Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт Физико-технический Направление подготовки 14.03.02 Ядерные физика и технологии Кафедра Физико-энергетические установки

БАКАЛАВРСКАЯ РАБОТА

Ditte with CROTTIDOTI	
Тема работы	•
Нейтронно-физический расчет ядерного реактора типа	
РБМК-1000	

УДК 621.039.536

Студент

Группа	ФИО	Подпись	Дата
0A2B	Куликов Максим Геннадьевич		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент каф. ФЭУ	В.Н. Нестеров	к.т.н.		

консультанты:

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

	71 71	1 1	1 71 1	
Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент каф. МЕН ИСГТ	А.А. Сечина	к.х.н.		

По разделу «Социальная ответственность»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ассистент каф. ПФ	Т.С. Гоголева	к.фм.н.		

ДОПУСТИТЬ К ЗАЩИТЕ:

Зав. кафедрой	ФИО	Ученая степень, звание	Подпись	Дата
ФЭУ ФТИ	О.Ю. Долматов	к.фм.н.,		
Φ33 Φ1H	Оло. долматов	доцент		

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ООП

Код	Результат обучения
результата	(выпускник должен быть готов)
	Общекультурные компетенции
P1	Демонстрировать культуру мышления, способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения; стремления к саморазвитию, повышению своей квалификации и мастерства; владение основными методами, способами и средствами получения, хранения, переработки информации, навыки работы с компьютером как средством управления информацией; способность работы с информацией в глобальных компьютерных сетях.
P2	Способность логически верно, аргументировано и ясно строить устную и письменную речь; критически оценивать свои достоинства и недостатки, намечать пути и выбирать средства развития достоинств и устранения недостатков.
P3	Готовностью к кооперации с коллегами, работе в коллективе; к организации работы малых коллективов исполнителей, планированию работы персонала и фондов оплаты труда; генерировать организационно-управленческих решения в нестандартных ситуациях и нести за них ответственность; к разработке оперативных планов работы первичных производственных подразделений; осуществлению и анализу исследовательской и технологической деятельности как объекта управления.
P4	Умение использовать нормативные правовые документы в своей деятельности; использовать основные положения и методы социальных, гуманитарных и экономических наук при решении социальных и профессиональных задач, анализировать социально-значимые проблемы и процессы; осознавать социальную значимость своей будущей профессии, обладать высокой мотивацией к выполнению профессиональной деятельности.
P5	Владеть одним из иностранных языков на уровне не ниже разговорного.
P6	Владеть средствами самостоятельного, методически правильного использования методов физического воспитания и укрепления здоровья, готов к достижению должного уровня физической подготовленности для обеспечения полноценной социальной и профессиональной деятельности.

Код	Результат обучения
результата	(выпускник должен быть готов)
	Профессиональные компетенции
P7	Использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и
	экспериментального исследования.
P8	Владеть основными методами защиты производственного персонала и населения от возможных последствий аварий, катастроф, стихийных бедствий; И быть готовым к оценке ядерной и радиационной безопасности, к оценке воздействия на окружающую среду, к контролю за соблюдением экологической безопасности, техники безопасности, норм и правил производственной санитарии, пожарной, радиационной и ядерной безопасности, норм охраны труда; к контролю соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям, требованиям безопасности и другим нормативным документам; за соблюдением технологической дисциплины и обслуживанию технологического оборудования; и к организации защиты объектов интеллектуальной собственности и результатов исследований и разработок как коммерческой тайны предприятия; и понимать сущность и значение информации в развитии современного информационного общества, сознавать опасности и угрозы, возникающие в этом процессе, соблюдать основные требования информационной безопасности, в том
P9	числе защиты государственной тайны). Уметь производить расчет и проектирование деталей и узлов приборов и установок в соответствии с техническим заданием с использованием стандартных средств автоматизации проектирования; разрабатывать проектную и рабочую техническую документацию, оформление законченных проектно-конструкторских работ; проводить предварительного технико-экономического обоснования проектных расчетов установок и приборов.
P10	Готовность к эксплуатации современного физического оборудования и приборов, к освоению технологических процессов в ходе подготовки производства новых материалов, приборов, установок и систем; к наладке, настройке, регулировке и опытной проверке оборудования и программных средств; к монтажу, наладке, испытанию и сдаче в эксплуатацию опытных образцов приборов, установок, узлов, систем и деталей.

Код	Результат обучения
результата	(выпускник должен быть готов)
P11	Способность к организации метрологического обеспечения технологических процессов, к использованию типовых методов контроля качества выпускаемой продукции; и к оценке инновационного потенциала новой продукции.
P12	Способность использовать информационные технологии при разработке новых установок, материалов и приборов, к сбору и анализу информационных исходных данных для проектирования приборов и установок; технические средства для измерения основных параметров объектов исследования, к подготовке данных для составления обзоров, отчетов и научных публикаций; к составлению отчета по выполненному заданию, к участию во внедрении результатов исследований и разработок; и проведения математического моделирования процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований.
P13	Уметь готовить исходные данные для выбора и обоснования научно-технических и организационных решений на основе экономического анализа; использовать научно-техническую информацию, отечественный и зарубежный опыт по тематике исследования, современные компьютерные технологии и базы данных в своей предметной области; и выполнять работы по стандартизации и подготовке к сертификации технических средств, систем, процессов, оборудования и материалов;
P14	Готовность к проведению физических экспериментов по заданной методике, составлению описания проводимых исследований и анализу результатов; анализу затрат и результатов деятельности производственных подразделений; к разработки способов применения ядерно-энергетических, плазменных, лазерных, СВЧ и мощных импульсных установок, электронных, нейтронных и протонных пучков, методов экспериментальной физики в решении технических, технологических и медицинских проблем.
P15	Способность к приемке и освоению вводимого оборудования, составлению инструкций по эксплуатации оборудования и программ испытаний; к составлению технической документации (графиков работ, инструкций, планов, смет, заявок на материалы, оборудование), а также установленной отчетности по утвержденным формам; и к организации рабочих мест, их техническому оснащению, размещению технологического оборудования.

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт Физико-технический Направление подготовки 14.03.02 Ядерные физика и технологии Кафедра Физико-энергетические установки

УТВЕРЖДАЮ: Зав. кафедрой ФЭУ

O.Ю. Долматов (Подпись) (Дата) (Ф.И.О.)

ЗАДАНИЕ

на выполнение выпускной квалификационной работы

\mathbf{r}	1	
к	monwe	•
v	форме	•

Бакалаврской работы	 B Works.
	Бакалаврской работы

(бакалаврской работы, дипломного проекта/работы, магистерской диссертации)

Студенту:

Группа	ФИО
0A2B	Куликову Максиму Геннадьевичу

Тема работы:

Нейтронно-физический расчет реакт	гора РБМК-1000
Утверждена приказом директора (дата, номер)	18.02.2016 №1333/c

Срок сдачи студентом выполненной работы: 25.06.2016

ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

Исходные данные к работе

(наименование объекта исследования или проектирования; производительность или нагрузка; режим работы (непрерывный, периодический, циклический и т. д.); вид сырья или материал изделия; требования к продукту, изделию или процессу; особые требования к особенностям функционирования (эксплуатации) объекта или изделия в плане безопасности эксплуатации, влияния на окружающую среду, энергозатратам; экономический анализ и т. д.).

