РЕФЕРАТ

Выпускная квалификационная работа 84 с., 3 рис., 16 табл., 9 источников, 6 прил.

Ключевые слова: уран-графитовый реактор, нейтронно-физический расчет, расчёт нуклидного состава, диоксид урана, многогрупповой расчет.

Объектом исследования является реактор типа УГР тепловой мощностью 1500 МВт с топливом диоксид урана обогащением 2,8 % и теплоносителем кипящая вода.

Цель работы – выполнить оценочный нейтронно-физический расчет реактора, состоящий в физическом обосновании конструкции и определении совокупности физических параметров, удовлетворяющий поставленным требованиям.

В процессе исследования проводились оценка параметров «холодного» и «горячего» реактора; многогрупповой расчет; оценка изменений нуклидного состава.

В результате исследования была проведена оценка нейтронно-физических характеристик реактора.

Основные конструктивные, технологические и технико-эксплуатационные характеристики: топливо диоксид урана; теплоноситель кипящая вода; замедлитель графит; температура на входе/выходе из активной зоны 90/190°C; материал оболочек твэл и кассет Zr + 1 % Nb.

Область применения: атомная энергетика, конструкторские бюро.

В будущем планируется проведение более детальных и углубленных расчетов.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1.2.2 Теплоноситель легкая вода 6
1.2.3 Материалы оболочек тепловыделяющих элементов 6
2 НЕЙТРОННО-ФИЗИЧЕСКИЙ РАСЧЁТ РЕАКТОРА 7
2.1 Предварительный расчет
2.2 Расчет ядерно-физических свойств «холодного» реактора 10
2.2.1 Расчет концентрации топлива 10
2.2.2 Расчет концентрации оболочки 11
2.2.3 Расчет концентрации теплоносителя 11
2.2.4 Расчет концентрации замедлителя 11
2.3 Расчет микро- и макросечений для «холодного» реактора 11
2.4 Расчет коэффициента размножения «холодного» реактора 15
2.4.1 Расчет коэффициента размножения для бесконечной среды 15
2.4.1.1 Число вторичных нейтронов 15
2.4.1.2 Коэффициент размножения на быстрых нейтронах 15
2.4.1.3 Коэффициент использования тепловых нейтронов 16
2.4.1.4 Вероятность избежать резонансного захвата 18
2.4.2 Расчет эффективного коэффициента размножения 19
2.5 Расчёт «горячего» реактора 20
2.5.1 Зависимость поперечных сечений от температуры 21
2.5.2 Расчёт коэффициента размножения для бесконечной среды 22
2.5.3 Расчет эффективного коэффициента размножения 24
2.6 Многогрупповой расчет, спектр и ценности нейтронов в активной зоне 25
2.6.1 Пересчет концентраций 25
2.6.2 Многогрупповой расчет 26
2.6.3 Определение параметров двухгруппового расчета
2.7 Расчёт нуклидного состава
2.7.1 Выгорание ядерного топлива

2.7.2 Отравление реактора
2.7.3 Определение средней плотности потока нейтронов по реактору 31
2.7.4 Определение равновесных ядерных концентраций Xe и Sm 32
2.7.5 Определение потери реактивности при отравлении Xe и Sm в любой
момент времени до установления стационарного значения
2.7.6 Определение изменения плотности ядер I, Xe, Pm, Sm после остановки
реактора
2.7.7 Определение времени достижения полной глубины йодной ямы и 90%
полного прометиевого провала
2.7.8 Шлакование реактора 34
ЗАКЛЮЧЕНИЕ
Приложение А
Приложение Б
Приложение В 39
Приложение Г 41
Приложение Д 43
Приложение Е 44

введение

Основная задача нейтронно-физического расчета реактора состоит в физическом обосновании конструкции и определении совокупности физических параметров реактора, удовлетворяющего поставленным требованиям.

Выбрав и обосновав конструктивную схему реактора, необходимо далее провести оценочный тепловой расчет, в результате которого определяются размеры активной зоны.

Цель работы: выполнить оценку нейтронно-физических и параметров реактора типа УГР с кипящей водой.

Для достижения цели были поставлены следующие задачи:

 выбор конструктивной схемы реактора и выполнение оценочного теплового расчета;

- расчет критических параметров проектируемого реактора;

- расчет характеристик «горячего» реактора;

– расчёт нуклидного состава в результате отравления и шлакования.

Результаты работы могут найти применение при подготовке заданий к курсовому проектированию, в методических указаний к лабораторным работам, а также использоваться в качестве справочной литературы.

В настоящее время проекты уран-графитовых реакторов с кипящей водой реализованы и распространены в достаточной степени.

1 ОБЗОР ЛИТЕРАТУРЫ

1.1 Особенности Уран-графитовых реакторов

При проектировании и эксплуатации УГР учитывают ряд следующих особенностей:

 возможность использования в сочетании с графитом различных теплоносителей, в том числе высокотемпературных;

- большее воспроизводство топлива, чем в ВВЭР;

- возможность перегрузки топлива без остановки реактора;

Так же у УГР имеются недостатки:

 относительно малая замедляющая способность и большая длина замедления приводит к большим размерам и соответственно низкой плотности теплосъема активной зоны;

 – длительные радиационные воздействия приводят к изменению физико-механических свойств и размеров графита;

 пористость графита приводит к просачиванию теплоносителя, что приводит к изменению реактивности.

1.2 Материалы ядерного реактора

1.2.1 Диоксид урана

Диоксид урана используется в качестве топлива в УГР. UO₂ обладает низкой теплопроводностью, тем самым, по сечению топливной таблетки проявляются большие градиенты температур, что влияет на прочность твэл. Предельно допустимая температура такого сердечника равна 2800 °С и соответствует точке плавления UO₂. До температуры плавления диоксид урана не имеет никаких фазовых переходов. У диоксида урана меньше плотность и меньшее процентное содержание урана чем в металлическом топливе.

Таблетки изготавливаются из порошка UO₂ методом спекания в форме цилиндров размером по высоте 2-3диаметра, и имеют центральное отверстие

диаметром 1,4-1,6 мм, которое служит дополнительным объемом для скопления газообразных продуктов деления и снижает температуру в центре.

1.2.2 Теплоноситель легкая вода

Вода является распространенным теплоносителем. Прежде чем использовать воду как теплоноситель из нее удаляют газы, так как присутствующие в воде примеси и газы делают ее химически активной с металлами.

Радиоактивная вода циркулирует в первом контуре. Воду фильтруют для снижения концентрации примесей. Под действием нейтронов на ядрах кислорода идут реакции $O^{18}(n,\gamma)O^{19}$ и $O^{16}(n,p)N^{16}$, в которых образуются радиоактивные ядра O^{19} с $T_{1/2} = 29,4$ с и N^{16} с $T_{1/2} = 4$ с.

Повышением давления в первом контуре устраняют такой недостаток как низкая температура кипения. Поглощение тепловых нейтронов водой компенсируют обогащением урана.

1.2.3 Материалы оболочек тепловыделяющих элементов

К твэлам предъявляются серьезные требования, так как они находятся под воздействием максимальных температур по реактору:

– небольшое сечение поглощения нейтронов;

– сохранение формы под воздействием температуры и радиации;

большая теплопроводность;

 Стойкость к коррозии и эррозии под воздействием теплоносителя, и совместимость с материалом топлива;

Толщина для оболочек выполненных из циркония составляет 0,4 – 0,8мм.

2 НЕЙТРОННО-ФИЗИЧЕСКИЙ РАСЧЁТ РЕАКТОРА

2.1 Предварительный расчет

Расчет начинаем с предварительной оценки геометрических размеров активной зоны. Чертёж ячейки и твэл показаны в приложениях А и Б. В таблице 2.1 представлены исходные данные для предварительного расчета реактора. Таблица 2.1 – Исходные данные для предварительного расчета

Параметр	Значение
Заданная тепловая мощность, МВт	1500
Удельная тепловая нагрузка, кВт/л	6
Коэффициент увеличения активной зоны	1,3
Отношение высоты к диаметру	1
Объемный коэффициент неравномерности	2,55
Осевой коэффициент неравномерности	1,4

Исходя из требуемой мощности реактора, размеры активной зоны можно оценить следующим образом:

$$V_{a.s.} = \frac{N}{\overline{N}_0} \eta, \qquad (2.1)$$

где N – заданная мощность реактора, кВт;

 \bar{N}_0 – средняя объемная нагрузка заданного типа реактора, кВт/л. Для уран-графитового реактора с водяным теплоносителем выбрана равной 6 кВт/л;

η – коэффициент, учитывающий увеличение объема реактора
 вследствие размещения регулирующих стержней. Принят равным 1,3.

