Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт: <u>Электронного обучения</u>

Специальность **140101 Тепловые** электрические станции Кафедра **Атомных и тепловых электростанций**

дипломный проект

Тема работы

РЕКОНСТРУКЦИЯ КОТЕЛЬНЫХ УСТАНОВОК БЕЛОВСКОЙ ГРЭС

УДК 621.182-048.32

кафедры АТЭС

\sim			
TT	711	ΔT	TT
\sim 1 $^{\circ}$	//1	υг	11

Студент				
Группа	ФИО		Подпись	Дата
3-6302	Тепляков Станислав			
Руководитель				
Должность	ФИО	Ученая степень, звание	Подпись	Дата
ст. преподавате.	пь праж			

консультанты:

По разделу «Финансовый менеджмент ресурсоэффективность и ресурсосбережение»

TTO pasitesty wasting incomme	и менеджиент, ресурсов	ффективноств и	ресурсососреже	11110//
Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент кафедры менеджмента	А. А. Фигурко	к.э.н.		

По разделу «Социальная ответственность»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент кафедры экологии и безопасности жизнедеятельности	А. А. Сечин	к.т.н.		

По разделу «Автоматизация технологических процессов и производств»

В. В. Зайнев

Должность	ФИО	Ученая степень, звание	Подпись	Дата
ст. преподаватель кафедры автоматизаций и теплоэнергетических процессов	Ю. К. Атрошенко	-		

Нормоконтроль

Должность	ФИО	Ученая степень, звание	Подпись	Дата
ст. преподаватель кафедры атомных и тепловых электростанций	М. А. Вагнер	-		

ДОПУСТИТЬ К ЗАЩИТЕ:

Зав. кафедрой	ФИО	Ученая степень, звание	Подпись	Дата
атомных и тепловых электростанций	А.С. Матвеев	к.т.н.		

Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт Электронного обучения Специальность подготовки 140101 Тепловые электрические станции Кафелра «Атомных и тепловых электростанций»

Кафедра «Атомных и те	епловых электростанций»		
		УТВЕРЖДАЮ: Зав. кафедрой АТЭС А.С. Матвеев	НИНС
		(Подпись)	(Дата)
на вы	ЗАДАНИЕ полнение выпускной квалиф	икационной работы	
	Дипломного проек	та	
Студенту:	(бакалаврской работы, /работы, магистер	ской диссертации)	
Группа		ФИО	
3-6302	Теплякову	Станиславу Юрьеві	ичу
Тема работы:	-		U
РЕКОНСТРУН	хция котельных устан	ЮВОК БЕЛОВСКО	И ГРЭС
Утверждена приказом д	иректора (дата, номер)	. №18 :	14/c
Срок сдачи студентом в	ыполненной работы:	30 мая 2	016 года
ТЕХНИЧЕСКОЕ ЗАДА	АНИЕ:		
Исходные данные к ра	боте Реконструкция	с целью повышен	ия эффективност

Исходные данные к работе	Реконструкция с целью повышения эффективности
	работы станции и улучшения экологических
Беловская ГРЭС.	характеристик.
Прямоточный котел ПК-40-1.	-
Параметры котла:	
паропроизводительность 640 т/ч.,	
температура острого пара 545°С.,	
давление острого пара 140 кгс/см2.,	
шлакоудаление жидкое.	
,	

Перечень подлежащих		1. Общие сведения о станции	
исследованию, проектирова	нию и	2. Характеристика БРЭС	
разработке вопросов		2.1 Характеристика котла ПК-40-1	
		2.2 Обоснование реконструкции котла	
		3. Поверочный расчет поверхностей нагрева	
		4. Реконструкция золоулавливающей установки	
		5. Экологические расчеты	
		6.Финансовый менеджмент	
		7. Социальная ответственность	
		8. Атоматизация технологических процессов	
Перечень графического мат	ериала	ФЮРА.311233.002 ВО Продольный разрез котла	
		ФЮРА.311233.002 ВО Поперечный разрез котла	
		ФЮРА.311233.003 ВО Золоуловитель ММК	
		ФЮРА.311233.004 ВО Компоновка котла	
		ФЮРА.311233.004 ВО Компоновка котла	
		ФЮРА.421000.005 С2 АСР разряжения в топке котла	
Консультанты по разделам і	выпускн	ной квалификационной работы	
Раздел		Консультант	
Финансовый менеджмент	Фигур	ко А.А., к.т.н., доцент.	
Социальная ответственность	Сечин	А.А., к.т.н.	
Автоматизация технологических процессов	Атрош	енко Ю.К., старший преподаватель.	
	должн	ы быть написаны на русском и иностранном языках:	

Дата выдачи задания на выполнение выпускной	25 ноября 2015 года
квалификационной работы по линейному графику	

Задание выдал руководитель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
ст. преподаватель кафедры АТЭС	Зайцев В.В.	-		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
3-6302	Тепляков Станислав Юрьевич		