- Тепловая мощность 3200 [МВт]
- Ядерное горючее UO₂
- Обогащение урана 2,4 %
- Температура на входе 265 [°C]
- Температура на выходе 289 [°C]
- Твэлы стержневые с наружным охлаждением
- Материалы оболочек твэлов и кассет Zr + 2.5 % Nb

Перечень подлежащих исследованию, проектированию и разработке вопросов

(аналитический обзор по литературным источникам с целью выяснения достижений мировой науки техники в рассматриваемой области; постановка задачи исследования, проектирования; содержание процедуры исследования, проектирования, конструирования; обсуждение результатов выполненной работы; наименование дополнительных разделов, подлежащих разработке; заключение по работе).

- Провести стандартный нейтронно-физический расчет активной зоны реактора типа РБМК-1000
- Определить спектр плотности потока нейтронов путем решения системы многогрупповых уравнений диффузии итерационным способом
- Выполнить корректировку спектра плотности потока нейтронов на критическое состояние реактора
- Оценить плотность потока повреждающих нейтронов в активной зоне

Перечень графического материала

(с точным указанием обязательных чертежей)

- Презентация
- Чертеж ячейки

Консультанты по разделам выпускной квалификационной работы				
Раздел	Консультант			
Финансовый менеджмент,	А.А. Сечина			
ресурсоэффективность и				
ресурсосбережение				
Социальная ответственность	Т.С. Гоголева			
Названия разделов, которые должны быть написаны на иностранном языке:				
нет				

Дата	выдачи	задания	на	выполнение	выпускной	16.05.2016
квали	фикационн	ой работы і	по лин	нейному график	V	10.03.2010

Задание выдал руководитель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры ФЭУ	В.Н Нестеров	К.Т.Н.		16.05.2016

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
0A2B	Куликов Максим Геннадьевич		16.05.2016

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ»

Студенту:

Группа ФИО	
0A2B	Куликову Максиму Геннадьевичу

Институт	ΦТ	Кафедра	ФЭУ
Уровень	Бакалавр	Направление/специальность	14.03.02 Ядерные
образования			физика и
			технологии/
			Ядерные реакторы и
			энергетические
			установки

ресурсосбережение»: 1. Стоимость ресурсов научного исследования (НИ): Работа информацией, представленной материально-технических, энергетических, финансовых, российских иностранных и научных информационных и человеческих материалах, публикациях, аналитических

Исходные данные к разделу «Финансовый менеджмент, ресурсоэффективность и

- 2. Нормы и нормативы расходования ресурсов
- 3. Используемая система налогообложения, ставки налогов, отчислений, дисконтирования и кредитования

статистических бюллетенях изданиях. И нормативно-правовых документах.

Перечень вопросов, подлежащих исследованию, проектированию и разработке:

- 1. Оценка коммерческого потенциала, перспективности и Оценочная карта конкурентных технических альтернатив проведения НИ с позиции решений. ресурсоэффективности и ресурсосбережения 2. Планирование и формирование бюджета научных Иерархическая структура работ Календарный план-график реализации проекта. исследований 3. Определение ресурсной (ресурсосберегающей), Бюджет научно – технического исследования: финансовой, бюджетной, социальной и экономической - Расчет материальных затрат; эффективности исследования - Основная заработная плата исполнителей темы. 4. Оценка ресурсной, финансовой, социальной, бюджетной Определение ресурсоэффективности проекта.

Перечень графического материала (с точным указанием обязательных чертежей):

- 1. Оценка конкурентоспособности технических решений
- 2. Mampuua SWOT
- 3. Альтернативы проведения НИ
- 4. График проведения и бюджет НИ

эффективности научного исследования

5. Оценка ресурсной, финансовой и экономической эффективности НИ

Дата выдачи задания для раздела по линейному графику

Залание выдал консультант:

	Suguinie DDigui Konejvidiuniv					
Должность	ФИО	Ученая степень, звание	Подпись	Дата		
Доцент каф. МЕН	А.А. Сечина	к.х.н.		16.05.2016		

Задание принял к исполнению студент:

Группа		ФИО	Подпись	Дата
0A2B	,	Куликов Максим Геннадьевич		16.05.2016

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ»

Студенту:

Группа	ФИО
0A2B	Куликову Максиму Геннадьевичу

Институт	ΦТ	Кафедра	ФЭУ
Уровень	Бакалавр	Направление/специальность	14.03.02 Ядерные
образования			физика и
			технологии/
			Ядерные реакторы
			и энергетические
			установки

Исходные данные к разделу «Социальная ответс	ственность»:
1. Описание рабочего места (рабочей зоны) на предмет возникновения:	 вредные факторы производственной среды: повышенный уровень электромагнитных полей, отклонение показателей макроклимата от оптимальных, ионизирующее излучение от ПЭВМ; опасные факторы производственной среды: вероятность возникновения пожара, вероятность поражения электрическим током.
2. Знакомство и отбор законодательных и нормативных документов по теме	 электробезопасность; пожарная безопасность; требование охраны труда при работе с ПЭВМ.
Перечень вопросов, подлежащих исследованию,	, проектированию и разработке:
1. Анализ выявленных вредных факторов проектируемой производственной среды в следующей последовательности:	 электромагнитные поля от ЭВМ; действие фактора на организм человека; приведение допустимых норм с необходимой размерностью; предлагаемые средства защиты.
2. Анализ выявленных опасных факторов проектируемой произведённой среды в следующей последовательности:	 электробезопасность (в т.ч. статическое электричество, средства защиты); пожаровзрывобезопасность (причины, профилактические мероприятия, первичные средства пожаротушения).

Дата выдачи задания для раздела по линейному графику

Задание выдал консультант:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ассистент каф. ПФ ФТИ	Т.С. Гоголева	к.фм.н.		16.05.2016

Задание принял к исполнению студент:

Группа	Группа ФИО		Дата
0A2B	Куликов Максим Геннадьевич		16.05.2016

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт Физико-технический

Направление подготовки (специальность) 14.03.02 Ядерные физика и технологии

Уровень образования высшее

Кафедра Физико-энергетические установки

Период выполнения (весенний семестр 2015/2016 учебного года)

Форма представления работы:

Бакалаврская работа

КАЛЕНДАРНЫЙ РЕЙТИНГ-ПЛАН выполнения выпускной квалификационной работы

Срок сдачи студентом выполненной работы:	25.06.2016
--	------------

Дата контроля	Название раздела (модуля) / вид работы (исследования)	Максимальный балл раздела (модуля)
16.05.2016	Выдача задания	
19.05.2016	Выбор конструктивной схемы	
26.05.2016	Расчет критических параметров проектируемого реактора	
02.06.2016	Расчет характеристик «горячего реактора», многогрупповой нейтронно-физический расчет	
09.06.2016	Оценка плотности потока повреждающих нейтронов	
25.06.2016	Сдача работы	

Составил преподаватель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент каф. ФЭУ	В.Н. Нестеров	к.т.н.		16.05.2016

СОГЛАСОВАНО:

Зав. кафедрой	ФИО	Ученая степень, звание	Подпись	Дата
ФЭУ	О.Ю. Долматов	к.фм.н., доцент		16.05.2016

РЕФЕРАТ

Выпускная квалификационная работа 106 страниц, 7 рисунков, 12 таблиц, 18 источников, 8 прил., 2 чертежа, 1 спецификация.

