УДК 553.411.071: 550.4

ОБЪЁМНАЯ ГЕОЛОГО-ГЕОХИМИЧЕСКАЯ МОДЕЛЬ МЕЗОТЕРМАЛЬНОГО ЗОЛОТОРУДНОГО МЕСТОРОЖДЕНИЯ ЧЁРТОВО КОРЫТО (ПАТОМСКОЕ НАГОРЬЕ)

Р.Ю. Гаврилов, И.В. Кучеренко, В.Г. Мартыненко*, А.В. Верхозин*, Т.Е. Мартынова

Томский политехнический университет E-mail: GavrilovRY@ignd.tpu.ru *ООО «Ленская золоторудная компания», г. Бодайбо E-mail: VerkhozinAV@polyusgold.com

Продолжена серия публикаций, посвящённых результатам структурно-динамического, минералого-петрохимического и геохимического исследования нового золоторудного месторождения Чёртово Корыто. Приведены данные о распределении рудогенных элементов (Au, Ag, As) в объёме рудовмещающего метасоматического ореола, образованного в раннепротерозойской толще чёрных сланцев – михайловской свите Патомского нагорья. Показано изменение в рудовмещающем субстрате пробы золота, силы корреляционных связей золота с сопутствующими металлами. Обсуждаются генетические аспекты образования месторождения.

Ключевые слова:

Месторождение Чертово Корыто, метасоматический ореол, березиты, геохимический ореол, золото, серебро, мышьяк, геолого-геохимическая модель.

Введение

Месторождение Чёртово Корыто принадлежит к совокупности золоторудных объектов, образованных в толщах углеродистых терригенных (чёрных) сланцев разного возраста и, подобно другим золотым месторождениям «сланцевого» типа, обладает полным комплектом признаков геологогенетической однородности с месторождениями, залегающими в кристаллическом субстрате, - в гранитах, вулканитах, габбро, ультраметаморфитах и других [1–3]. По мере накопления новых фактов авторам становится очевидным, что квалификация месторождений «сланцевого» типа в целом как метаморфогенно-гидротермальных, образованных в результате и благодаря экстракции растворами разного происхождения металлов (золота) из вмещающих и/или окружающих пород, а по этому признаку - противопоставление их образованным в кристаллических породах, представляет один из эпизодов на тернистом пути познания процессов рудообразования, который останется в прошлом, а в будущем, возможно, ограничится лишь частными случаями заимствования металлов из стратиформной вулканогенно-осадочной или гидротермально-осадочной минерализации в сланцах.

В совокупности доказательств геолого-генетической однородности золотых месторождений «сланцевого» и «несланцевого» типов существенное значение имеют геохимические данные [1, 4]. Ранее на ряде примеров приведено обоснование представления об образовании месторождений того и другого типа в не специализированном на золото и сопровождающие его металлы субстрате [4]. Содержание металлов во вмещающих и окружающих рудные поля породах до начала рудообразования отвечают кларковым, — 0,7...1,2 мг/т в чёрных сланцах, гранитах, мигматитах, гнейсах и других породах, слагающих разные месторождения (Кедровское, Ирокиндинское, Каралонское, Богоди-

канское и др.). Распределение металлов в околорудном, межрудном пространстве подчиняется околорудной метасоматической зональности с наибольшим обогащением ими тыловых зон метасоматических ореолов, увеличением здесь золото-серебряного отношения, усилением корреляционных связей золота с другими металлами до значений, свойственных рудным телам. Выявлена прямая зависимость контрастности аномалий от содержаний металлов, прежде всего золота, в рудах. Эти факты доказывают синхронное образование околорудных метасоматических, геохимических ореолов и руд в результате рудообразующих процессов, обогащение околорудного рудовмещающего пространства металлами, поступавшими с металлоносными растворами извне.

Геохимия рудогенных элементов в месторождении Чёртово Корыто изучена в двух аспектах, — в плане реконструкции геологической истории металлов в рудовмещающем и прилегающем пространстве и в плане выявления объёмной структуры итогового рудовмещающего геохимического ореола, пространственно-временных и причинноследственных соотношений с ним рудных тел.

Геологическая история металлов в горных породах месторождения реконструирована посредством применения специальной методики петрологогеохимических исследований, предполагающей, в частности, штуфное опробование по видам пород с учётом региональной метаморфической и околорудной метасоматической зональности, и удаление из проб жильно-прожилкового кварцевого материала, заключающего в себе значительную часть золота. Первое обеспечивает формирование выборок для статистических расчётов как минимум двух уровней, максимально возможное приближение расчётных значений дисперсии распределения содержаний металлов в породах к реальным при минимальном эффекте сглаживания и реконструкцию поведения металлов от этапа образования пород и при последующих их преобразованиях, второе исключает неприемлемое с точки зрения чистоты эксперимента влияние массы золота, сосредоточенного в прожилках, на содержание его в породах при том, что распределение прожилков-трещин подчиняется своим законам и нередко не соотносится с интенсивностью околорудных изменений пород и, как следствие, с их золотоносностью. Результаты согласуются с полученными ранее [4] и опубликованы в [1]. Тот факт, что содержания золота в исходных породах от первых мг/т возрастают лишь до десятков мг/т в метасоматитах с сульфидами тыловых зон ореола при содержании золота в рудах до первых - многих г/т, свидетельствует о том, что основные носители промышленных количеств золота, как отмечалось выше, - кварцевые жилы и прожилки.