Оглавление

Реферат5
Введение6
1. Общие сведения о станции
1.1 Характеристика Беловской ГРЭС
1.2. Характеристика котла ПК-40-114
2. Обоснование реконструкции котла21
3. Поверочный расчет поверхностей нагрева котла
4. Реконструкция золоулавливающей установки
5. Экологические расчеты
6. Финансовый менеджмент
7. Социальная ответственность85
7. Социальная ответственность
8. Автоматизация технологических процессов
8. Автоматизация технологических процессов. .97 9. Заключение. .104
8. Автоматизация технологических процессов .97 9. Заключение .104 10. Список используемых источников .105
8. Автоматизация технологических процессов. .97 9. Заключение. .104 10. Список используемых источников. .105 ФЮРА.311233.002 ВО Продольный разрез котла ПК-40-1
8. Автоматизация технологических процессов. .97 9. Заключение. .104 10. Список используемых источников. .105 ФЮРА.311233.002 ВО Продольный разрез котла ПК-40-1 ФЮРА.311233.002 ВО Поперечный разрез котла ПК-40-1
8. Автоматизация технологических процессов. .97 9. Заключение. .104 10. Список используемых источников. .105 ФЮРА.311233.002 ВО Продольный разрез котла ПК-40-1 ФЮРА.311233.002 ВО Поперечный разрез котла ПК-40-1 ФЮРА.311233.003 ВО Золоуловитель ММК

Изм	/lucm	№ Докум	Цодипсь	Дата

Реферат

Выпускная квалификационная работа 106 с., 8 рис., 20 таб., 18 источников, 6 л. граф. материала.

БЕЛОВСКАЯ ГРЭС, ПАРОВОЙ КОТЕЛ, РЕКОНСТРУКЦИЯ, ТВЕРДЫЙ ШЛАК, ТПУ.

Объектом исследования является Беловская ГРЭС, расположенная в городе Белово.

Цель работы – реконструкция с целью повышения эффективности работы станции и улучшения экологических характеристик.

В процессе исследования производился сбор и систематизация информации по проблемам эксплуатации современных котлов с жидким шлакоудалением.

В результате исследования был произведен поверочный тепловой расчет котельного агрегата, определены изменения в нем при переводе его на твёрдое удаление шлака, определены изменения выбросов загрязняющих веществ в атмосферу, рассмотрены проблемы экологии и охраны труда, рассчитана автоматическая схема разряжения в топке котла, определен экономический эффект от реализации предложенной реконструкции.

ВКР выполнен в текстовом редакторе MS Word в соответствии с «Положением о выпускной квалификационной работе бакалавра, специалиста, и магистра в Томском политехническом университете», утвержденного приказом №6/од от 10.02.2014г.

Изм	/lucm	№ Докум	Цодипсь	Дата

Введение

Тепловые электрические станции остаются основой современной электроэнергетики. Здесь производиться свыше 70% электроэнергии. Они имеют свои особенности, в значительной степени, отличающие их от предприятий других видов промышленности. Эти особенности диктуют свою специфику условий и режимов работы оборудования. Наиболее весомая из особенностей заключается в том, что в любой произвольно взятый момент времени количество вырабатываемой энергии точно равно объёму спроса на нее. Нельзя иметь запас продукции на складе - мгновенный отпуск электроэнергии строго соответствует спросу. Отсюда вытекает следствие:

-необходимо иметь резерв по установленной мощности машин, если невозможно иметь резерв по продукции ;

-если по каким то причинам снижается потребление, то одновременно должна быть снижена выработка.

Еще одна особенность электроэнергетического производства заключается в неравномерности производства на годовом, месячном, недельном и суточном интервалах времени.

Топливо на тепловых электрических станциях не остаётся постоянным. По мере добычи угольных пластов месторождений Кузбасса увеличивается зольность и влажность. С начала семидесятых годов и по настоящее время зольность топлива, поступающего на электростанции Сибири, в среднем возросла в 1,5 раза и достигла 30-40% в расчете на сухую массу. Для обеспечения устойчивости топочных процессов и сохранения заданной паропроизводительности приходиться дополнительно сжигать мазут и принимать технические решения серьезно отличающиеся от проектных. Наконец, новые рыночные условия, складывающиеся в электроэнергетике, особым образом влияют на работу ТЭС. Их эксплуатация в условиях рыночной

Изм	/lucm	№ Докум	Цодипсь	Дата

борьбы генераций новое явление и особенность электроэнергетики.

В этой связи ввод новых и повышение эффективности старых пылеугольных энергоблоков, дальнейшее их усовершенствование, повышения надежности, экономичности, экологических параметров, применение технически- перспективных решений и других подходов с целью приспособить под современные реалии, является актуальным направлением.

Изм	/lucm	№ Докум	Цодилсь	Дата

6. Финансовый менеджмент

Расчет годовых технико-экономических показателей работы БГРЭС.