Ключевые слова: ядерный реактор; РБМК-1000; нейтронно-физический расчет; многогрупповой расчет; повреждающие нейтроны; финансовый менеджмент; социальная ответственность.

Объектом исследования является уран-графитовый реактор с водяным теплоносителем.

Цель работы — выполнение нейтронно-физического расчёта ядерного реактора типа РБМК-1000, состоящего в физическом обосновании конструкции и определении совокупности физических параметров, удовлетворяющих поставленным требованиям.

В процессе исследования проводились расчеты нейтронно-физических характеристик реактора, на основании которых были получены таблицы и построены графики; произведен расчет финансовой составляющей работы, описаны факторы, влиявшие на выполнение работы.

В результате исследования были получены нейтронно-физические характеристики реактора заданного материального состава, оценены размеры активной зоны, также произведена оценка плотности потока повреждающих нейтронов.

Основные конструктивные, технологические и техникоэксплуатационные характеристики: ядерный реактор, мощностью 3200 МВт, с топливом UO_2 и обогащением 2,4 %, с водяным теплоносителем, использующий в качестве конструкционных материалов Zr+2,5 % Nb.

Степень внедрения: высокая; проект может использоваться в настоящее время, при продолжении дальнейших исследований.

Область применения: ядерные реакторы.

Экономическая эффективность/значимость работы высокая.

ОПРЕДЕЛЕНИЯ И СОКРАЩЕНИЯ

Вредный производственный фактор – это фактор, воздействие которого на рабочего, в определенных условиях, приводит к заболеванию или снижению трудоспособности.

Охрана труда — это система законодательных, социально-экономических, организационных, технологических, гигиенических и лечебно-профилактических мероприятий и средств, обеспечивающих безопасность, сохранение здоровья и работоспособности человека в процессе труда.

Ядерный реактор – Устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления, сопровождаемой выделением энергии.

A3 — активная зона.

БН – быстрые нейтроны;

ВВЭР – водо-водяной энергетический реактор;

МэВ – мегаэлектронВольт;

ПН – повреждающие нейтроны;

РБМК – реактор большой мощности канальный;

ТВС – тепловыделяющая сборка;

ТК – технологический канал;

ТКР – температурный коэффициент реактивности;

ТЭР – температурный эффект реактивности;

УГР – уран-графитовый реактор.

Содержание

Введение	14
1 ОБЗОР ЛИТЕРАТУРЫ	16
1.1 Уран-графитовые реакторы с водяным теплоносителем	16
1.2 Достоинства и недостатки канальных уран-графитовых энерг	етических
реакторов	17
1.3 Состав и устройство активной зоны реактора	19
1.4 Конструкция ТВС и технологического канала	19
2 НЕЙТРОННО-ФИЗИЧЕСКИЙ РАСЧЁТ РЕАКТОРА	22
2.1 Выбор рабочих параметров	22
2.2.1 Расчет концентрации топлива	26
2.2.2 Расчет микросечений и макросечений	27
2.2.3 Доли материалов в ячейке	28
2.4.1 Расчет коэффициента размножения для бесконечной среды в «х	колодном»
реакторе	30
2.4.2 Расчет эффективного коэффициента размножения	35
2.5.1 Зависимость поперечных сечений от температуры	37
2.5.2 Расчёт коэффициента размножения для бесконечной среды	«горячего
реактора»	39
2.5.3 Расчет эффективного коэффициента размножения	«горячего
реактора»	39
2.6 Многогрупповой расчет, спектр и ценности нейтронов в	активной
зоне	41
2.6.1 Пересчет концентраций	42
2.6.2 Многогрупповой расчет	42
2.6.3 Организация итерационного процесса	45
2.7 Процесс расчета компенсации реактивности и нормировка плотно	сти потока
нейтронов на мощность	49
2.7.1 Спектр плотности потока нейтронов в абсолютных единицах	51

3	ФИНАНСОВЫЙ	менеджмент,	РЕСУРСОЭФФЕКТИВНОСТЬ	И
PE	СУРСОСБЕРЕЖЕНИ	1E		59
3.1	1 Потенциальные по	отребители результа	гов исследования	.59
3.1	2 Анализ конкурент	ных технических ре	шений	.60
3.1	3 SWOT-анализ			.61
3.3	Планирование научн	но-исследовательски	іх работ	.62
3.3	1 Структура работ в	рамках научного ис	следования	62
3.3	3 Разработка график	а проведения научн	ого исследования	64
3.3	4 Бюджет научно-те	хнического исследо	вания	65
3.3	4.1 Расчет материал	ьных затрат научно-	технического исследования	.65
3.3	4.2 Основная зарабо	тная плата исполнит	гелей темы	.67
3.3	4.3 Отчисления во в	небюджетные фонді	ы (страхование)	.69
3.3	4.4 Накладные расхо	оды		70
3.3	4.5 Формирование б	юджета затрат науч	но-исследовательского проекта	.70
4 C	ОЦИАЛЬНАЯ ОТВІ	ЕТСТВЕННОСТЬ		.74
			енных факторов	
4.2	1 Организационные	мероприятия		75
4.2	2 Технические меро	приятия		76
4.2	3 Условия безопасно	ой работы		.78
4.3	Электробезопасност	ъ		.80
4.4	Пожарная и взрывна	ая безопасность		.80
Зак	лючение			.83
Сп	исок публикаций сту	дента		.84
Сп	исок использованных	х источников		.85
Пр	иложение А			.87
Пр	иложение Б			88
Пр	иложение В			.89
Пр	иложение Г			94
Пр	иложение Д			.95
Пр	иложение Е ФЮРА.1	14.03.02.057 СБ	1	04

Приложение Ж ФЮРА.14.03.02.057	105
Приложение З ФЮРА. 14.03.02.057 СП.	106

Введение

В XXI веке к атомной энергетике предъявляются 5 основных требований: безопасность, утилизация плутония и недопущение его распространения, топливообеспечение, переработка и захоронение РАО, экономичность, конкурентоспособность.

Триединство качеств ядерной энергетики - огромный энергоресурсный (теплотворная способность ядерного топлива в 2-3 млн раз больше, чем у традиционных видов), энергоэкономический (экономический показатель не зависит от места расположения) и энергоэкологический (отсутствие вредных выбросов) потенциалы позволят выполнить эти основные требования.

Одним из направлений исследования и разработки ядерных реакторов является канальный уран-графитовый реактор, который разрабатывался и проектировался в Институте Атомной Энергетики имени Курчатова, а также в НИКИЭТ под руководством Н.А. Доллежаля.

Объектом исследования в данной работе является канальный уранграфитовый реактор с водяным теплоносителем, в качестве топлива используется UO₂. Предметом исследования является оценочный нейтроннофизический расчет реактора с определением плотности потока повреждающих нейтронов.