Итак, суждение о внепородных источниках сосредоточенного в рудах золота и другие приведённые выше генетические выводы были бы невозможны в случае включения материала золотоносных кварцевых прожилков в пробы. Напротив, чтобы получить картину распределения золота и сопровождающих его элементов в объёме итогового геохимического ореола, часть которого составляет рудное тело, дать генетическую интерпретацию его структуры и выявить положение в нём рудных тел, не имеет принципиального значения принадлежность проб к определённому виду (разновидности) пород и к минеральным зонам ранних региональных метаморфических и поздних околорудных метасоматических ореолов. В этом случае опробуется весь материал.

Создание объёмной геолого-геохимической модели месторождения, описанию и обсуждению которой посвящена данная статья, обеспечивается равномерной сетью разведочных вертикальных колонковых скважин глубиной до 250 м, пройденных по сети 50×50 м, выборочно 25×25 м, и вскрывших рудовмещающий блок на надрудных, рудных и подрудных уровнях, а также 100 %-м выходом керна и его непрерывным секционным опробованием с интервалом 1 м. На поверхности рудные тела и вмещающие породы вскрыты траншеями через 50...100 м длиной до 350 м, в которых породы и руды непрерывно опробованы бороздовым способом.

Все аналитические работы выполнены в лицензированных и аккредитованных лабораториях. Содержание золота определялось пробирным методом в аналитических лабораториях ЗАО «Тонода» Ленской золоторудной компании и ОАО «Первенец», чувствительность метода 0,1 г/т. Контроль осуществлялся в аналитической лаборатории ОАО «Иргиредмет» (г. Иркутск), здесь же определялось золото и серебро методом атомной абсорбции с чувствительностью 0,01 г/т. Мышьяк и другие цветные металлы определялись в аналитической лаборатории Бодайбинской экспедиции эмиссионным спектральным методом. Минеральные микропримеси руд диагностировались в сканирующем электронном микроскопе JSM-35 с приставкой KEVEX, химические составы минералов, в том числе самородного золота, определялись методом энергодисперсионной спектрометрии в Аналитическом центре Института геологии и минералогии СО РАН (г. Новосибирск), аналитик к.г.-м.н. Л.В. Агафонов.

1. Краткий очерк геологического строения и минерального состава руд месторождения Чёртово Корыто

Месторождение расположено на севере Патомского нагорья в бассейне реки Б. Патом — правого притока реки Лены в среднем её течении (рис. 1). В результате детальной геолого-экономической оценки месторождения на завершающем этапе в 2005—2007 гг. утверждённые в ГКЗ при Правительстве России запасы золота составили 103 т.

Рис. 1. Географическое расположение месторождения Чертово Корыто

Геологическое строение месторождения, петролого-геохимические черты рудовмещающего метасоматического ореола описаны ранее [1, 3], поэтому ниже приведены краткие сведения по перечисленным вопросам, достаточные для понимания условий залегания и структуры геохимического ореола и рудного тела в нём.

Месторождение входит в состав Артемьевского рудного поля, включающего также Желтухтинско-Михайловскую и Верхне-Желтухтинскую золоторудные зоны, расположенные восточнее. Все золоторудные объекты залегают в терригенных углеродистых сланцах раннепротерозойской михайловской свиты мощностью 1200 м и контролируются северо-северо-западными (350°) складчато-разломными зонами типа взбросо-сдвигов с падением сместителей в западном направлении. Толща чёрных сланцев в составе ритмично чередующихся в разрезе мелкозернистых, разнозернистых песчаников, алевролитов, аргиллитов собрана в открытую синклинальную сохранившуюся от эрозии в призамковой части брахискладку субширотного простирания с пологим (от субгоризонтального до 10...20°) залеганием слоёв осадочных пород. Субширотное простирание северного падающего на юг крыла складки на восточном фланге месторождения постепенно сменяется на меридиональное с падением слоёв горных пород на запад, а на юге — на восток-северо-восточное с падением слоёв на северо-северо-запад (рис. 2). Складка осложнена многочисленными флексурами при протяжённости изгибов от первых до нескольких десятков метров.

На этапе раннепротерозойской складчатости и последующем образовании складчато-разломной зоны возникали и обновлялись многочисленные синскладчатые и эпигенетические межслоевые и внутрислоевые поверхности рассланцевания и трещиноватости сколового типа, впоследствии служившие путями движения металлоносных растворов. Складчато-разломная зона сочленяется с известным в районе Амандракским глубинным разломом. Глубинный статус той и другой структуры доказывается участием в составе сланцевой толщи базитовых даек и контрастными аномалиями в березитоидах тыловых зон рудовмещающего метасоматического ореола ассоциации фемофильных элементов (P, Ti, Mg, Fe, Mn, Ca) - вестников мантийных глубин [1].