Подставляя численные значения, получим:

$$V_{a.3.} = \frac{1,5 \cdot 10^6 \,\text{kBT}}{6 \,\text{kBT} / \,\pi} \cdot 1,3 = 3,25 \cdot 10^5 \,\text{m} = 325 \,\text{m}^3.$$

Диаметр активной зоны можно оценить по следующей формуле:

$$D_{a.3.} = \sqrt[3]{\frac{4V_{a.3.}}{\pi m}},$$
 (2.2)

где m – отношение высоты к диаметру, выбранное равным 1.

Высота активной зоны при этом составит:

$$H_{a.3.} = mD_{a.3.}$$
(2.3)
$$D_{a.3.} = \sqrt[3]{\frac{4 \cdot 325 M^3}{3,14 \cdot 1}} = 7,45 M,$$

$$H_{a.3} = 1.7,45 M = 7,45 M.$$

Оценим максимальную удельную объемную нагрузку активной зоны по формуле:

$$\mathbf{N}_{0\mathrm{max}} = \overline{\mathbf{N}}_0 \mathbf{K}_{\nu}, \qquad (2.4)$$

где К_v – объемный коэффициент неравномерности тепловыделения, принятый равным 2,55.

$$N_{0max} = 6\kappa BT / \pi \cdot 2,55 = 15,3\kappa BT / \pi = 15,3MBT / M^3$$
.

Максимально допустимая тепловая нагрузка может быть оценена по следующей формуле:

$$q_{\max} = \frac{N_{0\max} \cdot S_{_{\mathfrak{H}^{_{\mathfrak{H}}}}}}{\prod_{_{0}} \cdot n}, \qquad (2.5)$$

где S_{ay} – площадь сечения ячейки, равная 0,0625 м²;

П₀ – периметр тепловыделяющей поверхности одного твэла, равный 0,0427 м;

n – число ТВЭЛов в кассете.

$$q_{max} = \frac{15300 \, \kappa B T / M^3 \cdot 0,0625 \, M^2}{0,0427 M \cdot 18} = 1243,39 \, \kappa B T / M^2.$$

Необходимая для отвода тепла скорость теплоносителя в максимально напряженном твэле :

$$\mathbf{v} = \frac{\mathbf{q}_{\max} \cdot \boldsymbol{\Pi}_0 \cdot \mathbf{H}_{a.s.}}{\mathbf{K}_z \cdot \boldsymbol{\gamma} \cdot \Delta \mathbf{i} \cdot \mathbf{S}},\tag{2.6}$$

где K_z – осевой коэффициент неравномерности, выбранный равным 1,4;

γ – удельный вес теплоносителя (воды) в заданных условиях средней температуры 140 °С и давления 7,5 МПа, составляет 930 кг/м³;

S – площадь сечения прохода теплоносителя, приходящаяся на один элемент;

∆і – разность теплосодержания теплоносителя на выходе, определяемая выражением:

$$\Delta \mathbf{i} = \mathbf{C}_{\mathbf{p}} \left(\mathbf{t}_{\mathbf{B}\mathbf{b}\mathbf{I}\mathbf{X}} - \mathbf{t}_{\mathbf{B}\mathbf{X}} \right), \tag{2.7}$$

где С_р – теплоемкость воды (в заданных условиях средней температуры 140°С и давления 7,5 МПа), равная 4,2 кДж/(кг°С);

t_{вых} – температура теплоносителя на выходе из активной зоны, равная по заданию 190°С;

 $t_{_{BX}}$ – температура теплоносителя на входе в активную зону, равная по заданию 90 °C.

Подставляя заданные значения: $\Delta i = 4, 2 \cdot (190-90) = 420 \text{ кДж} / \text{кг},$

Площадь сечения прохода теплоносителя, приходящаяся на один элемент:

$$S_{\text{TERLT}} = \frac{S_{\text{TBC}} - (18 \cdot \pi R_{\text{BH}}^2)}{18}, \qquad (2.8)$$

где R_{вн} – Внешний радиус тепловыделяющего элемента;

S_{твс} – Площадь тепловыделяющей сборки;

$$S_{\text{TBC}} = \frac{\pi \cdot d_{\text{TBC}}^{2}}{4} = \frac{3,14 \cdot 0,079^{2}}{4} = 4,9 \cdot 10^{-3} \text{ M}^{2},$$

$$S_{\text{TEND}} = \frac{4,9 \cdot 10^{-3} \cdot (18 \cdot 3,14 \cdot 4,62 \cdot 10^{-5})}{18} = 1,27 \cdot 10^{-4} \text{ M}^{2},$$

$$V = \frac{1243,39 \text{ kBT} / \text{ M}^{2} \cdot 0,0427 \text{ M} \cdot 7,45 \text{ M}}{1,4 \cdot 930 \text{ KF} / \text{ M}^{3} \cdot 420 \text{ K} \text{ Дж} / \text{ KF} \cdot 1,27 \cdot 10^{-4} \text{ M}^{2}} = 5,69 \text{ M} / \text{ C}$$

Полученное значение скорости прокачки теплоносителя не превосходит предельного допустимого значения в 10 м/с.

В таблице 2.2 представлены результаты предварительного расчета.

Таблица 2.2 – Результаты предварительного расчета

Параметр	Значение
Объем АЗ, м ³	325
Диаметр АЗ, м	7,45
Высота АЗ, м	7,45
Максимальная удельная объемная нагрузка, МВт/м ³	15,3
Максимально допустимая тепловая нагрузка, кВт/м ²	1243,39
Скорость прокачки теплоносителя, м/с	5,37

2.2 Расчет ядерно-физических свойств «холодного» реактора

Температура всех элементов реактора принимается 20 °C. Так как каждая из них состоит из материалов с разными свойствами взаимодействия с нейтронами, необходимо рассчитать нейтронно-физические характеристики.

Вычисление ядерных концентраций производят для каждого элемента. Ядерная концентрация находится по формуле:

$$N = \frac{6.023 \cdot 10^{23} \cdot \gamma}{A} \frac{\text{ядер}}{\text{см}^3}, \qquad (2.9)$$

где ү – весовая концентрация элемента;

А-атомный вес элемента.

2.2.1 Расчет концентрации топлива

Топливом является диоксид урана (UO₂), обогащенный по U²³⁵ на 2,8%. Ядерная концентрация топлива:

$$N_{UO_2} = \gamma_{UO_2} \cdot \frac{N_A}{A_{UO_2}} = 10,5 \cdot \frac{6,023 \cdot 10^{23}}{270} = 2,34 \cdot 10^{22} \frac{\text{молекул}}{\text{см}^3}$$

Расчет концентрации отдельных элементов, входящих в состав топлива, осуществляется следующим образом:

$$N_{U^{5}} = C_{U^{5}} \cdot N_{UO_{2}} = 0,028 \cdot 2,34 \cdot 10^{22} = 6,56 \cdot 10^{20} \frac{\text{gap}}{\text{cm}^{3}};$$
$$N_{U^{8}} = (1 - C_{U^{5}}) \cdot N_{UO_{2}} = (1 - 0,028) \cdot 2,34 \cdot 10^{22} = 2,28 \cdot 10^{22} \frac{\text{gap}}{\text{cm}^{3}};$$

$$N_{\rm o} = 2 \cdot N_{\rm uo_2} = 4,69 \cdot 10^{22} \, \frac{\text{ядер}}{\text{см}^3}.$$