Поэтому в работе поставлена цель:

Цель работы – выполнение нейтронно-физического расчёта реактора
 РБМК-1000, состоящего в физическом обосновании конструкции и определении совокупности физических параметров, удовлетворяющих поставленным требованиям.

Для достижения поставленной цели необходимо решить следующие задачи:

Провести стандартный нейтронно-физический расчет активной зоны реактора типа РБМК-1000;

- Определить спектр плотности потока нейтронов путем решения системы многогрупповых уравнений диффузии итерационным способом;
- Выполнить корректировку спектра плотности потока нейтронов на критическое состояние реактора;
 - Оценить плотность потока повреждающих нейтронов в активной зоне.

Результаты работы могут найти применение при подготовке заданий к курсовому проектированию, методических указаний к лабораторным работам, а также результаты могут использоваться в качестве справочной литературы.

ОБЗОР ЛИТЕРАТУРЫ

1.1 Уран-графитовые реакторы с водяным теплоносителем

Ректор РБМК-1000 собой графитовую представляет кладку, кожух заключенную опирающуюся на сварные металлические металлоконструкции, которые вместе с кожухом образуют герметичную полость, заполненную смесью гелия или азота. Кладка состоит из отдельных колонн, собранных из графитовых блоков с цилиндрическими отверстиями. В отверстиях колони установлено 1700 топливных каналов, которые проходят через патрубки-тракты, вваренные в верхнюю и нижнюю металлоконструкции реактора. Центральная часть каналов (труба наружным диаметром 88 мм с толщиной стенки 4 мм) выполнена из сплава Zr + 2.5 % Nb, а верхняя и нижняя части – из нержавеющей стали. На центральную часть канала для отвода тепла из кладки к теплоносителю надеты графитовые кольца, выполненные таким образом, что половина из них плотно насажена по наружному диаметру канала, а другая половина при загрузке канала плотно вводится в отверстие графитовой кладки. Кольца обоих типов чередуются. В топливные каналы через верхние отверстия загружаются и уплотняются в них кассеты с двумя ТВС. Каждая ТВС состоит из 18 твэлов стержневого типа, представляющих собой набор индивидуальных ячеек, заключенных в общий обод и сваренных между собой контактной сваркой.

Основные технические характеристики РБМК следующие. В самом общем виде реактор представляет собой цилиндр, составленный из графитовых блоков, помещенный в бетонную шахту. Диаметр, этого цилиндра, около 12 м, а высота около 8 м. Реактор окружен боковой биологической защитой в виде кольцевого бака с водой. Этот цилиндр пронизывают 1693 топливных канала, представляющих собой трубки из сплава циркония диаметром 88 мм и толщиной 4 мм. В топливном канале устанавливается тепловыделяющая сборка. Активная зона реактора — вертикальный цилиндр диаметром

11,8 метров и высотой 7 метров. По периферии активной зоны, а также сверху и снизу расположен боковой отражатель — сплошная графитовая кладка толщиной 0,65 метра. Собственно активная зона собрана из графитовых шестигранных колонн (всего их 2488), составленных из блоков сечением 250×250 мм. По центру каждого блока сквозь всю колонну проходят сквозные отверстия диаметром 114 мм для размещения технологических каналов и стержней СУЗ. Общее число технологических каналов в активной зоне 1693. Ядерным топливом служит диоксид урана (UO₂), обогащенный ураном-235 до 2,8 %, в виде таблеток диаметром 11,5 мм запрессованных в твэлы — трубки из сплава на основе циркония с наружным диаметром 13,6 мм с толщиной стенок 0,9 мм. 18 таких твэлов смонтированы в одну общую тепловыделяющую сборку.

ТВС в РБМК состоят из двух частей, верхней и нижней. Помимо твэлов, ТВС содержит крепежные детали из сплава циркония и несущий стержень из оксида ниобия.

1.2 Достоинства и недостатки канальных уран-графитовых энергетических реакторов

К основным достоинствам канальных энергетических реакторов можно отнести:

дезинтегрированность конструкции:

- отсутствие проблем, связанных с изготовлением, транспортировкой и эксплуатацией корпуса реактора и парогенераторов;
- более легкое, по сравнению с корпусными реакторами, протекание аварий при разрывах трубопроводов контура циркуляции теплоносителя;
 - большой объем теплоносителя в контуре циркуляции.

Непрерывная перегрузка топлива:

- малый запас реактивности;

- уменьшение продуктов деления, одновременно находящихся в активной зоне;
- возможность раннего обнаружения и выгрузки из реактора ТВС с негерметичными твэлами;
 - возможность поддержания низкого уровня активности теплоносителя.

Аккумулирование тепла в активной зоне (графитовая кладка):

- возможность перетока тепла от каналов обезвоженной петли к каналам, сохранившим охлаждение, при организации «шахматного» расположения каналов различных петель;
- уменьшение скорости роста температуры при авариях с обезвоживанием.

Высокий уровень естественной циркуляции теплоносителя, позволяющий длительное время расхолаживать реактор при обесточивании энергоблока.

Возможность получения требуемых нейтронно-физических характеристик активной зоны.

Гибкость топливного цикла:

- малое обогащение топлива;
- возможность дожигать после регенерации отработанное топливо из реакторов ВВЭР;
 - возможность наработки широкого спектра изотопов.

Недостатки канальных водографитовых реакторов:

- сложность организации контроля и управления из-за больших размеров активной зоны;
- наличие в активной зоне конструкционных материалов, ухудшающих баланс нейтронов;
- сборка реактора на монтаже из отдельных транспортабельных узлов,
 что приводит к увеличению объема работ в условиях стройплощадки;

- разветвленность циркуляционного контура реактора, увеличивающая объем эксплуатационного контроля основного металла и сварных швов и дозозатраты при ремонте и обслуживании;
- образование за счет материала графитовой кладки дополнительных отходов при снятии реактора с эксплуатации.

1.3 Состав и устройство активной зоны реактора

Активная зона — основная конструктивная часть реактора, сформированная на основании расчетно-теоретических исследований.

АЗ имеет форму вертикального цилиндра диаметром 12,0 м и высотой 7 м, окружена боковым отражателем толщиной 1 м и торцевыми отражателями по 0,5 м.

В состав активной зоны входят:

- топливная загрузка;
- технологические каналы;
- каналы СУЗ и КОО;
- стержни СУЗ;
- теплоноситель;
- графитовая кладка.

Графитовая кладка используется в качестве замедлителя и отражателя нейтронов. В графитовом замедлителе происходит уменьшение энергии нейтронов деления до тепловой, а графитовый отражатель снижает утечку нейтронов из активной зоны реактора [15].

1.4 Конструкция ТВС и технологического канала

В качестве тепловыделяющего элемента в реакторе РБМК-1000 используется закрытая с обоих концов циркониевая трубка диаметром 13,9 мм, толщиной стенки 0,9 мм и длиной около 3,5 м, заполненная таблетками топлива

диаметром 11,5 мм и высотой 15 мм. Для уменьшения величины термического расширения топливного столба, таблетки имеют лунки. Начальная среда под оболочкой заполнена гелием под давлением 5 кгс/см².