В объёме месторождения и его ближайшей восточной периферии сочетаются две разломных структуры более высокого, чем складчато-разломная зона, порядка – крутопадающий (около 60°) разлом северо-северо-западного, то есть согласного зоне простирания, падающий в запад-юго-западном направлении, и оперяющая его в висячем (западном) боку пологопадающая (до 20°) в том же направлении рудовмещающая зона разуплотнения пород (рис. 2). Зона разуплотнения, согласная с разломом по простиранию, в направлении падения, на северном и южном флангах месторождения, разветвляясь, постепенно выклинивается, на восточном фланге снята эрозией. Разуплотнение, т. е. достижение высокой проницаемости пород, обеспечивается сочетанием множества согласных слоистости поверхностей и сколовых трещин, на определённом гипсометрическом уровне испытавших отслоение, и некоторого дополнительного количества открытых трещин отрыва, возникших на предрудном этапе функционирования крутопадающего разлома, выполнявшего функции оперяемого пологой зоной разуплотнения рудоконтролирующего и раствороподводящего. Последнее доказывается образованием в его непосредственном обрамлении (висячем боку) крупнообъёмного зонального рудовмещающего метасоматического ореола с заключённым в нём рудным телом, с постепенным, по мере удаления от разлома на запад, ослаблением околорудных изменений пород вплоть до уровня фронтальной (внешней) зоны ореола и постепенным выклиниванием рудного тела, кварцево-жильно-прожилковой и прожилкововкраплённой кварцево-сульфидной и сульфидной минерализации.

Рис. 2. Схема геологического строения месторождения Чертово Корыто: 1) плохо отсортированные серые до темно-серых, от тонко- до среднезернистых, неяснослойчатые грубослоистые полевошпат-кварцевые песчаники, алевро-песчаники, углеродистые и безуглеродистые; 2) плохо отсортированные темно-серые разнозернистые, от мелко- до крупнозернистых тонкослойчатые до грубослоистых полевошпат-кварцевые алевролиты, песчанистые алевролиты, углеродистые и безуглеродистые; 3) аргиллиты серицитовые с незначительным (до 25 об. %) содержанием или отсутствием обломочной фракции песчаной и/или алевритовой размерности, углеродистые и безуглеродистые; 4) азимут и угол падения слоев; 5) область сульфидной минерализации; 6) зоны тонкого рассланцевания и дробления пород; 7) тыловые зоны (хлоритовая, альбитовая, березитовая) рудовмещающего метасоматического ореола; 8) рудоконтролирующий разлом

В отсутствие геологических границ рудного тела контуры его, определяемые по данным непрерывного опробования, в той или иной степени изменяются в зависимости от принятых геолого-экономических кондиционных показателей. Тем не менее, справедливо и то, что ими очерчен объём недр, наиболее насыщенный минерализацией, - породами с сульфидной вкраплённостью, золотоносными кварцевыми жилами, прожилками, объёмы которых максимальны в наиболее раздробленных породах и которые в основном определяют промышленную золотоносность руд. Следовательно, в генерализованном виде контуры и форма рудного тела могут быть использованы в обсуждении и реконструкции условий рудообразования и формирования объёмного геохимического ореола месторождения.

При бортовом и среднем промышленном содержании золота соответственно 0,5 и 1,83 г/т рудное тело представляет собой залежь протяжённостью вдоль рудоконтролирующего и раствороподводящего разлома (аз. 350°) 1300 м, мощностью до 140 м и протяженностью по падению до 500 м (рис. 5). Ширина выхода рудной залежи на поверхность в восточной части месторождения достигает 200 м. По простиранию залежь горизонтальна, в центральной части месторождения согласна стратификации, на северном и южном флангах контуры её пересекают стратификацию под острыми углами. Среднее содержание золота в кварцевых прожилках и жилах центральной части месторождения составляет 9,27 г/т при частных значениях от «следов» до 125 г/т, на южном фланге – 2,36 г/т при вариациях от «следов» до 14 г/т, на северном фланге – 2,85 г/т. В трех направлениях, – северном, западном, южном промышленная золотоносность жил и прожилков кварца постепенно сменяется непромышленной, и далее кварц становится слабоили незолотоносным.

Рудовмещающая зона, а, следовательно, и рудная залежь месторождения залегают в крупнообъемном зональном метасоматическом ореоле, сложенном метасоматически измененными, ранее регионально метаморфизованными, терригенными породами и образованными по ним метасоматитами. Объём ореола, выходящий за пределы вскрытого всеми скважинами объёма земной коры, определяется образованием его в ближнем обрамлении (висячем боку) раствороподводящего рудоконтролирующего разлома и пропитыванием пород значительными массами металлоносных растворов, заполнявших под давлением множество растворораспределяющих межслоевых швов и трещиннопоровое пространство горных пород. Фиксируемая неравномерность распределения метасоматиче-

Рис. 3. Микропримеси кобальтина (а) и золота (б), теллуровисмутита (в), галенита (г) и халькопирита (д), самородного свинца (е), тонкодисперсного золота (ж) в рудах месторождения

Рис. 4. Морфология частиц тонкодисперсного золота в рудах месторождения

ских минеральных ассоциаций, включая сульфидные с золотом, обусловлена разной степенью проницаемости межслоевых швов рассланцевания каналов, в обрамлении которых образованы тыловые зоны метасоматического ореола, и меньшей проницаемостью пород в межшовном пространстве, где степень их изменений снижается.