6.1 Абсолютные вложения капитала в проект реконструкции

$$K_{cm} = 8600$$
 млн.руб.

- продолжительность работы турбины, час -7665

- стоимость электроэнергии, руб/кВт.ч -2.9

- стоимость теплоты, руб/Гкал - 911

- 800 -стоимость твердого топлива, руб/т

6.2 Удельные вложения капитала, руб/кВт:

$$K_{y\partial} = \frac{K_{CT}}{N_{y}} = \frac{8600}{225} = 38222,2 \text{ py6/kBt}$$
 (106)

- 6.3 Оценка экономической эффективности реконструкции
- 6.3.1 Капитальные вложения и источники финансирования инвестиций.

Капитальные вложения, связанные с приобретением и установкой турбогенератора К-225-130, реконструкцией котла ПК-40 определены в текущих сметных ценах 2015 г. и составляют в сумме – 8,6 млрд. руб.

Сроки изготовления, монтажа и ввода в эксплуатацию этого оборудования определены в течение 2 лет.

Схема финансирования инвестиций условно принята за счет собственных средств и резервов предприятия.

Капитальные затраты $K_3 = 8600$ млн. руб.

6.3.2. Амортизационные отчисления

$$U_a = K_s \cdot 0.05 = 8600 \cdot 0.05 = 430$$
 млн.руб

где 0,05 - коэффициент амортизации.

6.3.3 Расходы на топливо

Подпись

№ Докум

/lucm

Годовые затраты на топливо определяются:

Дата

$$U_{m} = B \cdot \left(I I_{m} + I I_{mp.m} \right) \cdot \left(1 + \frac{\lambda_{nom}}{100} \right)$$
(108)

	$\mathcal{U}_m =$	$B \cdot (\mathcal{U}_m)$	+ 11 _{mi}	$[p.m] \cdot [1 +$	$\frac{100}{100}$			(108)	
									Т

ФЮРА.311233.001. ПЗ

/lucm

где B — годовой расход топлива;

 U_m – прейскурантная стоимость топлива. U_m =800 руб/т.н.т.;

 $U_{mp.m}$ — затраты на транспорт одной тонны натурального топлива.

$$\mu_{mp.m}$$
 = 2,56 py6/T.H.T.;

 λ_{nom} — процент потерь топлива при перевозке железнодорожным транспортом, выгрузке вагонов хранения и т. д. λ_{nom} =1,2%.

Годовой расход топлива определяем как:

$$B = 3,6 \cdot b \cdot h_{v} = 3,6 \cdot 14,45 \cdot 7665 = 398733,3 \text{ T.H.T}$$
 (109)

где b = 14,45 кг/c — секундный расход натурального топлива;

$$U_m = 398733, 3 \cdot \left(800 + 2,56\right) \cdot \left(1 + \frac{1,2}{100}\right) = 323,8$$
 млн.руб.

6.3.4 Определение годовых расходов на ремонт

Расходы на ремонт определяем как:

$$U_{pem} = 0.02 \cdot K_{cm} = 0.02 \cdot 8600 = 172 \text{ млн.руб.}$$
 (110)

6.3.5 Определение годовых расходов на заработную плату

На реконструируемом блоке работают 50 человек. Средняя зарплата 25000 руб./мес.

$$M_{3,n\pi} = 50 \cdot 25000 \cdot 12 \cdot 10^{-6} = 15$$
 млн. руб.

6.3.6 Прочие расходы

Небольшой удельный вес в себестоимости энергии таких ее составляющих как, текущий ремонт, вспомогательные материалы и покупная вода, услуги со стороны, услуги вспомогательных производств, прочие расходы, общестанционные расходы, позволяют объединить эти затраты в одну группу.

$$U_{npo4} = 0.05 \cdot (U_m + U_{a_M} + U_{3.n_{7.}}) = 0.05 \cdot (323.8 + 430 + 15) = 38.4$$
 млн.руб.

Полная величина изменений годовых эксплуатационных расходов определяется как сумма перечисленных затрат:

$$U = U_m + U_{a_M} + U_{3.n_{\overline{n}.}} + U_{np} = 323,8 + 430 + 15 + 38,4 = 807,2$$
 млн.руб.

May Aven NO Covins Defores Comp						
May Augm No Covers Despuis Come						Φ
изм лист и докум полись дили	Изм	/lucm	№ Докум	Подпись	Дата	

6.4 Определение дохода и срока окупаемости реконструкции

Доход предприятия определяется как:

$$\mathcal{A} = \Pi_{u} + \mathcal{U}_{am} \tag{111}$$

где $\Pi_{\scriptscriptstyle q}$ –чистая прибыль;

 $H_{a_{M}}$ –амортизационные отчисления.

Чистая прибыль представляет собой разность между балансовой прибылью и уплаченными налогами. Определяется как:

$$\Pi_{\nu} = \Pi_{\delta} - H_1 - \Delta H_2 \tag{112}$$

где Π_6 –балансовая прибыль;

 ΔH_1 – рентные платежи;

 ΔH_2 – налог с расчетной прибыли.