Топливный столб фиксируется пружиной. Максимальная температура в °C. центре топливной таблетки 2100 может достигать Реально эта температура не выше 1600 °C, давлением гелия до 17 кгс/см², а оболочки температура наружной поверхности ТВЭЛ около 300 °C.

Твэлы компонуются в ТВС по 18 шт. в каждой; 6 шт. по окружности диаметром 32 мм и 12 штук - диаметром 62 мм. В центре - несущий стержень. Твэлы в сборке скреплены через каждые полметра специальными дистанционирующими решетками.

Основным топливным блоком реактора является тепловыделяющая кассета, состоящая из двух ТВС, соединенных общим несущим стержнем, штанги, наконечника и хвостовика. Таким образом, часть кассеты, располагающаяся в активной зоне, имеет длину около 7 м.

Кассеты омываются водой, при этом нет прямого контакта топлива с теплоносителем при нормальном режиме работы реактора.

Для получения приемлемого коэффициента полезного действия атомной станции необходимо иметь, более высокие температуру и давление генерируемого реактором пара. Следовательно, должен быть предусмотрен корпус, удерживающий теплоноситель при этих параметрах. Для реакторов РБМК роль корпуса играет большое количество прочных трубопроводов, внутри которых и размещаются кассеты. Такой трубопровод называется ТК, в пределах активной зоны он циркониевый и имеет диаметр 88 мм при толщине стенки 4 мм, в РБМК-1000 1661 ТК.

Корпус канала представляет собой сварную конструкцию, состоящую из средней и концевых частей. Средняя часть канала выполнена из циркониевого сплава, концевые — из нержавеющей стали. Между собой они соединены переходниками сталь-цирконий. Корпус канала рассчитан на 23 года

безаварийной работы, однако при необходимости на остановленном реакторе может быть извлечен дефектный корпус канала и на его место установлен новый.

Топливная кассета устанавливается внутри канала на подвеске, которая удерживает ее в активной зоне и позволяет с помощью РЗМ производить замену отработанной кассеты без останова реактора. Подвеска снабжена запорной пробкой, которая герметизирует канал.

Кроме того, в реакторе размещены каналы управления и защиты. В них располагаются стержни поглотители, датчики контроля энерговыделения. Размещение каналов управления в колоннах графитовой кладки автономно от технологических каналов.

Пространство между графитом и каналами заполнено газом, имеющим хорошую теплопроводность, малую теплоемкость и не оказывающим существенного влияния на ход цепной реакции. Лучший с этой точки зрения газ — гелий. Однако из-за его высокой стойкости он применяется не в чистом виде, а в смеси с азотом (на номинальном уровне мощности 80 % гелия и 20 % азота, при меньшей мощности азота больше, при 50 % номинальной может быть уже чистый азот).

Одновременно предотвращается контакт графита с кислородом, т.е. его окисление. Азотно-гелиевая смесь в графитовой кладке продувается в направлении снизу вверх, делается достижения третьей ЭТО ДЛЯ цели – контроля целостности технологических каналов. Действительно, при течи ТК влажность газа на выходы из кладки и его температура увеличивается. Для улучшения теплопередачи от графита к каналу при движении газа создается своеобразный лабиринт. На канал и отверстия блоков поочередно надеваются разрезные графитовые кольца высотой 20 мм каждое на участке 5,35 м в центре активной зоны. Таким образом, газ движется по схеме «графит – разрез кольца – стенка канала – разрез кольца – графит».

В РБМК-1000 в качестве отражателя используется дополнительный слой графита вокруг активной зоны по 0,5 м сверху и снизу и 1 м по цилиндрической

поверхности. Он набирается из таких же блоков, но часть отверстий боковых колонн заглушена графитовыми же втулками.

Всего в графитовой кладке 14 слоев и 2488 вертикальных колонн[15,16].

3.1 Оценка коммерческого потенциала и перспективности проведения научных исследований с позиции ресурсоэффективности и ресурсосбережения

3.1.1 Потенциальные потребители результатов исследования

Для того чтобы узнать в каком направлении проводить исследования, был произведен анализ потребителей. В качестве потребителей были выбраны основные страны, использующие ядерную энергетику. Вторым критерием был выбран тип теплоносителя, использующийся в ядерной установке.

На рисунке 3.1 представлена карта сегментирования рынка ядерных паропроизводящих установок.

		Тип теплоносителя				
		Легкая вода	Тяжелая вода	Жидкий металл	Газ	
	Россия					
ую	США					
Основные страны, использующие ядерную энергетику	Канада					
ювные стра зующие яд энергетику	Франция					
Основные юльзующи энерге	Великобритания					
Оснс 10льз	Германия					
исп	Индия					
	Китай					

Рисунок 3.1 – Карта сегментирования рынка ЯППУ

По итогам составления карты сегментирования рынка ЯППУ видно, что ЯППУ с легкой водой в качестве теплоносителя получили огромное распространение в мире. Далее идут тяжелая вода и жидкий металл. ЯППУ с газовым теплоносителем распространены только в Великобритании. Самое

главное преимущество — это ее дешевизна. Этим и объясняется то, почему ЯППУ с ней так распространены.

3.1.2 Анализ конкурентных технических решений

Для проведения анализа конкурентоспособности разработки будет использоваться оценочная карта, приведенная в таблице Д.6, приложения Д. В качестве конкурирующих разработок были приняты: К1 — РБМК-1000, К2 — ВВЭР-1000. Позиция разработки и конкурентов оценивается по каждому показателю экспертным путем по пятибалльной шкале, где 1 — наиболее слабая позиция, а 5 — наиболее сильная. Веса показателей, определяемые экспертным путем, в сумме должны составлять единицу.

Анализ конкурентных технических решений определяется по формуле:

$$K = \sum B_i \cdot E_i \,, \tag{3.1}$$

где K – конкурентоспособность научной разработки или конкурента;

 B_{i} – вес показателя (в долях единицы);

 E_i – балл i-го показателя.

В обоих ЯППУ в качестве теплоносителя используется легкая вода, в качестве топлива обогащенный уран.

Выше представлен анализ конкурентоспособности ЯЭУ, представленной в данной работе, среди отечественных разработок РБМК-1000 ($\mathbb{G}_{\kappa 1}$) и ВВЭР-1000 ($\mathbb{G}_{\kappa 2}$). Из анализа видно, что преимущество разрабатываемой ЯЭУ особенно заметно в повышении производительности труда пользователя и обогащении топлива. В остальном ЯЭУ имеет такие же показатели, а где-то и хуже, но это связанно не с техническими недостатками установки, а с тем, что установка единственная в своем роде и представительства на рынке не имеет.

3.1.3 SWOT-анализ

SWOT-анализ — (strengths, weaknesses, opportunities, threats — сильные стороны, слабые стороны, возможности, угрозы) — представляет собой комплексный анализ научно-исследовательского проекта, который применяют для исследования внешней и внутренней среды проекта.

Сильные стороны – это факторы, характеризующие конкурентоспособную сторону научно-исследовательского проекта. Сильные стороны свидетельствуют о том, что у проекта есть отличительное преимущество или особые ресурсы, являющиеся особенными с точки зрения конкуренции. Другими словами, сильные стороны – это ресурсы или возможности, которыми располагает руководство проекта и которые могут быть эффективно использованы для достижения поставленных целей.