Минеральные ассоциации этапа рудообразования включают в закономерно изменяющихся наборах и количественных соотношениях кварц, серицит, альбит, лейкоксен, рутил, карбонаты, кероген, актинолит или хлорит, сульфиды, золото. Они подчиняются определенному порядку минералого-петрохимической зональности с многократной сменой по литорали и вертикали минералого-петрохимических зон: внешней (фронтальной), углеродистой, хлоритовой, альбитовой, внутренней (тыловой) березитовой. В направлении к тыловой зоне уменьшается набор минералов, но возрастает объем минеральных новообразований. Фронтальная зона сменяется смежной углеродистой на границе полного растворения метаморфического биотита, углеродистая зона хлоритовой — на границе полного окисления (и отгонки) керогена. Переход хлоритовой зоны в альбитовую сопровождается полным растворением хлорита, на границе альбитовой и березитовой зон исчезает альбит.

Основной объём ореола сложен черными, темно-серыми, серыми метасоматически измененными сланцами углеродистой зоны. Породы трех тыловых зон имеют массивное сложение и, лишенные керогена, всегда осветлены до зеленовато-серого в хлоритовой и светло-серого цветов в альбитовой и березитовой зонах. Тыловые зоны, образованные, как отмечалось, вдоль межслоевых швов, многократно повторяются в разрезе промежуточной углеродистой зоны и имеют несопоставимо меньшие сравнительно с углеродистой зоной мощности. Последние уменьшаются от хлоритовой зоны (многие метры) к альбитовой (десятки см) и далее к березитовой (первые см...первые десятки см).

Гидротермально измененные породы рудовмещающего метасоматического ореола содержат три последовательно сменявших один другой во времени рудно-минеральных комплекса: пирит-пирротиновый, золото-арсенопирит-пирит-пирротиновый и золото-галенит-сфалерит-халькопиритовый с микропримесью ранних кобальтина, джулукулита, ульманита, валлериита, теллуровисмутита, самородных свинца и тонкодисперсного золота (рис. 3, 4). В составе каждого из них отложен преобладающе ранний кварц с последующим сопровождением более поздних сульфидов, золота и карбонатов. Комплексы отвечают стадиям рудообразующего процесса, реализованного в температурном диапазоне 500...150 °С, определенном по данным изучения газово-жидких включений в кварце. По результатам изучения зависимости содержания в арсенопирите мышьяка от температуры его образования [8] температурный диапазон минералообразования составляет 490...170 °С с массовым отложением арсенопирита в интервале 380...360 °С.

2. Распределение металлов в объеме рудовмещающего метасоматического ореола

Отложение рудного вещества сопровождалось образованием ореола рассеяния золота и сопутствующих ему металлов. Низкие и даже исчезающе малые содержания в рудовмещающем метасоматическом ореоле и рудах сульфидов – носителей большинства цветных металлов Cu, Zn, Pb, Ni, Co и других прямо коррелируют с низкими содержаниями последних в геохимическом ореоле. Это доказывается расчетами параметров распределения цветных металлов в основных литологических видах пород с учетом интенсивности их метасоматической переработки [4]. Халькопирит, сфалерит, галенит, совместно или порознь образующие мелкие гнездовые выделения преобладающе в кварце жил и прожилков, встречаются эпизодически. В большинстве проб содержания этих металлов близки к кларковым. В этом отношении месторождение не составляет исключения из множества золотых месторождений, в которых слабая контрастность геохимических ореолов представляет общую закономерность [5]. Высоко контрастные ореолы образуют золото, серебро и мышьяк, распределение которых в объёме месторождения приведено ниже.

Рудовмещающий геохимический ореол рассеяния занимает больший сравнительно с рудным телом объем, обрамляя последний, и при постепенном снижении концентраций металлов упомянутой триады сменяется на периферии вмещающими породами с приближающимися к кларковым их содержаниями.

Распределение содержаний металлов в объёме метасоматического ореола анализируется в трех взаимно перпендикулярных направлениях ортогональной системы координат (рис. 5, 6, 8–11).

Представление о внутреннем строении геохимического ореола разработано с учетом приведенных фактов и соображений. Число изолиний равных содержаний принято минимальным, чтобы посредством разрежения первоначально участвовавших в графических построениях изолиний на планах и в разрезах, ограниченных размерами журнальной страницы, получить приемлемое разрешение без искажения или излишнего усложнения структуры ореола. Изолинии минимальных содержаний отвечают значениям, на порядок превышающим кларковые [6, 7], – для золота 0,05 г/т, серебра 0,2 г/т, мышьяка 30 г/т.

В анализе структуры геохимического ореола учитывается также то, что северный и южный фланги рудной залежи вследствие понижения высотных отметок рельефа уничтожены эрозией, а на поверхности и скважинами (буровые линии (БЛ) 2, 7, 30, рис. 5) вскрыты нижнерудные и подрудные горизонты рудовмещающей толщи.

Рис. 5. Распределение золота на дневной поверхности и в поперечных вертикальных разрезах рудовмещающего метасоматического ореола месторождения. Здесь и на рис. 6, 8–11: 1) контур промышленной рудной залежи на дневной поверхности (а) и в разрезах (б); 2) контур не выходящих на дневную поверхность флангов промышленной рудной залежи в проекции на горизонтальную плоскость; 3) устья разведочных скважин и их номера на дневной поверхности и (C247) в разрезах; 4) буровые линии и их номера