2.2.2 Расчет концентрации оболочки

Состав стальной оболочки ТВЭЛ следующий: цирконий (0,99), ниобий (0,01). Произведем расчет концентрации циркония и ниобия:

$$N_{cплава} = \gamma_{cплава} \cdot \frac{N_A}{A_{cплава}} = 6, 4 \cdot \frac{6,023 \cdot 10^{23}}{91,224 \cdot 0,99 + 92,906 \cdot 0,01} = 4,22 \cdot 10^{22} \frac{\text{ядер}}{\text{см}^3};$$

$$N_{Zr} = N_{cплавa} \cdot 0,99 = 4,22 \cdot 10^{22} \cdot 0,99 = 4,18 \cdot 10^{22} \frac{\text{ядер}}{\text{см}^3};$$

$$N_{Nb} = N_{cплавa} \cdot 0,01 = 4,22 \cdot 10^{22} \cdot 0,01 = 4,22 \cdot 10^{20} \frac{\text{ядер}}{\text{см}^3}.$$

2.2.3 Расчет концентрации теплоносителя

Произведем расчет концентрации воды:

$$N_{H_{2}O} = \gamma_{H_{2}O} \cdot \frac{N_{A}}{A_{H_{2}O}} = 0,930 \cdot \frac{6,023 \cdot 10^{23}}{18} = 3,11 \cdot 10^{22} \frac{\text{молекул}}{\text{см}^{3}};$$
$$N_{H_{2}} = 2 \cdot N_{H_{2}O} = 2 \cdot 3,11 \cdot 10^{22} = 6,22 \cdot 10^{22} \frac{\text{ядер}}{\text{см}^{3}};$$
$$N_{O} = N_{H_{2}O} = 3,11 \cdot 10^{22} \frac{\text{ядер}}{\text{см}^{3}}.$$

2.2.4 Расчет концентрации замедлителя

Произведем расчет концентрации графита:

$$N_{\rm C} = \gamma_{\rm C} \cdot \frac{N_{\rm A}}{A_{\rm C}} = 1, 6 \cdot \frac{6,023 \cdot 10^{23}}{12} = 8,03 \cdot 10^{22} \frac{\text{ядер}}{\text{см}^3}.$$

2.3 Расчет микро- и макросечений для «холодного» реактора

Справочные значения относятся к энергии нейтронов E = 0,025 эВ соответствующей наиболее вероятной скорости v=2200м/с (при распределении нейтронов по спектру Максвелла).

В реальных средах распределение тепловых нейтронов не совпадает в точности с распределением Максвелла, поскольку имеет место поглощение тепловых нейтронов (спектр сдвинут в область больших энергий).

Поперечные сечения поглощения и деления:

$$\sigma_{a} = \sigma_{a_{0}} \cdot 0,884 \cdot f_{a} \cdot \sqrt{\frac{293}{T_{H.\Gamma.}}};$$
 (2.10)

$$\sigma_{f} = \sigma_{f_{0}} \cdot 0,884 \cdot f_{f} \cdot \sqrt{\frac{293}{T_{H.r.}}},$$
 (2.11)

где $\sigma_{a_0}, \sigma_{f_0}$ – табличные значения сечений;

 ${
m f}_{a}, {
m f}_{{
m f}}$ – поправочный коэффициент f , учитывающий отклонение сечения поглощения и деления от закона ${1\over v^2}$.

Произведем расчет сечений для температуры нейтронного газа равной 400 К.

 $f_a = 0,96, f_f = 0,96 -$ поправки для U^{235} на отклонение от закона $1/v^2$.

 $\sigma_{ao} = 683$, бн – табличное сечение поглощения U²³⁵;

 $\sigma_{_{fo}}\,{=}\,582$, бн ${-}$ табличное сечение деления $U^{235};$

Тогда, с учетом поправок, сечения для U²³⁵ пересчитываются следующим образом:

$$\sigma_{a}^{U^{5}} = 683 \cdot 0,884 \cdot 0,96 \cdot \sqrt{\frac{293}{400}} = 496$$
 бн;
 $\sigma_{f}^{U^{5}} = 582 \cdot 0,884 \cdot 0,96 \cdot \sqrt{\frac{293}{400}} = 422$ бн.

Макросечения для воды.

При расчете макросечения для воды принято брать экспериментальные значения, так как между атомами водорода и кислорода в молекуле сильная химическая связь:

$$\begin{split} \Sigma_{a}^{H_{2}O} &= 0,0221 \text{ cm}^{-1};\\ \Sigma_{s}^{H_{2}O} &= 2,67 \text{ cm}^{-1};\\ \Sigma_{tr}^{H_{2}O} &= 2,31 \text{ cm}^{-1};\\ \xi \Sigma_{s}^{H_{2}O} &= 1,35 \text{ cm}^{-1}. \end{split}$$

Микро- и макросечения для графита.

$$\begin{split} \sigma_{a}^{\ c} &= 0,884 \cdot 0,0035 \cdot 0,96 \cdot \sqrt{\frac{293}{400}} = 0,00267 \ \text{GH}; \\ \sigma_{s}^{\ c} &= 4,938, \text{GH}; \ \mu_{s}^{\ c} = 0,055; \ \xi_{c} = \frac{2}{A_{c} + \frac{2}{3}} = \frac{2}{12 + \frac{2}{3}} = 0,158; \\ \sigma_{u}^{\ c} &= \sigma_{a}^{\ c} + \sigma_{s}^{\ c} \cdot (1 - \mu_{s}^{\ c}) = 0,00267 + 4,938 \cdot (1 - 0,055) = 4,6695 \ \text{GH}; \\ \Sigma_{a}^{\ c} &= \sigma_{a}^{\ c} \cdot 10^{-24} \cdot N_{c} = 0,00267 \cdot 10^{-24} \cdot 8,03 \cdot 10^{22} = 0,000215 \ \text{cm}^{-1}; \\ \Sigma_{s}^{\ c} &= \sigma_{s}^{\ c} \cdot 10^{-24} \cdot N_{c} = 4,938 \cdot 10^{-24} \cdot 8,03 \cdot 10^{22} = 0,397 \ \text{cm}^{-1}; \\ \Sigma_{u}^{\ c} &= \sigma_{u}^{\ c} \cdot 10^{-24} \cdot N_{c} = 4,669 \cdot 10^{-24} \cdot 8,03 \cdot 10^{22} = 0,375 \ \text{cm}^{-1}; \\ \xi \cdot \Sigma_{s}^{\ c} &= 0,158 \cdot 0,397 = 0,0626 \ \text{cm}^{-1}. \end{split}$$

Микро- и макросечения для U²³⁵.

$$\begin{split} \sigma_{a}^{\ U^{5}} &= 683 \cdot 0,884 \cdot 0,96 \cdot \sqrt{\frac{293}{400}} = 496 \ \text{GH}; \\ \sigma_{f}^{\ U^{5}} &= 582 \cdot 0,884 \cdot 0,96 \cdot \sqrt{\frac{293}{400}} = 422,718 \ \text{GH}; \\ \sigma_{s}^{\ U^{5}} &= 15,\text{GH}; \ \mu_{s}^{\ U^{5}} &= 0,0028; \ \xi_{U^{5}} = 0,0085; \\ \sigma_{tr}^{\ U^{5}} &= \sigma_{a}^{\ U^{5}} + \sigma_{s}^{\ U^{5}} \cdot (1 - \mu_{s}^{\ U^{5}}) = 496 + 15 \cdot (1 - 0,0028) = 511 \ \text{GH}; \\ \Sigma_{a}^{\ U^{5}} &= \sigma_{a}^{\ U^{5}} \cdot 10^{-24} \cdot N_{U^{5}} = 496 \cdot 10^{-24} \cdot 6,56 \cdot 10^{20} = 0,325 \ \text{cm}^{-1}; \\ \Sigma_{f}^{\ U^{5}} &= \sigma_{f}^{\ U^{5}} \cdot 10^{-24} \cdot N_{U^{5}} = 15 \cdot 10^{-24} \cdot 6,56 \cdot 10^{20} = 0,00984 \ \text{cm}^{-1}; \\ \Sigma_{tr}^{\ U^{5}} &= \sigma_{tr}^{\ U^{5}} \cdot 10^{-24} \cdot N_{U^{5}} = 511 \cdot 10^{-24} \cdot 6,56 \cdot 10^{20} = 0,277 \ \text{cm}^{-1}; \\ \Sigma_{tr}^{\ U^{5}} &= \sigma_{tr}^{\ U^{5}} \cdot 10^{-24} \cdot N_{U^{5}} = 511 \cdot 10^{-24} \cdot 6,56 \cdot 10^{20} = 0,335 \ \text{cm}^{-1}; \\ \xi \cdot \Sigma_{s}^{\ U^{5}} &= 0,0085 \cdot 9,84 \cdot 10^{-3} = 8,35 \cdot 10^{-5} \ \text{cm}^{-1}. \end{split}$$