Возможности включают в себя любую предпочтительную ситуацию в настоящем или будущем, возникающую в условиях окружающей среды проекта, например, тенденцию, изменение или предполагаемую потребность, которая поддерживает спрос на результаты проекта и позволяет руководству проекта улучшить свою конкурентную позицию.

собой любую Угроза представляет нежелательную ситуацию, тенденцию или изменение в условиях окружающей среды проекта, которые характер имеют разрушительный угрожающий или ДЛЯ его конкурентоспособности в настоящем или будущем. В качестве угрозы может выступать барьер, ограничение или что-либо еще, что может повлечь за собой проблемы, разрушения, вред или ущерб, наносимый проекту.

В таблице 3.1 представлена интерактивная матрица проекта, в которой показано соотношение сильных сторон с возможностями, что позволяет более подробно рассмотреть перспективность разработки.

В матрице пересечения сильных сторон и возможностей имеет определенный результат: «плюс» – сильное соответствие сильной стороны и возможности, «минус» – слабое соотношение.

Таблица 3.1 – Интерактивная матрица проекта

Сильные стороны проекта						
		C1	C2	С3		
Возможности проекта	B1	+	+	+		
	B2	+	_	_		
	В3	+	+	_		

В таблице Д.5 приложения Д представлен SWOT-анализ виде таблицы, так же показаны результаты пересечений сторон, возможностей и угроз.

Проанализировав характер НТР можно сделать вывод, что наиболее оптимальной стратегией выхода разработки на рынок является стратегия совместной предпринимательской деятельности. Совместная предпринимательская деятельность — это стратегия, которая основана на соединении общих усилий фирмы с коммерческими предприятиями страныпартнера для создания производственных и маркетинговых мощностей. Данная стратегия выбрана ввиду того, что предприятие, заинтересованное в ЯЭУ на российском рынке, одно (Росэнергоатом). В свою очередь, данное предприятие требует тесного взаимодействия с другими производственными компаниями.

3.3 Планирование научно-исследовательских работ

3.3.1 Структура работ в рамках научного исследования

Для выполнения научных исследований формируется рабочая группа, в состав которой могут входить научные сотрудники и преподаватели, инженеры, техники и лаборанты, численность групп может варьироваться. По каждому виду запланированных работ устанавливается соответствующая должность исполнителей. Примерный порядок составления этапов и работ, распределение исполнителей по данным видам работ приведен в таблице Д.4 приложения Д.

3.3.2 Определение трудоемкости выполнения работ

Трудоемкость выполнения научного исследования оценивается экспертным путем в человеко-днях и носит вероятностный характер, т.к. зависит от множества трудно учитываемых факторов. Для определения ожидаемого (среднего) значения трудоемкости $t_{\text{ож}_i}$ используется следующая формула:

$$t_{\text{ож}_{i}} = \frac{3 \cdot t_{\min_{i}} + 2 \cdot t_{\max_{i}}}{5},$$
(3.2)

где $t_{\text{ож}_i}$ — ожидаемая трудоемкость выполнения i-ой работы чел.-дн.;

 t_{min_i} — минимально возможная трудоемкость выполнения заданной i-ой работы (оптимистическая оценка: в предположении наиболее благоприятного стечения обстоятельств), чел.-дн.;

 t_{max_i} — максимально возможная трудоемкость выполнения заданной i-ой работы (пессимистическая оценка: в предположении наиболее неблагоприятного стечения обстоятельств), чел.-дн.

Исходя из ожидаемой трудоемкости работ, определяется продолжительность каждой работы в рабочих днях $T_{\rm p}$, учитывающая параллельность выполнения работ несколькими исполнителями. Такое вычисление необходимо для обоснованного расчета заработной платы, так как удельный вес зарплаты в общей сметной стоимости научных исследований составляет около 65 %.

$$T_{\mathbf{p}_i} = \frac{t_{\mathrm{ox}_i}}{Y_i},\tag{3.3}$$

где $T_{\mathbf{p}_i}$ – продолжительность одной работы, раб. дн.;

 $t_{_{{\rm ox}_{i}}}$ — ожидаемая трудоемкость выполнения одной работы, чел.-дн.;

 \boldsymbol{U}_{i} – численность исполнителей, выполняющих одновременно одну и ту же работу на данном этапе, чел..

3.3.3 Разработка графика проведения научного исследования

Диаграмма Ганта — горизонтальный ленточный график, на котором работы по теме представляются протяженными во времени отрезками, характеризующимися датами начала и окончания выполнения данных работ.

Для удобства построения графика, длительность каждого из этапов работ из рабочих дней следует перевести в календарные дни. Для этого необходимо воспользоваться следующей формулой:

$$T_{\mathbf{k}_i} = T_{\mathbf{p}_i} \cdot k_{\mathbf{k}\mathbf{a}\mathbf{J}}, \tag{3.4}$$

где T_{κ_i} – продолжительность выполнения i-й работы в календарных днях;

 $T_{\mathbf{p}_{i}}$ – продолжительность выполнения i-й работы в рабочих днях;

 $k_{\mbox{\tiny KAJ}}$ — коэффициент календарности.

Коэффициент календарности определяется по следующей формуле:

$$k_{\text{кал}} = \frac{T_{\text{кал}}}{T_{\text{кал}} - T_{\text{вых}} - T_{\text{пр}}},$$
 (3.5)

где $T_{\text{кал}}$ – количество календарных дней в году;

 $T_{_{
m BЫX}}$ – количество выходных дней в году;

 $T_{\rm np}$ — количество праздничных дней в году.

Рассчитанные значения в календарных днях по каждой работе $T_{{
m K}i}$ необходимо округлить до целого числа.

$$k_{\text{KAJI}} = \frac{365}{365 - 96 - 20} = 1,47;$$

$$t_{min_1} = 1; \ t_{max_1} = 3;$$

$$2 \cdot 3 = 1.80 = 1.80$$

$$t_{\text{ож}_i} = \frac{3 \cdot 1 + 2 \cdot 3}{5} = 1,80 \; ; \; T_{\text{p}_i} = \frac{1,80}{1} = 1,80 \; ; \; T_{\kappa_1} = 1,80 \cdot 1,47 = 2,65 \; .$$

Все значения, полученные при расчетах по вышеприведенным формулам, были сведены в таблицу Д.1 приложения Д.

На основе таблицы Д.1 приложения Д строится календарный планграфик. График строится для максимального по длительности исполнения работ в рамках научно-исследовательского проекта и представлен в таблице Д.2 приложения Д с разбивкой по месяцам и неделям за период времени дипломирования.

3.3.4 Бюджет научно-технического исследования

При планировании бюджета НТИ должно быть обеспечено полное и достоверное отражение всех видов расходов, связанных с его выполнением. В процессе формирования бюджета НТИ используется следующая группировка затрат по статьям:

- материальные затраты НТИ;
- затраты на специальное оборудование для научных (экспериментальных) работ;
 - основная заработная плата исполнителей темы;
 - отчисления во внебюджетные фонды (страховые отчисления);
 - затраты научные и производственные командировки;
 - контрагентные расходы;
 - накладные расходы.