В соответствии с экономически обоснованным бортовым содержанием золота 0,5 г/т при геометризации объёма недр с промышленным оруденением рудная залежь вписывается в наиболее контрастную зону геохимического ореола, ограниченную изолинией минимального содержания металла 0,1 г/т (рис. 5, 6). В этом объеме в центральной части месторождения (БЛ 2, 8а, 15) значительную долю занимает внутренняя зона ореола, содержание золота в которой превышает 1 г/т при среднем содержании в контуре промышленных руд 1,83 г/т. Частое чередование здесь этих двух смежных зон, наименее выраженное только в одном разрезе БЛ 15, отражает высокую степень неравномерности распределения металла. На северном (БЛ 7, 2), южном (БЛ 24, 30) и западном (разрез III-III, рис. 6) флангах рудной залежи доля внутренней зоны снижается вплоть до полного её исчезновения

при синхронном снижении объемов промышленных руд, которые представлены здесь редкими мелкими линзами. Напротив, в центральной части месторождения и на его флангах большинство скважин не вышли за пределы зоны ореола, ограниченной в нижнем пределе изолинией 0,1 г/т; исключение составляет лишь крайний южный буровой профиль БЛ 30. В последнем случае значительная доля объёма ореола в сравнении с положением рудной залежи в центральной части месторождения занимает подрудное пространство и содержит металла менее 0,1 и 0,05 г/т. Однако связывать ослабление геохимического ореола здесь только с положением его в подрудном пространстве было бы не корректно, так как рудная залежь в южном направлении выклинивается, а геохимический ореол ослабляется и на околорудных гипсометрических уровнях (БЛ 24).

Рис. 6. Распределение золота в продольных вертикальных разрезах рудовмещающего метасоматического ореола месторождения

Геохимический ореол золота ослабляется до содержаний, меньших 0,1 и 0,05 г/т, также на дневной поверхности в западной части месторождения, то есть в направлении погружения в недра рудной залежи, что подчеркивает факт обрамления рудного тела наиболее богатыми металлом тыловыми, прежде всего внутренней зонами геохимического ореола. По существу, внутренняя зона геохимического ореола золота — это и есть рудное тело и его ближайшее обрамление. Ослабление геохимического ореола над рудным телом обозначает надрудное пространство. Химический состав золота (табл.) энергодисперсионным анализом определен в 64 частицах из 25 групповых проб, отобранных во всем объёме месторождения. Содержание золота в сплаве изменяется от 74,42 до 97,16 мас. %, серебра – от 2,84 до 22,42 мас. %. В качестве элементов-микропримесей в значимых концентрациях в трех частицах установлены кадмий – от 1,70 до 2,62 мас. % и в одной частице мышьяк – 1,30 мас. %. Остальные элементы не обнаружены в концентрациях выше порога чувствительности метода (0,01 мас. %).

Рис. 7. Распределение пробности золота в месторождении (а), в объеме рудного тела (б), во вмещающих породах (в), на верхнерудном (г), осевом (д), нижнерудном (е) уровнях месторождения

№ пп	Номер	Содержание, мас. %		Пробность	No an	Номер	Содержани	1е, мас. %	Пробность
	пробы	Au	Ag	Au, ‰	IN≌ IIII	пробы	Au	Ag	Au,‰
1	C71/1(51)	78,71	21,29	787,10	33	C198/1(65)	85,90	14,10	859,00
2	C71/1(58)	90,12	9,88	901,20	34	C198/2(30)	85,28	14,72	852,80
3	C71/1(58a)	88,92	11,08	889,20	35	C198/2(31)	82,83	17,17	828,30
4	C71/1(63)	89,21	10,79	892,10	36	C198/2(33)	80,85	17,21	808,50*
5	C71/1(64)	94,23	5,77	942,30	37	C198/2(37)	80,71	16,67	807,10*
6	C71/1(66)	93,82	6,18	938,20	38	C198/2(38)	79,35	20,65	793,49
7	C71/1(67)	92,02	7,98	920,20	39	C198/2(39)	87,35	12,65	873,48
8	C71/1(73)	92,86	7,14	928,60	40	C198/2(41)	81,28	18,72	812,77
9	C71/2(38)	90,06	9,94	900,57	41	C198/3(75)	87,18	12,82	871,84
10	C71/2(49)	88,12	11,88	881,20	42	C198/3(76)	88,54	11,46	885,38
11	C85/1(1)	89,40	10,60	894,05	43	C76/1(104)	87,65	12,35	876,50
12	C85/1(7)	86,53	13,47	865,34	44	C76/2(65)	85,90	14,10	859,00
13	C85/1(11)	84,14	15,86	841,40	45	C195/1(41)	88,26	11,74	882,60
14	C85/1(12)	85,00	15,00	850,00	46	C195/2(69)	90,53	9,47	905,28
15	C85/2(28)	83,34	16,66	833,40	47	C195/2(70)	76,90	23,10	769,04
16	C85/2(29)	80,99	19,01	809,90	48	C195/3(45)	84,87	15,13	848,74
17	C85/2(30)	81,05	18,95	810,50	49	C195/3(46)	84,34	15,66	843,40
18	C85/2(32)	84,36	15,64	843,60	50	C307/1(48)	89,72	10,28	897,20
19	C85/2(34)	80,61	19,39	806,10	51	C307/2(74)	90,31	9,69	903,15
20	C85/2(38)	81,84	18,16	818,40	52	C80/2(11)	91,49	8,51	914,89
21	C85/2(40)	83,04	16,96	830,40	53	C80/3(28)	84,89	15,11	848,90
22	C85/2(42)	85,90	14,10	859,00	54	C89/1(19)	80,90	17,40	809,00*
23	C85/3(60)	90,15	9,85	901,47	55	C89/1(33)	94,16	5,84	941,60
24	C85/3(61)	80,85	19,15	808,53	56	C89/2(1)	85,53	13,16	855,27**
25	C85/3(62)	90,25	9,75	902,53	57	C89/2(15)	85,18	14,82	851,80
26	C85/3(64)	80,90	19,10	809,05	58	C190/1(9)	82,68	17,32	826,80
27	C85/3(66)	81,49	18,51	814,91	59	C190/1(15)	96,39	3,61	963,90
28	C198/1(54)	78,59	21,41	785,90	60	C190/1(16)	97,16	2,84	971,60
29	C198/1(55)	78,89	21,11	788,90	61	C190/1(24)	80,79	19,21	807,90
30	C198/1(57)	79,75	20,25	797,50	62	C190/1(25)	83,58	16,42	835,80
31	C198/1(60)	81,38	18,62	813,80	63	C190/3(53)	80,70	19,30	806,98
32	C198/1(61)	77,58	22,42	775,80	64	C301/2(59)	79,07	20,93	790,67