Микро- и макросечения для U²³⁸.

$$\begin{split} \sigma_{a}^{\ U^{8}} &= 2,05 \ \text{GH}; \ \sigma_{s}^{\ U^{8}} = 9,437 \ \text{GH}; \ \mu_{s}^{\ U^{8}} = 0,0028; \ \xi_{U^{8}} = 0,0084; \\ \sigma_{tr}^{\ U^{8}} &= \sigma_{a}^{\ U^{8}} + \sigma_{s}^{\ U^{8}} \cdot (1 - \mu_{s}^{\ U^{8}}) = 2,05 + 9,437 \cdot (1 - 0,0028) = 11,487 \ \text{GH}; \\ \Sigma_{a}^{\ U^{8}} &= \sigma_{a}^{\ U^{8}} \cdot 10^{-24} \cdot N_{U^{8}} = 2,05 \cdot 10^{-24} \cdot 2,28 \cdot 10^{22} = 0,046 \ \text{cm}^{-1}; \\ \Sigma_{s}^{\ U^{8}} &= \sigma_{s}^{\ U^{8}} \cdot 10^{-24} \cdot N_{U^{8}} = 9,437 \cdot 10^{-24} \cdot 2,28 \cdot 10^{22} = 0,214 \ \text{cm}^{-1}; \\ \Sigma_{tr}^{\ U^{8}} &= \sigma_{tr}^{\ U^{8}} \cdot 10^{-24} \cdot N_{U^{8}} = 11,487 \cdot 10^{-24} \cdot 2,28 \cdot 10^{22} = 0,261 \ \text{cm}^{-1}; \\ \xi \cdot \Sigma_{s}^{\ U^{8}} &= 0,0084 \cdot 0,214 = 0,0018 \ \text{cm}^{-1}. \end{split}$$

Макросечения для UO₂.

$$\Sigma_{a}^{UO_{2}} = \Sigma_{a}^{U^{5}} + \Sigma_{a}^{U^{8}} + \Sigma_{a}^{o} = 0,325 + 0,046 + 6,74 \cdot 10^{-6} = 0,3721 \text{ cm}^{-1};$$

$$\Sigma_{f}^{UO_{2}} = \Sigma_{f}^{U^{5}} = 0,277 \text{ cm}^{-1};$$

$$\Sigma_{s}^{UO_{2}} = \Sigma_{s}^{U^{5}} + \Sigma_{s}^{U^{8}} + \Sigma_{s}^{o} = 9,84 \cdot 10^{-3} + 0,214 + 4,57 \cdot 10^{-7} = 0,6657 \text{ cm}^{-1};$$

$$\Sigma_{tr}^{UO_{2}} = \Sigma_{tr}^{U^{5}} + \Sigma_{tr}^{U^{8}} + \Sigma_{tr}^{o} = 0,335 + 0,261 + 0,186 = 0,783 \text{ cm}^{-1};$$

$$\Sigma_{tr}^{UO_{2}} = \Sigma_{tr}^{U^{5}} + \Sigma_{tr}^{U^{8}} + \Sigma_{tr}^{o} = 0,335 + 0,261 + 0,186 = 0,783 \text{ cm}^{-1};$$

 $\xi \cdot \Sigma_{s}^{UO_{2}} = \xi \cdot \Sigma_{s}^{U^{5}} + \xi \cdot \Sigma_{s}^{U^{8}} + \xi \cdot \Sigma_{s}^{O} = 8,35 \cdot 10^{-5} + 1,8 \cdot 10^{-3} + 2,23 \cdot 10^{-2} = 0,0242 \text{ cm}^{-1}.$

Макросечения для сплава.

$$\begin{split} & \sum_{a}{}^{Zr} = \sigma_{a}{}^{Zr} \cdot 10^{-24} \cdot N_{Zr} = 0,91 \cdot 10^{-24} \cdot 4,18 \cdot 10^{22} = 0,038 \text{ cm}^{-1}; \\ & \sum_{a}{}^{Nb} = \sigma_{a}{}^{Nb} \cdot 10^{-24} \cdot N_{Nb} = 0,874 \cdot 10^{-24} \cdot 4,22 \cdot 10^{20} = 3,69 \cdot 10^{-4} \text{ cm}^{-1}; \\ & \sum_{s}{}^{Zr} = \sigma_{s}{}^{Zr} 10^{-24} \cdot N_{Zr} = 10,64 \cdot 10^{-24} 4,18 \cdot 10^{22} = 0,445 \text{ cm}^{-1}; \\ & \sum_{s}{}^{Nb} = \sigma_{s}{}^{Nb} \cdot 10^{-24} \cdot N_{Nb} = 6,36 \cdot 10^{-24} \cdot 4,22 \cdot 10^{20} = 0,0026 \text{ cm}^{-1}; \\ & \sum_{t}{}^{Zr} = \sigma_{t}{}^{Zr} \cdot 10^{-24} \cdot N_{Zr} = 11,55 \cdot 10^{-24} \cdot 4,18 \cdot 10^{22} = 0,486 \text{ cm}^{-1}; \\ & \sum_{t}{}^{Nb} = \sigma_{t}{}^{Nb} \cdot 10^{-24} \cdot N_{Nb} = 7,23 \cdot 10^{-24} \cdot 4,22 \cdot 10^{20} = 0,003 \text{ cm}^{-1}; \\ & \sum_{t}{}^{Nb} = \sigma_{t}{}^{Nb} \cdot 10^{-24} \cdot N_{Nb} = 7,23 \cdot 10^{-24} \cdot 4,22 \cdot 10^{20} = 0,003 \text{ cm}^{-1}; \\ & \xi \cdot \sum_{s}{}^{Zr} = 0,0218 \cdot 0,445 = 0,038 \text{ cm}^{-1}; \\ & \xi \cdot \sum_{s}{}^{Nb} = 0,0214 \cdot 0,0268 = 0,000369 \text{ cm}^{-1}; \\ & \sum_{a}{}^{ctu a B} = \sum_{a}{}^{Zr} + \sum_{a}{}^{Nb} = 0,447 \text{ cm}^{-1}; \\ & \sum_{s}{}^{ctu a B} = \sum_{s}{}^{Zr} + \sum_{s}{}^{Nb} = 0,486 \text{ cm}^{-1}; \\ & \xi \cdot \sum_{s}{}^{ctu a B} = \xi \cdot \sum_{s}{}^{Zr} + \xi \cdot \sum_{s}{}^{Nb} = 0,0097 \text{ cm}^{-1}. \end{split}$$

Все полученные значения занесены в таблицу В.1 (приложение В).

2.4 Расчет коэффициента размножения «холодного» реактора 2.4.1 Расчет коэффициента размножения для бесконечной среды

Коэффициент размножения для бесконечной среды рассчитывается по формуле четырёх сомножителей:

$$\mathbf{K}_{\infty} = \boldsymbol{\eta} \cdot \boldsymbol{\varepsilon} \cdot \boldsymbol{\theta} \cdot \boldsymbol{\varphi} \,, \tag{2.11}$$

где п – коэффициент размножения тепловых нейтронов в горючем;

ε – коэффициент размножения на быстрых нейтронах;

φ – вероятность избежать резонансного захвата;

θ – коэффициент использования тепловых нейтронов.

2.4.1.1 Число вторичных нейтронов

Т.к. в качестве топлива применяется диоксид урана, то η рассчитывается по следующей формуле:

$$\eta = v_{f}^{5} \cdot \frac{\sum_{f}^{\text{топл}}}{\sum_{a}^{\text{топл}}} = 2,42 \cdot \frac{0,277}{0,372} = 1,803,$$
(2.12)

где v_{f}^{5} – число нейтронов, которое испускается при одном акте деления.

2.4.1.2 Коэффициент размножения на быстрых нейтронах

При расчете є для стержневых твэл можно воспользоваться формулой:

$$\varepsilon = 1 + \frac{0.092 \cdot P}{1 - 0.5 \cdot P} \cdot \varepsilon_{1}, \qquad (2.13)$$

где Р – вероятность того, что быстрый нейтрон испытывает какое-либо столкновение с ядром U²³⁸ находится из графика и равна 0,15.