6.4.1 Балансовая прибыль и рентабельность

При расчете балансовой прибыли и рентабельности, принимаем:

- сумма нормируемых оборотных средств (HOC) равна затратам на топливо за месяц;
- в сумму годовых издержек производства добавляем единый социальный налог в размере 26% от $\rm M_{3пл}$.

Балансовая прибыль определяется как:

$$\Pi_{\delta} = \tau_{\mathfrak{I}} \cdot \mathfrak{I}^{omn}_{\mathfrak{I}} + \tau_{\mathfrak{m}} \cdot \mathcal{Q}^{omn}_{\mathfrak{m}} - \mathcal{U} - \mathcal{U}_{ECH}$$

$$\tag{113}$$

где τ_3 =2,9 руб. - тариф отпущенного кВт·ч.;

$$\mathcal{P}_{9}^{omn} = 0,9 \cdot 225 \cdot 10^3 \cdot 7665 = 1552, 2 \cdot 10^6 \text{ кВт} \cdot \text{ч} - \text{отпуск электроэнергии}.$$

 $au_{\scriptscriptstyle T} = 911\,\mathrm{руб./\Gamma}$ кал — тариф отпущенной Гкал;

$$Q_m^{omn} = 0,98 \cdot 170 \cdot 7665 = 1276989$$
 Гкал — величина отпуска теплоты.

Определяется с учетом КПД тепловых сетей.

U –годовые издержки после реконструкции;

 $\Phi_{O} = K_{cm}$ –стоимость основных фондов;

$$HOC = \frac{M_m}{12}$$
 –сумма нормируемых оборотных средств;

						/lucm
					ФЮРА.311233.001. ПЗ	90
Изм	/lucm	№ Докум	Подилсь	Дата		80

$$HOC = \frac{M_m}{12} = \frac{323.8}{12} = 27$$
 млн.руб.

Единый социальный налог

$$И_{ECH} = 0.26 \cdot И_{3пл} = 0.26 \cdot 15 = 3.9$$
 млн. руб.

Тогда

$$\Pi_{\tilde{6}} = 2,9 \cdot 1552, 2 \cdot 10^6 + 911 \cdot 1276989 - 807, 2 \cdot 10^6 - 3,9 \cdot 10^6 = 4853,6$$
 млн.руб.

6.4.2 Расчетная прибыль

При расчете расчетной прибыли, принимаем:

- имущественный налог 2% от Φ_{o} ;
- рентные платежи в бюджет разного уровня 500 руб./чел.
- 20% балансовой прибыли не облагается налогом;

Имущественный налог

$$H_{\text{им}} = 0.02 \cdot \Phi_0 = 0.02 \cdot 8600 = 172 \text{ млн. руб.}$$
 (114)

Рентные платежи

$$H_{\text{рен}} = 500 \cdot n_{\text{IIIT}} = 500 \cdot 50 = 0,025 \text{ млн. руб.}$$

Сумма рентных платежей

$$H_1 = H_{uM} + H_{peh} (115)$$

$$H_1 = 172 + 0,025 = 172,025$$
 млн. руб.

Прибыль расчетная

$$\Pi_{\text{pacy}} = \Pi_6 - H_1 - 0.2 \cdot \Pi_6, \tag{116}$$

$$\Pi_{\text{расч}} = 4853,6 - 172,025 - 0,2.4853,6 = 3710,9$$
 млн. руб.

Принимаем налог с расчетной прибыли в размере 24%

$$H_2 = 0.24 \cdot \Pi_{\text{расч}} = 0.24 \cdot 3710.9 = 890.6 \text{ млн. руб.}$$

Чистая прибыль

$$\Pi_{\mathbf{q}} = \Pi_{\mathbf{\delta}} - \mathbf{H}_{1} - \mathbf{H}_{2},\tag{117}$$

$$\Pi_{\scriptscriptstyle \rm H}$$
 =4853,6 $-$ 172,025 $-$ 890,6 =3791 млн. руб.

Доход предприятия

По данным таблицы 1 при E=20% и $T_{pacu}=10$ лет получили

						/lucm
					ФЮРА.311233.001. ПЗ	0.1
Изм	/lucm	№ Докум	Цодиись	Дата		81

Изм		
/luc m		
Nº		
Док ум		
Под		
nuc		
Ľ		
Да		
ma		

Таблица 10-Расчет прибыли проекта.