Таблица. Составы самородного золота месторождения Чёртово Корыто

Примечание. 1) Золото из рудного тела (1–42), из метасоматических пород обрамления (43–51), из слабо изменённых пород (52–64). 2) *Примесь кадмия: 1,94 мас. % (проба C198/2(33)), 2,62 мас. % (проба C198/2(37)), 1,70 мас. % (проба C89/1(19)); **Примесь мышьяка: 1,31 мас. %. 3) C198/2(37) – номер пробы, включающий номер скважины, после косой линии – лабораторный номер

Пробность золота, проанализированная в частицах размером от 0,001 до 0,05 мм, изменяется от 775 до 972 ‰ и составляет в среднем 852 ‰, что соответствует четырем классам по типизации Н.В. Петровской [9]: >950 ‰ – весьма высоко-пробное (3 %), 950...900 ‰ – высокопробное (18,2 %), 899...800 ‰ - средней пробы (66,7 %) и 799...700 ‰ – относительно низкой пробы (12,1 %). Распределение пробности в целом по месторождению (рис. 7, а) характеризуется асимметричным профилем с единичным максимумом в интервале 800...825 %, что соответствует золоту глубинных месторождений [9]. Пробность золота в объёме рудного тела (рис. 7, б) изменяется от 775 до 940 ‰ (в среднем 848 ‰), при этом её асимметричное распределение в общих чертах повторяет сводный профиль. Во вмещающих породах, то есть за контурами рудной залежи, выявлен более широкий диапазон (800...850 ‰) изменений пробности на максимальном уровне (рис. 7, *в*) и несколько более широкий общий интервал изменений пробности – 775...972 ‰ против 775...950 ‰ в объёме рудного тела. Пробность золота в вертикальном разрезе центральной части рудной залежи (БЛ 2, 8a, 15, рис. 5) изменяется несущественно и в сравнительно узком диапазоне: 808...902 ‰ на нижнерудном, 775...875 ‰ на осевом и 775...894 ‰ на верхнерудном уровнях (рис. 7, *е*, *д*, *е*).

В [1] показано, что средние геометрические (арифметические) содержания **серебра** в лишенных кварцевых прожилков слабо измененных породах фронтальной зоны рудовмещающего метасоматического ореола составляют 39,1(46,4) мг/т (аргиллиты), 42,6(47,0) мг/т (алевролиты), 53,0(58,4) мг/т (тонко-, мелкозернистые песчаники), 65,3(68,1) мг/т (разнозернистые песчаники). В промежуточ-

Рис. 8. Распределение серебра на дневной поверхности и в поперечных вертикальных разрезах рудовмещающего метасоматического ореола месторождения

ной углеродистой зоне более интенсивных преобразований пород содержания увеличиваются соответственно до 87,8(152,9), 72,0(81,5), 78,5(89,7), 77,9(104,4) мг/т. Близкие к последним значения свойственны тыловым зонам метасоматического ореола – 81,0(122,0) мг/т хлоритовой и 84,9 (115,1) мг/т березитовой. Значимая положительная связь серебра с золотом установлена в разнозернистых песчаниках (коэффициент корреляции 0,44), тонко-, мелкозернистых песчаниках (0,33) углеродистой зоны и в хлоритовой (0,50) зоне, а в вертикальном разрезе ореола - только в рудной залежи (0,49). В других породах, в том числе в березитах тыловой зоны, в породах подрудного и надрудного горизонтов рассчитанные коэффициенты корреляции ниже уровня значимости. Это доказывает неустойчивые связи серебра с золотом при том, что серебро - всегда геохимический и металлогенический спутник золота.

При содержании серебра менее 0,2 г/т фронтальная зона геохимического ореола занимает до половины его площадей на плане дневной поверхности и в разрезах (рис. 8, 9), очевидно, и в его объёме. Частое чередование на этом фоне узких, но протяженных промежуточной (0,2...0,6 г/т) и внутренней (более 0,6 г/т) зон свидетельствует, как и в случае золота, о неравномерном распределении серебра в объёме геохимического ореола. При этом, внутренняя зона максимальных содержаний серебра локальна и чаще представляет гнездовые выделения в объеме рудной залежи, но не всегда, особенно на флангах месторождения (БЛ 7, 24, 30), совпадает с объёмом рудного тела, также как не всегда она наследует пространственное положение внутренней наиболее богатой «золотой» зоны, например, на дневной поверхности, в разрезах по БЛ 24, 30, III-III. Особенно заметно ореол серебра ослабевает на северном и западном флангах месторождения.