3.3.4.1 Расчет материальных затрат научно-технического исследования

Расчет материальных затрат осуществляется по следующей формуле:

$$3_{_{\rm M}} = (1 + k_{_{\rm T3}}) \cdot \sum_{i=1}^{m} \mathcal{U}_i \cdot N_{{\rm pacx}_i}, \qquad (3.6)$$

где m — количество видов материальных ресурсов, потребляемых при выполнении научного исследования;

 $N_{{
m pacx}_i}$ — количество материальных ресурсов i-го вида, планируемых к использованию при выполнении научного исследования (шт., кг, м, м 2 и т.д.);

 II_i — цена приобретения единицы i-го вида потребляемых материальных ресурсов (руб./шт., руб./кг, руб./м, руб./м 2 и т.д.);

 $k_{_{\mathrm{T3}}}$ – коэффициент, учитывающий транспортно-заготовительные расходы.

Значения цен на материальные ресурсы могут быть установлены по данным, размещенным на соответствующих сайтах в интернете предприятиями-изготовителями (либо организациями-поставщиками).

Материальные затраты, необходимые для данной разработки, заносятся в таблицу Д.7 приложения Д.

Затраты на электроэнергию рассчитываются по формуле

$$C = II_{20} \cdot P \cdot F_{20} = 2,7 \cdot 0,9 \cdot 900 = 2187,$$

где $\mathcal{U}_{\text{эл}}$ – тариф на промышленную электроэнергию (2,7 руб. за 1 кВт·ч);

P — мощность оборудования, кВт;

 $F_{\text{об}}$ – время использования оборудования, ч.

Затраты на электроэнергию составили 2187 рубля.

Данный пункт рассчитывает затраты на приобретения оборудования, используемого в проведении работы. Специальное оборудование, используемое для работы, входит в виде амортизационных отчислений за период использования.

Расчет амортизационных отчислений ведется по формуле:

$$A = \frac{H_a \cdot C \cdot T_0}{365 \cdot 100\%} = \frac{33 \cdot 45000 \cdot 120}{365 \cdot 100\%} = 4882,$$

где A – амортизационные отчисления, руб.;

C – стоимость оборудования, руб.;

 H_a – годовая норма амортизации 33%;

 $T_{\scriptscriptstyle 0}$ – время использования оборудования.

Расчет отчислений по единицам оборудования приведен в таблице 3.2.

Таблица 3.2 – Амортизационные отчисления по единицам используемого оборудования.

Наименование оборудования	Количество	C, руб	H_a , %	$T_{\scriptscriptstyle 0}$, дни	A , руб
Рабочая станция	1	45000	33	120	4882
Итого, руб.:					4882

3.3.4.2 Основная заработная плата исполнителей темы

В настоящую статью включается основная заработная плата научных и инженерно-технических работников, рабочих макетных мастерских и опытных производств, непосредственно участвующих в выполнении работ по данной теме. Величина расходов по заработной плате определяется исходя из трудоемкости выполняемых работ и действующей системы окладов и тарифных ставок. Расчет основной заработной платы сводится в таблицу Д.3 приложения Д.

Статья включает основную заработную плату работников, непосредственно занятых выполнением HTИ:

$$3_{_{3\Pi}} = 3_{_{\text{OCH}}} + 3_{_{\text{ДОП}}},$$
 (3.7)

где $3_{\text{осн}}$ – основная заработная плата;

Основная заработная плата ($3_{\text{осн}}$) руководителя (лаборанта, студента) от предприятия (при наличии руководителя от предприятия) рассчитывается по следующей формуле:

$$3_{\text{och}} = 3_{\text{nH}} \cdot T_{\text{p}}, \tag{3.8}$$

где $T_{\rm p}$ — продолжительность работ, выполняемых научно-техническим работником, раб. дней (таблица Д.7 приложения Д);

 $3_{_{\mathrm{IH}}}$ – среднедневная заработная плата работника, руб..

Среднедневная заработная плата рассчитывается по формуле:

$$3_{\text{\tiny ZH}} = \frac{3_{\text{\tiny M}} \cdot M}{F_{\text{\tiny T}}}, \tag{3.9}$$

где $3_{_{\rm M}}$ – месячный должностной оклад работника, руб.;

M – количество месяцев работы без отпуска в течение года:

- при отпуске в 24 раб. дня M=11,2 месяца, 5-дневная неделя;
- при отпуске в 48 раб. дней M =10,4 месяца, 6-дневная неделя.

 F_{∂} – действительный годовой фонд рабочего времени научнотехнического персонала, раб. дни (таблица 3.3).

Таблица 3.3 – Баланс рабочего времени

Показатели рабочего времени	Руководитель	Студент
Календарное число дней	365	365
Количество нерабочих дней: – выходные дни; – праздничные дни.	116	116
Потери рабочего времени: – отпуск; – невыходы по болезни.	50	45
Действительный годовой фонд рабочего времени	199	204

Месячный должностной оклад работника:

$$3_{\rm M} = 3_{\rm rc} \cdot \left(1 + k_{\rm mp} + k_{\rm m}\right) \cdot k_{\rm p}, \tag{3.10}$$

где $3_{\text{тс}}$ – заработная плата по тарифной ставке, руб.;

 $k_{\rm np}$ — премиальный коэффициент, равный 0,30 (т.е. 30% от $\it 3_{mc}$);

 $k_{_{\rm I\! I}}$ — коэффициент доплат и надбавок составляет примерно 0,20 — 0,50 (в НИИ и на промышленных предприятиях — за расширение сфер обслуживания, за профессиональное мастерство, за вредные условия: 15-20% от $3_{_{\rm TC}}$);

 $k_{\rm p}$ — районный коэффициент, равный 1,30 (для города Томска).

Расчёт основной заработной платы приведён в таблице 3.4.

Таблица 3.4 – Расчёт основной заработной платы

Исполнители	3_{mc} , руб.	k_{np}	$k_{\scriptscriptstyle \partial}$	k_{p}	$3_{\scriptscriptstyle M}$, руб.	$\beta_{\partial \mu}$, руб.	T_p , раб. дн.	β_{och} , руб.
Руководитель	23130	0,30	0,20	1,30	45103	2357	15	35357
Студент	2800	-	-	-	2800	142	53	7565
Итого, руб.:								42922

3.3.4.3 Отчисления во внебюджетные фонды (страхование)

В данной статье расходов отражаются обязательные отчисления по установленным законодательством Российской Федерации нормам органам государственного социального страхования (ФСС), пенсионного фонда (ПФ) и медицинского страхования (ФФОМС) от затрат на оплату труда работников. Величина отчислений во внебюджетные фонды определяется исходя из следующей формулы:

$$3_{\text{внеб}} = k_{\text{внеб}} \cdot \left(3_{\text{осн}} + 3_{\text{доп}}\right),\tag{3.12}$$

где $k_{\text{внеб}}$ – коэффициент отчислений на уплату во внебюджетные фонды (пенсионный фонд, фонд обязательного медицинского страхования и пр.).