					Знач	нение показат	геля по годам	, млн. руб				
№	Наименование показателя		Годы									
		1	2	3	4	5	6	7	8	9	10	
1	Операционная деятельность (доход) п.1.7+п.1.4.2	_	_	4121,7	4121,7	4121,7	4121,7	4121,7	4121,7	4121,7	4121,7	
	Объем продаж:											
1.1	- отпуск электроэнергии $\mathfrak{I}_{\text{отп}}$, млн. к \mathfrak{B} т \cdot ч	_	_	1552,2	1552,2	1552,2	1552,2	1552,2	1552,2	1552,2	1552,2	
	- отпуск тепловой энергии Q _{отп} .	_	_	1276989	1276989	1276989	1276989	1276989	1276989	1276989	1276989	
	Цена продаж:											
1.2	- тариф на электроэнергию $ au_{_{9}}$	_	_	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	
	- тариф на тепловую энергию $\tau_{_{ m q}}$	_	_	911	911	911	911	911	911	911	911	
1.3	Выручка от продаж	_	_	5664,7	5664,7	5664,7	5664,7	5664,7	5664,7	5664,7	5664,7	
1.4	Суммарные издержки	_	_	807,2	807,2	807,2	807,2	807,2	807,2	807,2	807,2	
1.4.1	Переменные издержки И _т	_	_	323,8	323,8	323,8	323,8	323,8	323,8	323,8	323,8	
1.4.2	Амортизационные отчисления (H_{am}) 0,1 π .2.1	_	_	430	430	430	430	430	430	430	430	
1.4.3	Прочие постоянные издержки $N_{3пл}+N_{pem}+N_{np}$	_	_	53,4	53,4	53,4	53,4	53,4	53,4	53,4	53,4	
1.5	Прибыль балансовая п.1.3-п.1.4	_	_	4857,5	4857,5	4857,5	4857,5	4857,5	4857,5	4857,5	4857,5	
1.6	Налоги 0,24 п.1.5	_	_	1165,8	1165,8	1165,8	1165,8	1165,8	1165,8	1165,8	1165,8	
1.7	Прибыль чистая	_	_	3691,7	3691,7	3691,7	3691,7	3691,7	3691,7	3691,7	3691,7	
2	Инвестиционная деятельность $K=K_{\text{осн.}}+K_{\text{об.}}$ п.2.1+п.2.2	4300	4327	-	-	_	_	_	_	_	_	
2.1	Затраты на приобретение внеоборотных активов ($K_{och.}$)	4300	4300	_	_	_	_	_	_	_	_	
2.2	Затраты на приобретение оборотных активов (Коб)	_	27	_	_	_	_	_	_	_	_	
3	Дисконтированные капитальные вложения (K _{пр.})	5160	4327	_	_	_	_	_	_	_	_	
4	Сумма К _{пр} нарастающим итогом	5160	9487	_	_	_	_	_	_	_	_	
5	Дисконтированный доход (ДД)	_	_	2862,3	2385,3	1987,7	1656,4	1380,4	1150,3	958,6	798,8	
6	Сумма ДД нарастающим итогом	-	_	2862,3	5427,6	7235,3	8891,7	10272	11422,3	12380,9	13179,7	

 $4/\!\!\!\!/\!\!\!\!/\!\!\!\!/= 13179,7-9487=3692,7$ млн. руб. >0, что говорит о эффективности проекта.

Рассчитаем индекс доходности и срок окупаемости соответственно:

$$V\!\!\!/\!\!\!\!/ = \frac{13179,7}{9487} = 1,39\,, \quad T_{o\kappa} = 4 + \frac{9487 - 8891,7}{1380,4} = 4,4$$
 года .

Внутреннюю норму доходности определим из графика представленного на рисунке 4.

Рассчитываем ЧДД при различной норме дисконта, строим зависимость 4ДД = f(E) и находим ВНД как точку пересечения с осью E.

При
$$E=25$$
 %: $K_{np}=9702$ млн. руб.; ДД= 10976 ,7 млн. руб.;

При
$$E=30$$
 %: $K_{np}=9917$ млн. руб.; ДД=9272,9 млн. руб.;

$$BHД = 29.3 \%.$$

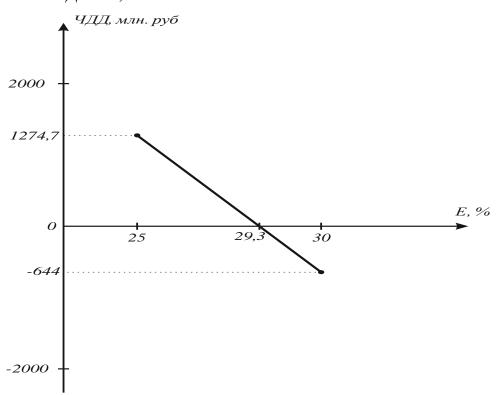


Рисунок 4- Зависимость ЧДД от нормы дисконта E.

Изм	/lucm	№ Докум	Подиись	Дата

8 Автоматизация технологических процессов

8.1 Определение объема контроля и автоматизации технологического объекта управления (ТОУ)

Схема автоматизации регулирования и контроля парового котлоагрегата предусматривают следующие системы:

- САР и контроля тепловой нагрузки котла;
- САР и контроля питания котла;
- САР и контроля соотношения газ воздух;
- САР и контроля разрежения в топке котла;
- система автоматического контроля давления;
- система автоматического контроля температуры;
- система автоматической отсечки газа.