Если в качестве ядерного горючего используется диоксид урана, то второй член формулы (3.3) нужно умножить на ε_1 , ε_1 – пористость блока по U^{238} .

$$\varepsilon_{1} = \frac{N_{8}}{N_{08}} = \frac{2,28 \cdot 10^{22} \ 238}{6,023 \cdot 10^{23} \ 19,2 \cdot 0,99274} = 0,472, \tag{2.14}$$

где N_{08} - число ядер U^{238} в 1 см³ естественного урана;

 N_8 - число ядер U^{238} в 1 см³ блока.

Рисунок 1 – Вероятность *Р* для цилиндрических и кольцевых блоков из металлического урана: *R* – внешний радиус, *r* – внутренний радиус

2.4.1.3 Коэффициент использования тепловых нейтронов

В данной работе применяется способ гомогенизации, при котором все материалы активной зоны считаются равномерно перемешанными.

Реальная ячейка заменяется эквивалентной ячейкой с одним фиктивным цилиндрическим блоком. Фиктивный блок образуется путем гомогенизации всего содержимого рабочего канала (ядерное горючее, конструкционные материалы, теплоноситель).

Обычно размер фиктивного блока совпадает с радиусом рабочего канала (R_ф).

Расчёт θ в этом случае ведут в два этапа. Сначала определяют величину θ_{ϕ} , представлявшую отношение числа тепловых нейтронов, поглощенных в фиктивном блоке, к общему числу поглощенных тепловых нейтронов:

$$\frac{1}{\theta_{\phi}} = 1 + F \cdot \frac{S_{aa} \cdot \Sigma_{a}^{3aM}}{S_{\phi} \cdot \Sigma_{a}^{\phi}} + (E - 1).$$
(2.15)

Для цилиндрического уранового стержня коэффициент экранирования

$$F = \frac{\Phi_{_{3aM}}}{\Phi_{_{\phi}}} = \frac{R_{_{\phi}}}{L_{_{\phi}}} \cdot \frac{1}{2} \cdot \frac{I_0 \cdot \left(\frac{R_{_{\phi}}}{L_{_{\phi}}}\right)}{I_1 \cdot \left(\frac{R_{_{\phi}}}{L_{_{\phi}}}\right)}, \qquad (2.16)$$

где I₀ и I₁ – модифицированные функции Бесселя нулевого и первого порядков, определяемые из таблиц этих функций.

Коэффициент экранирования:

$$F=1+\frac{\left(\frac{R_{\phi}}{L_{\phi}}\right)^{2}}{8}-\frac{\left(\frac{R_{\phi}}{L_{\phi}}\right)^{4}}{192}+.....$$
(2.17)

Фактор, учитывающий избыточное поглощение нейтронов в замедлителе:

$$(\text{E-1}) = \frac{1}{2} \cdot \left(\frac{\text{R}_{3\text{am}}}{\text{L}_{3\text{am}}}\right)^2 \cdot \left(\ln\frac{\text{R}_{3\text{am}}}{\text{R}_{\phi}} - 0,75\right)$$
(2.18)

Коэффициент использования тепловых нейтронов :

$$\boldsymbol{\theta} = \boldsymbol{\theta}_{\phi} \cdot \boldsymbol{\theta}_{0}, \qquad (2.19)$$

где θ_0 коэффициент использования тепловых нейтронов внутри фиктивного блока.

$$\theta_{0} = \frac{\sum_{a}^{UO_{2}} \cdot \mathbf{S}_{UO_{2}}}{\sum_{a}^{\phi} \cdot \mathbf{S}_{\phi}}$$
(2.20)

Площади занимаемые материалами в ячейке:

$$S_{\text{TOII}} = \pi \cdot R^2_{\text{Tabin}} \cdot 18 = 3,14 \cdot 0,576^2 \cdot 18 = 18,75 \text{ cm}^2; \qquad (2.21)$$

$$S_{TH} = S_{TK} - 18 \cdot S_{TB \ni JI} = 3,14 \cdot 3,95^2 - 18 \cdot 0,68^2 \cdot 3,14 = 60,79 - 26,13 = 22,86 \text{ cm}^2; (2.22)$$

$$S_{\phi} = \pi \cdot R^2_{TK} = 3,14 \cdot 4,4^2 = 60,8 \text{ cm}^2;$$
 (2.23)

$$S_{KM} = S_{\phi} - S_{TOT} - S_{TH} = 60, 8 - 18, 75 - 22, 86 = 19, 19 \text{ cm}^2;$$
 (2.24)

$$S_{srt} = 252 = 625 \text{ cm}^2;$$
 (2.25)

$$R_{3aM} = \sqrt{\frac{S_{sy}}{\pi}} = \sqrt{\frac{625}{3,14}} = 14,1 \text{ cm}; \qquad (2.26)$$

$$R_{\phi} = R_{TK} = 4,4 \text{ cm};$$
 (2.27)

17

$$S_{3aM} = S_{AH} - S_{\Phi} = 625 - 60,8 = 564,78 \text{ cm}^2$$
 (2.28)

Расчет сечений усредненных по фиктивному блоку:

$$\Sigma_{a}^{\phi} = \frac{\sum_{i=1}^{m} \Sigma_{ai} \cdot S_{i}}{S_{\phi}} = \frac{18,75 \cdot 0,372 + 22,86 \cdot 0,0221 + 7,39 \cdot 0,0384}{60,8} = 0,128 \text{ cm}^{-1} \quad (2.29)$$

$$\Sigma_{\rm tr}^{\phi} = \frac{\sum_{i=1}^{m} \Sigma_{\rm tri} \cdot S_i}{S_{\phi}} = \frac{18,75 \cdot 0,783 + 34,66 \cdot 2,31 + 7,39 \cdot 0,486}{60,8} = 1,167 \,\rm{cm}^{-1}; \quad (2.30)$$

$$\xi \cdot \Sigma_{s}^{\phi} = \frac{\sum_{i=1}^{k} \xi \cdot \Sigma_{si} \cdot S_{i}}{S_{\phi}} = \frac{18,75 \cdot 0,0242 + 34,66 \cdot 1,35 + 7,39 \cdot 0,097}{60,8} = 0,516 \, \text{cm}^{-1};$$
(2.31)

$$L_{\phi} = \sqrt{\frac{1}{3 \cdot \Sigma_{a}^{\phi} \cdot \Sigma_{tr}^{\phi}}} = \sqrt{\frac{1}{3 \cdot 0, 128 \cdot 1, 17}} = 1,495 \,\text{cm}; \qquad (2.32)$$

$$L_{_{3aM}} = \sqrt{\frac{1}{3 \cdot \sum_{a}^{_{3aM}} \cdot \sum_{tr}^{_{3aM}}}} = \sqrt{\frac{1}{3 \cdot 0,000215 \cdot 0,375}} = 64,366 \,\text{cm};$$
(2.33)

$$(\text{E-1}) = \frac{1}{2} \cdot \left(\frac{R_{_{3a_{M}}}}{L_{_{3a_{M}}}}\right)^{2} \cdot \left(\ln\frac{R_{_{3a_{M}}}}{R_{_{\phi}}} - 0,75\right) = \frac{1}{2} \cdot \left(\frac{14,1}{64,366}\right)^{2} \cdot \left(\ln\frac{14,1}{4,4} - 0,75\right) = 9,961 \cdot 10^{-3}; \quad (2.34)$$

$$F=1+\frac{\left(\frac{R_{\phi}}{L_{\phi}}\right)^{2}}{8}-\frac{\left(\frac{R_{\phi}}{L_{\phi}}\right)^{4}}{192}+\dots=1+\frac{\left(\frac{4,4}{1,495}\right)^{2}}{8}-\frac{\left(\frac{4,4}{1,495}\right)^{4}}{192}=1+1,082-0,39=1,692; \quad (2.35)$$

$$\frac{1}{\theta_{\phi}} = 1 + F \cdot \frac{S_{_{3aM}} \cdot \Sigma_{_{a}}^{_{3aM}}}{S_{\phi} \cdot \Sigma_{_{a}}^{_{\phi}}} + (E - 1) = 1 + 1,6917 \cdot \frac{564,78 \cdot 2,15 \cdot 10^{-4}}{60,8 \cdot 0,128} = 1,036; \quad (2.36)$$

$$\hat{\theta_{\phi}} = \frac{1}{1,036} = 0,964 \tag{2.37}$$

$$\theta_{0} = \frac{\sum_{a}^{UO_{2}} \cdot S_{UO_{2}}}{\sum_{a}^{\phi} \cdot S_{\phi}} = \frac{0,372 \cdot 18,75}{0,128 \cdot 60,8} = 0,899.$$
(2.38)