Среднее геометрическое (арифметическое) содержание **мышьяка** в слабо измененных породах фронтальной зоны рудовмещающего метасоматического ореола примерно на порядок превышает кларк (1 г/т) и составляет 18(48) г/т в аргиллитах, 12(14) г/т в алевролитах, 14(21) г/т в тонко-, мелкозернистых песчаниках, 10(10) г/т в разнозернистых песчаниках [1]. В более измененных породах углеродистой зоны содержания увеличиваются соответ-

Рис. 9. Распределение серебра в продольных вертикальных разрезах рудовмещающего метасоматического ореола месторождения

ственно до 67(904), 29(94), 39(135), 34(327) г/т. В породах тыловых хлоритовой и березитовой зон наиболее интенсивных преобразований пород содержания металла возрастают до 71(102) и 48(77) г/т, что значительно превышает содержания его в породах фронтальной зоны метасоматического ореола, но сопоставимо с концентрацией в смежной наиболее крупнообъёмной углеродистой зоне.

Соотношения с золотом его постоянного геохимического и металлогенического спутника мышьяка не отличаются стабильностью, — коэффициент положительной корреляции установлен только в разнозернистых (0,38), тонко-, мелкозернистых (0,20) песчаниках и аргиллитах (0,42) углеродистой зоны, а также в подрудном пространстве (0,53). В хлоритовой и тыловой зонах метасоматического ореола он равен 0,08 и — 0,04, в породах околорудного и надрудного уровней 0,15 и 0,09. Все это согласуется с картиной распределения мышьяка в объёме месторождения.

Мышьяк образует наиболее выдержанный ореол во всём объёме рудной залежи и в её обрамлении (рис. 10, 11). Граница фронтальной зоны с концентрацией металла менее 30 г/т на дневной поверхности почти совпадает с проекцией контура рудной залежи на горизонтальную плоскость, а местами даже выходит за её пределы на значительном удалении от выхода на дневную поверхность рудного тела. В вертикальных разрезах фронтальная зона расположена ниже вскрытого скважинами

объёма ореола. На западном фланге месторождения в этой зоне залегают мелкие рудные линзы (рис. 11, разрез III-III), но основной объём рудной залежи вписывается в объёмы двух других более внутренних зон с содержаниями металла 30...300 и >300 г/т. Пространственное совмещение в первом приближении наиболее богатых внутренних зон мышьяка, золота и серебра можно видеть в центральной части рудной залежи (разрезы по БЛ 8, 15, I-I, II-II и др.). Вместе с тем, обычна и обратная ситуация, - богатая мышьяком внутренняя зона не сопровождается промышленным оруденением, внутренними и даже промежуточными зонами ореолов золота и серебра, - они пространственно разобщены. Это находит отражение в слабой силе корреляционных связей или в отсутствие таковых между металлами (Ag-As).

3. Обсуждение результатов и выводы

Таким образом, комплексный рудовмещающий золото-серебро-мышьяковый геохимический ореол месторождения представляет собой плоскую объемную фигуру, вытянутую вдоль рудоконтролирующего и раствороподводящего разлома, полого погружающуюся в западном направлении, сложенную метасоматически измененными осадочными породами углеродистой и метасоматитами тыловых зон метасоматического ореола и вмещающую во внутренней зоне наиболее высоких концентраций металлов рудную залежь.

Рис. 10. Распределение мышьяка на дневной поверхности и в поперечных вертикальных разрезах рудовмещающего метасоматического ореола месторождения

Наиболее высокая степень проницаемости для металлоносных растворов рудовмещающей толщи вдоль стратификации вследствие обилия поверхностей отдельности слоев осадочных терригенных пород и наследовавших их поверхностей рассланцевания и раздвига, а также вследствие образования в начале рудообразующего процесса многочисленных субгоризонтальных, т. е. субпараллельных поверхностям отдельности и рассланцевания крупных зияющих трещин отрыва определило стратиформное залегание большей (центральной) части рудной залежи. Только на северном и южном флангах месторождения, как отмечалось, в силу специфики образования рудовмещающей полости [3] и изменения ориентировки слоистости в северном и южном крыльях брахискладки на пологое субширотное залегание субмеридиальная горизонтальная по простиранию рудная залежь пересекает стратификацию под острым углом. Естественно, что положение, конфигурация и внутреннее строение рудовмещающего, обрамляющего рудную залежь более крупнообъемного геохимического ореола в общих чертах согласуется с условиями залегания и

внутренним строением рудной залежи (рис. 5, 6, 8–11). Это наиболее четко выражено в поперечных по падению залежи и продольных по её простиранию разрезах ореола. Вместе с тем, вскрытый скважинами объём месторождения не вышел за пределы как метасоматического, так и геохимического ореолов. Лишь в одной скважине (№ 409) на дальнем западном фланге месторождения фрагментами вскрыта фронтальная зона метасоматического ореола, в которой относительно слабо измененные, лишенные кварцевых прожилков породы содержат золото и серебро на субкларковых уровнях, но при сверхкларковых содержаниях мышьяка [1]. Это означает, что ореол мышьяка должен занимать больший объем, чем ореолы золота и серебра и при отсутствии жильно-прожилковой кварцевой минерализации.