По заданию рассматриваем систему автоматического регулирования и контроля разрежения в топке котла.

8.2. Выбор принципиальных схем контроля и автоматизации ТОУ

8.2.1. Характеристики участка регулирования

Наличие небольшого (до 2–3 мм вод. ст.) постоянного разрежения S_т в верхней части топки необходимо по условиям нормального топочного режима. Оно препятствует выбиванию газов из топки, способствует устойчивости факела и служит косвенным показателем материального баланса между нагнетаемым в топку воздухом и уходящими газами. Участок регулирования по разрежению представляет собой топочную камеру с включенными последовательно с нею газоходами от поворотной камеры до всасывающих патрубков дымососов. Входным регулирующим воздействием этого участка служит расход дымовых газов, определяемый подачей дымососов. Возмущающими воздействиями служат изменения подачи воздуха в зависимости от тепловой нагрузки агрегата, а также нарушения газовоздушного режима, связанные с работой систем пылеприготовления, операциями по удалению шлака и др.

Кривая разгона сигнала $S_{\scriptscriptstyle T}$ при возмущении подачей топочных газов

						/lucm
					ФЮРА.311233.001. ПЗ	07
Изм	/lucm	№ Докум	Подилсь	Дата		97

приведена на рисунке 5.

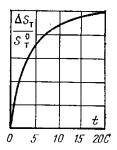


Рисунок 5- Переходный процесс по разрежению вверху топки при возмущении расходом газа ΔQ_r [12].

Рассматриваемый участок не имеет запаздывания, обладает малой инерционностью и значительным самовыравниванием. Особенность участка состоит в колебаниях регулируемой величины около среднего $S_{\rm ot}$ – с амплитудой до 30–50 Па (3–5 мм вод. ст.) и частотой до нескольких герц. Такие колебания (пульсации), зависящие от большого числа факторов, в частности от пульсаций расходов топлива и воздуха, затрудняют работу регулирующих приборов, в особенности снабженных релейными усилительными элементами, вызывая их слишком частые срабатывания. Для сглаживания пульсаций перед первичными измерительными приборами устанавливаются специальные демпфирующие устройства: дроссельные шайбы, импульсные трубы повышенного диаметра или баллоны (емкости). Для этого может быть использован также электрический демпфер – RC-цепочка, имеющийся в электрических схемах измерительных блоков регулирующих приборов.

8.2.2 Способы и схемы регулирования

Регулирование разрежения обычно осуществляется посредством изменения количества уходящих газов, отсасываемых дымососами. При этом их подача регулируется поворотными многоосными дроссельными заслонками, направляющими аппаратами, изменением частоты вращения рабочего колеса дымососа с первичным двигателем. Сравнительная оценка различных способов регулирования иллюстрируется графиками удельных расходов электрической энергии на тягу (рисунок 6).

Изм	/lucm	№ Докум	Цодипсь	Дата

ФЮРА.311233.001. ПЗ

/lucm

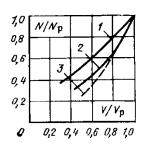


Рисунок 6- Относительные потребляемые мощности при различных способах регулирования подачи тягодутьевых машин [12]: 1-дроссельное регулирование; 2- направляющий аппарат; 3- скоростное регулирование.

Наибольшее распространение получила схема регулирования разрежения с одноимпульсным ПИ-регулятором (рисунок 7).

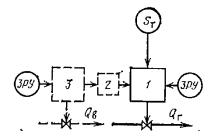


Рисунок 7- Схема регулирования разряжения [12].

Требуемое значение регулируемой величины устанавливается ручным задатчиком ЗРУ регулятора разрежения 1. Включение регулятора воздуха 2 приводит к временному нарушению материального баланса между поступающим воздухом и уходящими газами. При работе парового котла в регулирующем режиме могут происходить частые изменения тепловой нагрузки и, следовательно, изменения расхода воздуха. Для предупреждения частого возникновения такого небаланса и увеличения быстродействия регулятора разрежения рекомендуется ввести в ПИ-регулятор разрежения дополнительное исчезающее воздействие от регулятора воздуха через устройство динамической связи 3. Устройством динамической связи, например, может служить RC-цепочка (рисунок 8). Ее выходной сигнал поступает на вход регулятора разрежения лишь в момент включения регулятора воздуха.

						/lucm
					ФЮРА.311233.001. ПЗ	99
Изм	/lucm	№ Докум	Цодипсь	Дата		99

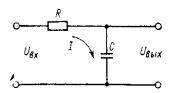


Рисунок 8- RC цепочка-инерционное звено [12].

8.3 Выбор технических средств для реализации систем контроля и автоматизации ТОУ

8.3.1 Обзор существующей аппаратуры регулирования

В зависимости от источника используемой энергии автоматические регуляторы подразделяются на регуляторы прямого и непрямого действия. В регуляторах прямого действия одновременно с измерением регулируемой величины от объекта регулирования отбирается часть энергии, которая используется для работы регулятора и воздействия на его исполнительный механизм, регулирующий орган объекта регулирования. Таким образом, к регуляторам прямого действия энергия извне не подводится.

