
	× 50				
Шкаф	ШЭ11	компл	1	730000	730000
	11	•			
Электроды	Э-3мм	уп.	1	550	550
Изолента	ПВХ	ШТ.	3	50	150
Болт	M12	шт.	20	31,43	628,6
Гайка	M12	ШТ.	20	190,41	3808,2
Шайба	12 мм	ШТ.	20	48	960
Зажим для крепления	стек	шт.	36	350	1800
кабеля					
Итого:					816379,8

 $K_{проект} = 359814,2 py б.$

 $K_{o6} = 816379,8$ py6.

Монтаж оборудования составляет 20% от стоимости оборудования

Поэтому, стоимость монтажа $K_{\text{мон}} = 816379, 8.0, 2=163275, 96$ руб.

Суммарные капитальные вложения в проект шкафов релейной защиты КЭС 1200МВт равны:

K = 359814,2+816379,8+163275,96 = 1339470 тыс.руб.