Выделенные в геохимическом ореоле зоны, различающиеся достаточно произвольно выбранными диапазонами содержаний металлов, не совпадают с минералого-петрохимической и подчиняющейся ей геохимической зональностью метасоматического ореола [1] вследствие разных принципов отбора

Рис. 11. Распределение мышьяка в продольных вертикальных разрезах рудовмещающего метасоматического ореола месторождения

материала проб, - без кварцевых прожилков и с кварцевыми прожилками, с учетом и без учета видовой принадлежности пород и степени их метасоматических преобразований. Не всегда в объеме геохимического ореола пространственно совмещены зоны с наиболее высокой, умеренной, пониженной, но всегда сверхкларковой концентрацией каждого из обсуждаемых металлов. Очевидно, это связано со многими причинами, - порционным поступлением в область рудообразования металлоносных растворов, разными концентрациями металлов в каждой порции, разными химическими свойствами металлов, разным «поведением» каждого металла в условиях динамично развивающихся чрезвычайно сложных физико-химических и термодинамических систем. Эти и, возможно, другие причины обусловливают и некоторые другие особенности геохимического ореола месторождения: нередкую пространственную разобщенность зон наибольших концентраций спутников золота серебра и мышьяка с контурами промышленных руд; значительный диапазон изменений пробности золота (до 200 %) в рудах и в законтурном пространстве; чрезвычайно ограниченный «набор» металлов-примесей в золотом сплаве, включающий только серебро и редко кадмий и мышьяк, но без участия обычных для сплава меди, висмута, кобальта, никеля, минералы которых хотя и в малых количествах, но присутствуют в рудах. Требуются

дополнительные специальные исследования, чтобы понять причины и условия формирования этих особенностей.

Вместе с тем, приведенные геохимические данные, демонстрирующие причинно-следственные соотношения геохимического ореола с метасоматическим и с рудами, дополнительно доказывают образование всего участвующего в анализе вещества в ходе и результате одного гидротермального рудообразующего процесса. Распределение рудогенных элементов в обрамлении рудоконтролирующего разлома и в околорудном пространстве в дополнение к перечисленным выше фактам подтверждает раствороподводящую функцию разлома, – по мере удаления от него на запад контрастность геохимического ореола синхронно с ослаблением метасоматических преобразований пород и выклиниванием рудной залежи снижается и на дальней западной периферии месторождения ореол представлен внешней зоной низких концентраций рудогенных элементов, приближающихся к субкларковым значениям. Раствороподводящую функцию разлома и его глубинный статус подчеркивает также ассоциация фемофильных элементов (Р, Ті и др.), контрастные аномалии которых в березитоидах тыловых зон околорудных метасоматических ореолов образуются в ближнем обрамлении глубинных разломов и, в силу специфики их образования [1], исчезают по мере удаления от последних.

Совокупность всех полученных фактов [1–4 и др.], в том числе приведенных здесь геохимических данных, доказывает принадлежность месторождения Чертово Корыто «сланцевого типа» к классу

СПИСОК ЛИТЕРАТУРЫ

- Кучеренко И.В., Гаврилов Р.Ю., Мартыненко В.Г., Верхозин А.В. Петролого-геохимические черты рудовмещающего метасоматического ореола золоторудного месторождения Чертово Корыто (Патомское нагорье) // Известия Томского политехнического университета. – 2008. – Т. 312. – № 1. – С. 11–20.
- Кучеренко И.В., Гаврилов Р.Ю., Мартыненко В.Г., Верхозин А.В. Структурно-динамическая модель золоторудных месторождений, образованных в несланцевом и черносланцевом субстрате. Ч. 1. Берикульское месторождение (Кузнецкий Алатау) // Известия Томского политехнического университета. 2008. Т. 313. № 1. С. 12–26.
- Кучеренко И.В., Гаврилов Р.Ю., Мартыненко В.Г., Верхозин А.В. Структурно-динамическая модель золоторудных месторождений, образованных в несланцевом и черносланцевом субстрате. Ч. 2. Месторождение Чертово Корыто (Патомское нагорье) // Известия Томского политехнического университета. 2009. Т. 314. № 1. С. 23–38.
- Кучеренко И.В. Петролого-геохимические свидетельства геолого-генетической однородности гидротермальных месторож-

мезотермальных, по геолого-генетическим показателям однородных с месторождениями, образованными в кристаллическом субстрате.

дений золота, образованных в черносланцевом и несланцевом субстрате // Известия Томского политехнического университета. – 2007. – Т. 311. – № 1. – С. 25–35.

- Григорян С.В. Первичные геохимические ореолы при поисках и разведке рудных месторождений. – М.: Недра, 1987. – 408 с.
- Справочник по геохимии / Под ред. Г.В. Войткевич и др. М.: Недра, 1990. – 480 с.
- Ярошевский А.А. Распространенность химических элементов в земной коре // Геохимия. – 2006. – № 1. – С. 54–62.
- Kretschmer H., Scott S.T. Phase relation involving arsenopyrite system Fe-As-S and their application // Canad. Miner. 1976. V. 14. – № 3. – P. 364–386.
- 9. Петровская Н.В. Самородное золото. М.: Наука, 1973. 345 с.

Поступила 06.07.2009 г.