Коэффициент использования тепловых нейтронов:

$$\theta = \theta_0 \cdot \theta_{\phi} = 0,899 \cdot 0,964 = 0,868.$$
 (2.39)

2.4.1.4 Вероятность избежать резонансного захвата

Для ячейки со стержневыми блоками:

$$\varphi = \exp\left[-\frac{\left(\mathbf{K}_{\mathrm{T}} \cdot \mathbf{R}_{\mathrm{U}} \cdot \sqrt{\mathbf{R} \cdot \mathbf{n} \cdot \boldsymbol{\varepsilon}_{\mathrm{I}}} + 0.73 \cdot \mathbf{n} \cdot \mathbf{R}_{\mathrm{U}}^{2} \cdot \boldsymbol{\varepsilon}_{\mathrm{I}}\right)}{\left(\boldsymbol{\xi} \boldsymbol{\Sigma}_{s_{3\mathrm{a}\mathrm{M}}} \cdot \mathbf{S}_{_{3\mathrm{a}\mathrm{M}}} + \boldsymbol{\xi} \boldsymbol{\Sigma}_{_{\mathrm{s}\varphi}} \cdot \mathbf{S}_{_{\varphi}}\right)}\right]$$
(2.40)

где $\xi \Sigma_{3am}$, $\xi \Sigma_{\phi}$ – замедляющая способность замедлителя и фиктивного блока;

 $S_{\scriptscriptstyle 3 a \mbox{\tiny AM}},$ S_φ – площадь замедлителя и фиктивного блока;

R_U – радиус уранового блока;

К_т – температурный коэффициент;

n – число стержней в пучке;

R – радиус пучка;

 ϵ_1 – пористость блока по урану-238.

Коэффициент K_т имеет вид: $K_{T} = 0.775 \cdot (1 + 17.5 \cdot 10^{-3} \cdot \sqrt{T_{U}}),$ (2.41)

где T_U – средняя температура урана в К. T_U=293 К.

$$K_{\rm T} = 0.775 \cdot \left(1 + 17.5 \cdot 10^{-3} \cdot \sqrt{293}\right) = 1,007$$

$$\varphi = \exp\left[-\frac{\left(1,007 \cdot 0,576 \cdot \sqrt{3,95 \cdot 18 \cdot 0,471} + 0,73 \cdot 18 \cdot 0,576^2 \cdot 0,471\right)}{\left(0,516 \cdot 60,8 + 0,0626 \cdot 564,1\right)}\right] = 0,921 \quad (2.42)$$

Коэффициент размножения для бесконечной среды:

$$\mathbf{K}_{\infty} = \eta \cdot \varepsilon \cdot \theta \cdot \phi = 1,803 \cdot 1,007 \cdot 0,868 \cdot 0,921 = 1,453.$$
(2.43)

2.4.2 Расчет эффективного коэффициента размножения

Эффективный коэффициент размножения нейтронов:

$$k_{\rm eff} = k_{\infty} \cdot P = k_{\infty} \cdot \frac{e^{-B^2 \tau_{\rm p}}}{1 + B^2 L^2} = 1,419$$
 (2.44)

Вероятность избежать утечку нейтронов из активной зоны:

$$P = \frac{e^{-B^2 \tau_p}}{1 + B^2 L^2} = 0,976$$
(2.45)

Квадрат длины диффузии с учетом гетерогенности:

$$L^{2} = L_{_{3aM}}^{2} \cdot \frac{\left(1 + \frac{S_{\Phi}}{S_{_{3aM}}} \cdot \frac{1}{F}\right) \cdot S_{_{3ry}}}{\left(1 + \frac{S_{\Phi}}{S_{_{3aM}}} \cdot \frac{\Sigma_{_{tr}}^{\Phi}}{\Sigma_{_{tr}}^{_{3aM}}}\right) \cdot S_{_{3aM}}} \cdot (1 - \theta_{\Phi}') = 128,17 \text{ cm}^{2}$$
(2.46)

Возраст нейтронов:

$$\tau_{\rm p} = \tau_{\rm rpa\phi \mu r} \cdot \frac{S_{\rm gru}}{S_{\rm 3aM}} = 431,98 \,{\rm cm}^2 \,. \tag{2.47}$$

Геометрический параметр:

$$B^{2} = \left(\frac{\pi}{H+2\cdot\delta}\right)^{2} + \left(\frac{2,405}{R+\delta}\right)^{2} = 4,2\cdot10^{-5} \text{ cm}^{-2}$$
(2.48)

Эффективная добавка за счет отражателя:

$$\delta = 1, 2 \cdot L_{\text{orp}} \cdot \text{th} \frac{T}{L_{\text{orp}}} = 70, 7 \text{ cm}$$
(2.49)

Толщина отражателя:

$$T = 1,5 \cdot M = 100,56 \text{ cm} \tag{2.50}$$

Длина миграции:

$$M = \sqrt{L^2 + \tau_p} = \sqrt{4143, 1 + 431, 98} = 67, 63 \text{ cm}$$
(2.51)

Длина диффузии отражателя:

$$L_{\rm orp} = \sqrt{L^2} = 64,36 \text{ cm}$$
(2.52)

2.5 Расчёт «горячего» реактора

Повышение температуры всех материалов активной зоны, отражателя и корпуса реактора происходит в течении работы реактора.

Уменьшается сечение поглощения и деления тепловых нейтронов вследствие повышения температура нейтронного газа. Повышение температуры приводит и к уменьшению плотности, что приводит к уменьшению макроскопических сечений.

Так же происходит смещение энергии «сшивки» спектров тепловых и замедляющихся нейтронов в область больших энергий. Что приводит к

уменьшению возраста тепловых нейтронов.

Повышение температуры ядерного горючего приводит к уширению резонансных пиков (эффект Доплера).

Все это приводит к изменению реактивности реактора.

2.5.1 Зависимость поперечных сечений от температуры

Найдем эффективную температуру нейтронов для расчета реактора при рабочей температуре.

Для стержневых твэлов в расчете можно принять среднюю температуру замедлителя равной средней температуре теплоносителя.

Эффективная температура нейтронного газа:

$$T_{H,\Gamma}^{\varphi\phi\phi} = T_{_{3aM}} \cdot \left(1 + 1, 4 \cdot \frac{\overline{\Sigma_{a_{gq}}}}{\overline{\xi\Sigma_{a_{gq}}}} \right), K; \qquad (2.53)$$

Сечения поглощения и рассеяния берутся при температуре замедлителя. Сечения при температуре нейтронного газа:

$$\overline{\sigma_{a}}(T_{H.\Gamma.}) = \sigma_{a_{0}} \cdot f_{a}(T_{H.\Gamma.}) \cdot F(\chi_{\Gamma p}) \cdot \sqrt{\frac{293}{T_{H.\Gamma.}}}$$
(2.54)

Аналогично можно определить $\overline{\sigma_{f}}(T_{H.r.})$.

Зависимость сечения рассеяния от температуры слабая.

Определим температуру замедлителя:

$$T_{_{3aM}} = \frac{t_{_{BX}} + t_{_{BbIX}}}{2} = \frac{90 + 190}{2} + 273 = 413 \text{ K.}$$
(2.55)

По формуле (2.10) произведем уточнение сечения при температуре замедлителя:

$$σ_a^{U^{235}} = 683 \cdot 0,884 \cdot 0,946 \cdot \sqrt{\frac{293}{413}} = 481,08 \,\text{GH};$$

 $Σ_a^{U^{235}} = 0,316 \,\text{cm}^{-1}.$

С учетом долей материалов и пересчитанного сечения, получаем усредненные сечения по ячейке:

 $\overline{\Sigma_{a_{su}}} = 0,012 \text{ см}^{-1}$ – усредненное макросечение поглощения по ячейке; $\overline{\xi\Sigma_{s}} = 0,103 \text{ см}^{-1}$ – усредненная замедляющая способность по ячейке.