В соответствии с Федерального закона от 24.07.2009 №212-ФЗ установлен размер страховых взносов равный 30%. На основании пункта 1 ст.58 закона №212-ФЗ для учреждений осуществляющих образовательную и научную деятельность водится пониженная ставка – 27,10%.

Отчисления во внебюджетные фонды рекомендуется представлять в таблице 3.5.

Таблице 3.5 – Отчисления во внебюджетные фонды

Исполнитель	Руководитель
Основная заработная плата, руб.	42922
Дополнительная заработная плата, руб.	5150
Коэффициент отчислений во внебюджетные фонды, %	27,10
Сумма отчислений	13027
Итого, руб.:	13027

3.3.4.4 Накладные расходы

В данную статью входят расходы на содержание аппарата управления и общехозяйственных служб. По этой статье учитываются оплата труда административно-управленческого персонала, содержание зданий, оргтехники и хозинвентаря, амортизация имущества, расходы по охране труда и подготовке кадров.

Накладные расходы рассчитываются по формуле:

$$C_{\text{\tiny HAKJ}} = k_{\text{\tiny HAKJ}} \cdot (3_{\text{\tiny OCH}} + 3_{\text{\tiny ДОП}}), \tag{3.13}$$

где $k_{\text{\tiny HAKT}}$ – коэффициент накладных расходов, равный 30%.

Накладные расходы составят:

$$C_{\text{\tiny HAKJ}} = 0,30 \cdot (42922 + 5150) = 14421$$
руб.

3.3.4.5 Формирование бюджета затрат научно-исследовательского проекта

Рассчитанная величина затрат научно-исследовательской работы (темы) является основой для формирования бюджета затрат проекта, который при формировании договора с заказчиком защищается научной организацией в качестве нижнего предела затрат на разработку научно-технической продукции.

Определение бюджета затрат на научно-исследовательский проект по каждому варианту исполнения приведен в таблице 3.6.

Таблица 3.6 – Расчет бюджета затрат НТИ

Наименование статьи	Сумма, руб.
Материальные затраты НТИ	9243
Затраты по основной заработной плате исполнителей темы	42922
Затраты по дополнительной заработной плате исполнителей темы	5150
Накладные расходы	14421
Бюджет затрат НТИ	71736

3.5 Определение ресурсной (ресурсосберегающей), финансовой, бюджетной, социальной и экономической эффективности исследования

Интегральный показатель финансовой эффективности научного исследования получают в ходе оценки бюджета затрат трех (или более) вариантов исполнения научного исследования. Для этого наибольший интегральный показатель реализации технической задачи принимается за базу расчета (как знаменатель), с которым соотносится финансовые значения по всем вариантам исполнения.

Интегральный финансовый показатель разработки определяется как:

$$I_{\phi \text{ин}}^{\text{исп}_i} = \frac{\Phi_{\text{p}_i}}{\Phi_{\text{max}}}, \tag{3.14}$$

где $I_{\text{фин}}^{\text{исп}_i}$ – интегральный финансовый показатель разработки;

 Φ_{p_i} — стоимость i-го варианта исполнения;

 Φ_{max} — максимальная стоимость исполнения научно-исследовательского проекта (в т.ч. аналоги).

Полученная величина интегрального финансового показателя разработки отражает соответствующее численное увеличение бюджета затрат разработки в разах, либо соответствующее численное удешевление стоимости разработки в разах.

Так как разработка имеет одно исполнение, то

$$I_{\phi \text{ин}}^{\text{исп}_i} = \frac{83449}{83449} = 1.$$

Интегральный показатель ресурсоэффективности вариантов исполнения объекта исследования можно определить следующим образом:

$$I_{p_i} = \sum a_i \cdot b_i \,, \tag{3.15}$$

где $I_{\mathbf{p}_i}$ – интегральный показатель ресурсоэффективности для i-го варианта исполнения разработки;

 a_{i} — весовой коэффициент i-го варианта исполнения разработки;

 b_i — бальная оценка i-го варианта исполнения разработки, устанавливается экспертным путем по выбранной шкале оценивания.

Расчет интегрального показателя ресурсоэффективности представлен в форме таблицы (таблица 3.7).

Таблица 3.7 – Оценка характеристик исполнения проекта

	Весовой коэффициент параметра	Оценка
Способствует росту производительности труда пользователя	0,20	5
Удобство в эксплуатации	0,15	4
Помехоустойчивость	0,15	3
Энергосбережение	0,20	4
Надежность	0,25	4
Материалоемкость	0,05	3
Итого:	1	

$$I_{p_{\text{scril}}} = 5 \cdot 0,20 + 3 \cdot 0,15 + 4 \cdot 0,15 + 4 \cdot 0,20 + 4 \cdot 0,25 + 3 \cdot 0,05 = 4.$$

Интегральный показатель эффективности вариантов исполнения разработки определяется на основании интегрального показателя ресурсоэффективности и интегрального финансового показателя по формуле:

$$I_{\text{исп1}} = \frac{I_{\text{рисп1}}}{I_{\text{фин}}^{\text{исп1}}}, \quad I_{\text{исп2}} = \frac{I_{\text{рисп2}}}{I_{\text{фин}}^{\text{исп2}}} \text{ и т.д.}$$
 (3.16)

Сравнительная эффективность проекта (Θ_{cp}):

$$\mathcal{G}_{\rm cp} = \frac{I_{\rm ucn1}}{I_{\rm ucn2}}$$

Таблица 3.8 – Эффективность разработки

Показатели	Оценка
Интегральный финансовый показатель разработки	1
Интегральный показатель ресурсоэффективности разработки	4
Интегральный показатель эффективности	0,25

Сравнение значений интегральных показателей эффективности позволяет понять и выбрать более эффективный вариант решения поставленной технической задачи с позиции финансовой и ресурсной эффективности. Но т.к. задача имеет довольно строгие условия, решение имеет лишь один вариант.

Список публикаций студента

- 1. Пугачев Д.К., Мочалов А.М., Куликов М.Г. Скорость накопления энергии Вигнера в реакторном графите марки ГР-280 при его эксплуатации в реакторе АДЭ // VI Школа-конференция молодых атомщиков Сибири: сборник тезисов докладов, г. Томск: Изд. СТИ НИЯУ МИФИ, 2015. С. 101.
- 2. Куликов М.Г., Прец А.А., Сапар А.Д. Оценка флюенса повреждающих нейтронов в графите реактора РБМК-1000 // Актуальные проблемы инновационного развития ядерных технологий, г. Северск: Изд. СТИ НИЯУ МИФИ, 2016. С. 36-36а.

Прец А.А., Сапар А.Д., Куликов М.Г. Оценка размножающих и воспроизводящих свойств реактора КЛТ-40С // Актуальные проблемы инновационного развития ядерных технологий, г. Северск: Изд. СТИ НИЯУ МИФИ, 2016. – С. 46-46а.

4. Куликов М.Г. Пугачев Д.К. Физико-технические проблемы в науке, промышленности и медицине // Физико-технические проблемы в науке, промышленности и медицине: сборник научных трудов VIII Международной научно-практической конференции. – Томск, 2016. – С. 44.