В автоматических регуляторах непрямого действия для работы регулятора и воздействия на его исполнительный механизм подводится энергия извне.

В зависимости от используемой энергии регуляторы непрямого действия подразделяются на электрические, пневматические, гидравлические и комбинированные.

Выбор регулятора по виду используемой энергии определяется характером объекта регулирования и особенностями автоматической системы.

Электрические автоматические регуляторы применяются главным образом для регулирования на невзрывоопасных объектах при больших расстояниях от пункта управления до объекта регулирования.

Пневматические автоматические регуляторы применяются во взрыво- и пожароопасных зонах при небольших расстояниях (до 400 м) от пункта управления до объекта регулирования.

Гидравлические регуляторы применяются во взрыво- и пожароопасных зонах, как правило, при непосредственном размещении элементов регулятора в

						/lucm
					ФЮРА.311233.001. ПЗ	100
Изм	/lucm	№ Докум	Подипсь	Дата		100

зоне объекта регулирования. Для автоматизации приняты электрические авторегуляторы.

В настоящее время все приборы автоматизации выпускаются согласно системе ГСП (государственная система приборов). В состав локальных средств контроля и автоматизации входят следующие приборы:

- 1. Показывающие, регистрирующие и регулирующие приборы, подразделяющиеся на универсальные и специализированные устройства;
 - 2. Регулирующий микропроцессорный контроллер «Ремиконт Р-100»;
- 3. Агрегатные комплексы средств автоматизации комплекс приборов и устройств «Контур-2»; электрическая унифицированная система приборов автоматического регулирования «Каскад-2»; агрегатные комплексы электрических средств регулирования в микроэлектронном исполнении «АКЭСР» первой и второй очереди; аналоговые технические средства управления с переменной структурой (СУПС); комплексы регулирующих и функциональных пневматических приборов и устройств «Старт» и «Старт-2»;
 - 4. Регуляторы прямого действия;
 - 5. Комплексы средств автоматизации простых объектов.

8.3.2 Комплекс технических средств «АКЭСР»

Он состоит из регулирующих и функциональных устройств, предназначенных для преобразования информационных сигналов, поступающих от первичных преобразователей технологических параметров. Автоматизированные системы, созданные на базе средств «АКЭСР» могут функционировать самостоятельно или взаимодействовать с параллельными системами управления. Регулирующие и функциональные блоки системы «АКЭСР» позволяют поддерживать на заданном уровне технологические параметры объекта, в том числе при изменении его режимов работы и динамических средств; реализовывать различные законы регулирования; осуществлять ввод и вывод информации для оператора, логических устройств и управляющих ЭВМ; обеспечивать синхронизацию двух исполнительных механизмов; выполнять следующие преобразонизацию двух исполнительных механизмов; выполнять следующие преобразонизмов; выполнять следующие преобразонизмо

Изм	/lucm	№ Докум	Цодипсь	Дата

вания аналоговой информации; дифференцирование, интегрирование, демпфирование, суммирование, умножение, деление, возведение в степень, извлечение корня, селектирование, ввод нелинейности; аналого-релейные преобразования. Составные части комплекса приведены в [12].

8.3.3. Комплекс технических средств АКЭСР-2

В настоящее время разработана и выпускается промышленностью вторая очередь системы АКЭСР (АКЭСР-2).

Аппаратура комплекса АКЭСР-2 имеет более широкие функциональные возможности и позволяет проектировать АСР различного функционального назначения. Аппаратура АКЭСР-2 позволяет сочетать её с действующими на объектах АСР, выполненными с применением аппаратуры АКЭСР первой очереди, как по совместимости сигналов, так и по габаритным размерам. Характеристика Комплекта АКЭСР-2 представлена в[12].

8.3.4 Комплекс технических средств «КАСКАД-2»

Комплекс технических средств «Каскад-2» состоит из функциональных и регулирующих блоков, позволяющих агрегировать автоматические системы регулирования для автоматизации различных технологических процессов.

Комплекс состоит из определенных блоков, выполняющих различные функции. Характеристика Комплекта АКЭСР-2 представлена в [12].

8.4 Разработка функциональных схем контроля и автоматизации ТОУ

Основной технический документ, определяющим структуру систем автоматизации является функциональная схема систем автоматизации технологических процессов. Она отражает оснащения ее приборами и средствами автоматизации. На функциональной схеме изображен упрощенный вид агрегатов, подлежащих автоматизации, а также приборов, средств автоматизации и управления, изображаемых условными обозначениями по действующим стандартам, а также линии связи между ними. Функциональную схему АСР разряжения в топке котла выполним на базе приборов системы «АКЭСР-2». Система обеспечивает на-

Изм	/lucm	№ Докум	Подиись	Дата

дежную и экономичную работу оборудования.