Тогда температура нейтронного газа, определяемая по формуле (2.53), будет равна:

$$T_{\rm H.\Gamma.}^{\rm solph} = 413 \cdot \left(1 + 1, 4 \cdot \frac{0,012}{0,103}\right) = 481 \, {\rm K}.$$

Определим точку пересечения спектров Ферми и Максвелла как отношения макросечения поглощения к замедляющей способности:

$$f_{rp} = \frac{\overline{\Sigma_{a_{sq}}}}{\overline{\xi}\Sigma_{a_{sq}}} = \frac{0,012}{0,103} = 0,22; \qquad (2.56)$$

тогда для данной точки $\chi_{rp} = 5,49$, которой соответствует F = 1,04.

Пересчитаем микросечения :

$$\sigma_{a}^{U^{235}} = 683 \cdot 0,89 \cdot 0,946 \cdot 1,04 \cdot \sqrt{\frac{293}{481}} = 463,6 \,\text{барн};$$

$$\sigma_{f}^{U^{235}} = 582 \cdot 0,89 \cdot 0,946 \cdot 1,04 \cdot \sqrt{\frac{293}{481}} = 395,1 \,\text{барн};$$

$$\Sigma_{a}^{U^{235}} = 0,304 \,\text{сm}^{-1};$$

$$\Sigma_{f}^{U^{235}} = 0,259 \,\text{cm}^{-1}.$$

Все полученные значения занесены в таблицу В.2 (приложение В).

2.5.2 Расчёт коэффициента размножения для бесконечной среды

Коэффициент размножения для бесконечной среды «горячего» реактора определим также как и для «холодного», только с учетом всех пересчитанных сечений.

Коэффициент выхода нейтронов на одно поглощение η:

$$\eta = 2,42 \cdot \frac{0,269}{0,362} = 1,80.$$

Коэффициент размножения на быстрых нейтронах остается таким же как и для холодного реактора.

-

a

Определим сечения, усредненные по фиктивному блоку:

$$\begin{split} \Sigma_{a_{\phi.6.}} &= \frac{1}{S_{_{\phi.6.}}} \cdot \sum_{i=1}^{m} \Sigma_{a_{_{\phi.6.}}} \cdot S_i = \frac{\Sigma_{a_{_{TOII}}} \cdot S_{_{TOII}} + \Sigma_{a_{_{K.M.}}} \cdot S_{_{K.M.}} + \Sigma_{a_{_{TH}}} \cdot S_{_{TH}}}{S_{_{\phi.6.}}}, \text{ cm}^{-1}; \\ \Sigma_{a_{_{\phi.6.}}} &= \frac{0,362 \cdot 56,28 + 2,04 \cdot 10^{-2} \cdot 22,9 + 3,78 \cdot 10^{-2} \cdot 14,35}{60,82} = 0,124 \text{ cm}^{-1}; \\ \Sigma_{tr_{_{\phi.6.}}} &= \frac{1}{S_{_{\phi.6.}}} \cdot \sum_{i=1}^{m} \Sigma_{tr_{_{\phi.6.}}} \cdot S_i = \frac{\Sigma_{tr_{_{TOII}}} \cdot S_{_{TOII}} + \Sigma_{tr_{_{K.M.}}} \cdot S_{_{K.M.}} + \Sigma_{tr_{_{TH}}} \cdot S_{_{TH}}}{S_{_{\phi.6.}}}, \text{ cm}^{-1}; \\ \Sigma_{tr_{_{\phi.6.}}} &= \frac{0,772 \cdot 56,28 + 0,486 \cdot 22,9 + 2,13 \cdot 14,35}{60,82} = 1,1 \text{ cm}^{-1}. \end{split}$$

С помощью усреднённых сечений по фиктивному блоку найдём длину диффузии:

$$L_{\phi.6.} = \sqrt{\frac{1}{3 \cdot \Sigma_{a_{\phi.6.}} \cdot \Sigma_{tr_{\phi.6.}}}} = \sqrt{\frac{1}{3 \cdot 0,124 \cdot 1,1}} = 1,56 \text{ cm};$$
$$L_{_{3AM}} = \sqrt{\frac{1}{3 \cdot \Sigma_{a_{_{3AM}}} \cdot \Sigma_{tr_{_{3AM}}}}} = 69,89 \text{ cm}.$$

Подставим найденные значения в формулы:

$$(E-1) = 0,84 \cdot 10^{-2};$$

$$F = 1,66;$$

$$\frac{1}{\theta_{\phi.6.}} = 1,035,$$

$$\theta_{\phi.6.} = 0,966.$$

$$\theta_{0} = 0,902.$$

Коэффициент использования тепловых нейтронов:

$$\theta = 0,902 \cdot 0,966 = 0,872$$
.

Вероятность избежать резонансный захват φ :

$$\phi = 0,917$$

Найдём коэффициент размножения для бесконечной среды:

$$k_{\infty} = 1,449.$$

2.5.3 Расчет эффективного коэффициента размножения

Для расчёта $k_{_{9\varphi}}\,$ найдём следующие параметры:

$$\begin{split} L_{p}^{2} &= L_{_{3 \text{ам}}}^{2} \cdot (1 - \theta) + L_{\varphi}^{2} \cdot \theta = 69,89^{2} \cdot (1 - 0,872) + 1,56^{2} \cdot 0,872 = 147,21 \text{ см}^{2};\\ \tau_{_{3 \text{ам}}} &= 352 \text{ см}^{2} - \text{для графита};\\ \tau_{p} &= 370,48 \text{ см}^{2};\\ B^{2} &= \left(\frac{\pi}{\text{H} + 2 \cdot \delta}\right)^{2} + \left(\frac{2,41}{\text{R} + \delta}\right)^{2}, \end{split}$$

где
 δ — эффективная добавка.

$$\delta = 1,20 \cdot L_{_{3AM}} \cdot th \frac{T}{L_{_{3AM}}},$$

где Т – толщина отражателя.

$$M = \sqrt{\tau_{_{3aM}} + L_{_{3aM}}^2} = \sqrt{352 + 69,89^2} = 72,42 \text{ cm};$$

$$T = 1,5 \cdot 72,42 = 108,63 \text{ cm};$$

$$\delta = 1,20 \cdot 69,89 \cdot \text{th} \frac{108,63}{69,89} = 76,72 \text{ cm};$$

$$B^2 = 4,08 \cdot 10^{-5} \text{ cm}^{-2}.$$

Определили эффективный коэффициент размножения:

$$k_{3\phi} = 1,418$$

Определили ТЭР :

$$T \ni P = \frac{k_{\vartheta \varphi}^{rop} - k_{\vartheta \varphi}^{xon}}{T - 293} = -4,99 \cdot 10^{-6}$$
(2.57)

24

2.6 Многогрупповой расчет, спектр и ценности нейтронов в активной зоне

Один из методов расчета спектра нейтронов – многогрупповой метод, который подразумевает деление всей области энергий нейтронов на конечное число групп.

В пределах каждой группы сечения ядерных процессов считаются не зависящими от энергии нейтронов.

В дальнейшем будет принята следующая система обозначений:

т – общее число энергетических групп;

k, i, j – текущий индекс группы;

 ε_j – доля нейтронов группы « j» в спектре деления $\int \varepsilon(U) dU = 1$;

D – коэффициент диффузии нейтронов, см;

 Σ_{3}^{k} – полное сечение замедления группы «k» во все нижележащие группы, см⁻¹;

 Σ_{3}^{ik} – макросечение замедления группы «i» в группу «k», см⁻¹;

 v_{f}^{j} – выход нейтронов на одно деление в группе « j».

2.6.1 Пересчет концентраций

Пересчет концентраций для многогруппового расчета производится по формуле:

$$N_{i} = N_{i} \cdot \beta_{i}, \qquad (2.58)$$

где N_i – концентрация элемента, без учета его доли в ячейке;

β_i – доля j-го элемента в ячейке.