8.4.1 Функциональная схема регулирования разряжения в топке котла.

Регулятор расхода газа (2a) получает сигнал от регулятора расхода воздуха (1a) и задатчика (3a). При необходимости регулятор выравнивает управление воздуха, который через блок ручного управления (2б) передает сигнал на пускатель (2в), который в свою очередь приводит в действие электроисполнительный механизм 2(г). Работу электроиспольнительного механизма отображает дистанционый указатель положения выходного вала электронного исполнительного механизма (4a).

8.5. Выполнение заказной спецификации на технические средства контроля и автоматизации ТОУ

Таблица 20-Средства контроля и автоматизации

№ п/п	№ позиции	Наименование и техническая характеристика приборов и средств автоматизации, завод- изготовитель	Тип и марка прибо- ров	КОЛИЧЕСТВО
1	1a,2a	Регулирующее устройство с импульсным	РП-4-П	2
		выходным сигналом, г. Чебоксары		
2	3a	Ручной задатчик, г. Чебоксары	РЗД-12-	1
			10кОм	
3	2б	Блок управления релейного регулятора, г.	БУ-21	1
		Чебоксары		
4	2в	Пускатель бесконтактный реверсивный, г.	ПБР 3А	1
		Чебоксары		
5	2Γ	Исполнительный механизм	МЭО-250-	1
			99	
6	4a	Устройство оперативного управления	ДУП-М	1

						/lucm
					ФЮРА.311233.001. ПЗ	102
Изм	/lucm	№ Докум	Цодиись	Дата		103

Список используемых источников

- 1. Компоновка и тепловой расчет парового котла: Ю.М.Липов, Ю.Ф.Самойлов, Т.В.Виленский.-М.:Энергоиздат, 1988.
- 2. Тепловой расчет котельных агрегатов (Нормативный метод). Под ред. Н.В.Кузнецова и др., М., «Энергия», 1973.
- 3. Котельные Установки электростанций. М.И.Резников, Ю.М.Липов. М.:Энергоатомиздат, 1987.
- 4. Вукалович М.П. Термодинамические свойства воды и водяного пара. М., «Стандарты», 1969.
- 5. РД.34.02304-95 Методические указания по расчету выбросов оксидов азота с дымовыми газами котлов ТЭС. АООТ "ВТИ", 1996г.
- 6. Инструкции дежурному персоналу Беловской ГРЭС по эксплуатации оборудования котельного отделения КТЦ. Белово, 1993. 194c
- 7. Менеджмент в энергетике (Экономика и управление энергетическими предприятиями): метод. указания по выполнению курсовой работы для студентов энергетических спец. 140101 «Тепловые электрические станции» и 140104 «Промышленная теплоэнергетика» ИДО / Сост. Л. А. Коршунова. –3-е изд., перераб. и доп. Томск: Изд-во ТПУ, 2008. 40 с.
- 8. Охрана труда: Учебник для студентов вузов/ Князевский Б.А., Долин П.А., Марусова Т. П. и др.; Под ред. Б.А. Князивского. 2 е изд., переработано и доп. М.: Высш. Школа, 1982ю 311 с.
- 9. Долин П.А. Справочник по техники безопасности. -6 е изд., перераб. и доп. М.: Энергоатомиздат, 1984. 824 с.
- Щеголев М.М., Гусев Ю.Л., Котельные установки. Изд. 2-е, перераб. и доп. –
 М.: Стройиздат, 1972. 383 с.
- 11. Котельные установки и парогенераторы. Основы и методика теплового расчета котлов: учебное пособие/С.К. Карякин; Национальный исследовательский Томский политехнический университет. Томск: Изд-во ТПУ, 2010. 156 с.

						/lucm
					ФЮРА.311233.001. ПЗ	105
Изм	/lucm	№ Докум	Подиись	Дата		105

- 12. Проектирование систем автоматического контроля и регулирования: учебное пособие/А.В. Волошенко, Д.Б.Горбунов; Томский политехнический университет.-Томск: Изд-во ТПУ, 2011.-108с.
- 13. Проектирование средств автоматизации и автоматических систем регулирования. Справочное пособие./ Клюев А.С., Лебедев А.Т. и др. М.: Энергоавтомиздат, 1988.
- 14. Наладка средств автоматизации и автоматических систем регулирования. Справочное пособие./ Клюев А.С., Лебедев А.Т. и др. М.: Энергоавтомиздат, 1989.
- 15. Плетнев Г.П. Автоматическое управление и защита теплоэнергетических установок электростанций. М.: Энергоавтомиздат, 1986.
- 16. Охрана труда в электроустановках./ Под редакцией Князевского Б.А. М.: Энергия, 1985.
- 17. WaterSteamPro. Компьютерная программа.
- 18. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. ОНД-86. -Л.: Гидрометеоиздат, 1986.

Изм	/lucm	№ Докум	Цодипсь	Дата