Расчет концентраций с учетом долей:

 $N_{_{3aM}} = N_c \cdot \beta_{_{3aM}} = 8,03 \cdot 10^{22} \cdot 0,903 = 7,24 \cdot 10^{22}$ ядер/см³ – концентрация ядер замедлителя;

$$N_{U^{235}} = 1,97 \cdot 10^{19}$$
ядер/см³ – концентрация ядер U^{235} в топливе;
 $N_{U^{238}} = 6,83 \cdot 10^{20}$ ядер/см³ – концентрация ядер U^{238} в топливе;
 $N_{O} = 1,4 \cdot 10^{21}$ ядер/см³ – концентрация ядер O в топливе;
 $N_{H} = 1,16 \cdot 10^{21}$ ядер/см³ – концентрация ядер H в замедлителе;
 $N_{O} = 2,32 \cdot 10^{21}$ ядер/см³ – концентрация ядер O в замедлителе;
 $N_{Zr} = 4,8 \cdot 10^{20}$ ядер/см³ – концентрация ядер Cr в топливе;
 $N_{Nb} = 4,84 \cdot 10^{18}$ ядер/см³ – концентрация ядер Nb в топливе.

2.6.2 Многогрупповой расчет

Для каждого элемента произведем рассчет:

$$\Sigma_{a}^{k} = N_{i} \cdot \left(\sigma_{c}^{k} + \sigma_{f}^{k}\right); CM^{-1}$$
(2.59)

$$\Sigma_{3}^{k} = N_{i} \cdot \left(\sigma_{3(e)}^{k} + \sigma_{in}^{k} - \sigma_{in}^{kk}\right); \text{ cm}^{-1}$$
(2.60)

$$\Sigma_{tr}^{k} = N_{i} \cdot \left(\sigma_{e}^{k} \cdot \left(1 - \mu_{e}\right) + \sigma_{f}^{k} + \sigma_{in}^{kk} + \sigma_{c}^{k}\right), CM^{-1}$$
(2.61)

где σ_{in}^{k} – сечение неупругого рассеяния при переходе в k-ю группу;

σ_{in}^{kk} – сечение неупругого рассеяния, не вызывающее ухода из этой группы;

 μ_e – средний косинус угла рассеяния.

$$\Sigma_{y_{B}}^{k} = \Sigma_{a}^{k} + \Sigma_{3}^{k}, \, \text{cm}^{-1};$$
(2.62)

$$\Sigma^{i \to i+1} = N_i \cdot \left(\sigma_{3(e)}^k + \sigma_{in(i,i+1)}^k\right), \ CM^{-1}, \ \Pi p \mu \ k = i+1;$$
(2.63)

$$\Sigma^{i \to i+k} = N_i \cdot \sigma_{in(i,i+1)}^k, \, cM^{-1}, \, \pi p \mu \, k > i+1.$$
(2.64)

Поправка на самоэкранировку:

$$\sigma_0 = \frac{\sum_{i=1}^{m \neq 1} \sigma_{t_m} \cdot N_{m_i}}{N_c}, \, \text{бн.}$$
(2.65)

где σ_{t_m}, N_{m_i} – сечения и ядерная концентрация «m» элемента.

26

C учетом поправок $\sigma_i = \sigma_i \cdot f(\sigma_0)$.

В качестве примера определения констант приведем 3-ю группу: Для определения поправки на самоэкранировку U²³⁸ рассчитаем:

$$\sigma_{0}^{U^{238}} = \frac{N_{U^{235}} \cdot \sigma_{t}^{U^{235}} + N_{O_{ron}} \cdot \sigma_{t}^{O_{ron}} + N_{C} \cdot \sigma_{t}^{C} + N_{H} \cdot \sigma_{t}^{H} + N_{O_{rH}} \cdot \sigma_{t}^{O_{rH}}}{N_{U^{238}}} + \frac{+N_{Zr} \cdot \sigma_{t}^{Zr} + N_{Nb} \cdot \sigma_{t}^{Nb}}{N_{U^{238}}}, \text{ fm};$$
$$\sigma_{0}^{U^{238}} = = 10,31 \text{ fm}.$$

Поправки: f_t, f_c, f_e равны единице.

Уход из группы:

За счет замедления:

O:
$$\sigma_3^3 = \sigma_{3(e)}^3 + \sigma_{in}^3 - \sigma_{in}^{(3,3)} = 0,42 \,\text{GH};$$

H:
$$\sigma_3^3 = \sigma_{3(e)}^3 = 1,74 \, \text{GH};$$

U²³⁵:
$$\sigma_3^3 = \sigma_{3(e)}^3 + \sigma_{in}^3 - \sigma_{in}^{(3,3)} = 1,84 \,\text{GH};$$

U²³⁸:
$$\sigma_3^3 = \sigma_{3(e)}^3 + \sigma_{in}^3 - \sigma_{in}^{(3,3)} = 2,57 \,\text{GH};$$

За счет поглощения:

O:
$$\sigma_a^3 = \sigma_c^3 + \sigma_f^3 = 0,30 \cdot 10^{-2} \,\text{GH};$$

H:
$$\sigma_a^3 = \sigma_c^3 + \sigma_f^3 = 0$$
 бн;

U²³⁵:
$$\sigma_a^3 = \sigma_c^3 + \sigma_f^3 = 1,29$$
 бн;

Для всех элементов считаем $\sum_{y_{B_j}}^i = N_j \cdot (\sigma_{a_j}^i + \sigma_{a_j}^i)$, и для 3-й группы получаем:

$$\Sigma_{tr}^{3} = \Sigma_{tr_{U}^{235}}^{3} + \Sigma_{tr_{O}}^{3} + \Sigma_{tr_{U}^{238}}^{3} + \Sigma_{tr_{H}}^{3} + \Sigma_{tr_{C}}^{3} + \Sigma_{tr_{Zr}}^{3} + \Sigma_{tr_{Nb}}^{3} = 0,09 \text{ cm}^{-1};$$

$$\Sigma_{yB}^{3} = \Sigma_{yB_{U}^{235}}^{3} + \Sigma_{yB_{U}^{238}}^{3} + \Sigma_{yB_{O}}^{3} + \Sigma_{yB_{H}}^{3} + \Sigma_{yB_{C}}^{3} + \Sigma_{yB_{Zr}}^{3} + \Sigma_{yB_{Nb}}^{3} = 0,17 \text{ cm}^{-1}.$$

$$D_3 = \frac{1}{3 \cdot \Sigma_{tr}^3} = 3,75 \,\text{cm.}$$
(2.66)

Результаты сведены в таблицу Г.1 (приложение Г).

Рассчитаем поток и ценность для 3-й группы:

$$I_{3} = \frac{\varepsilon_{3} + \Sigma_{3}^{1 \to 3} \cdot I_{1} + \Sigma_{3}^{2 \to 3} \cdot I_{2}}{B^{2} \cdot D_{3} + \Sigma_{y_{B}}^{3}} = \frac{0,18 + 0,15 \cdot 10^{-1} \cdot 0,19 + 0,04 \cdot 0,97}{4,66 \cdot 10^{-5} \cdot 2,30 + 0,17} = 1,93; \quad (2.67)$$

$$I_{3}^{+} = \frac{\nu_{f}^{3} \cdot \Sigma_{f}^{3} + \sum_{i=4}^{26} \Sigma_{3}^{3 \to i} \cdot I_{i}^{+}}{B^{2} \cdot D_{3} + \Sigma_{yB}^{3}} = \frac{0.12 \cdot 10^{-2} + 0.34}{5.69 \cdot 10^{-5} \cdot 3.75 + 0.17} = 2.04.$$
(2.68)

Все результаты расчетов сводятся в таблицу Г.2 (приложение Г).

При расчете потоков и ценностей учитываются переходы нейтронов в различные группы. Проверка потоков сводится к проверке условия:

$$k_{a\phi} = k_{a\phi}^{+}, \text{ t.e. } \sum_{j=1}^{26} v_{f}^{j} \cdot \Sigma_{f}^{j} \cdot I_{j} = \sum_{j=1}^{26} \varepsilon_{j} \cdot I_{j}^{+} = 1,34.$$

Следовательно, все значения потоков и ценностей нейтронов в активной зоне были рассчитаны верно.

2.6.3 Определение параметров двухгруппового расчета

Рассчитанные спектры потоков и ценностей нейтронов в активной зоне позволяют составить константы для последующего расчета пространственного распределения нейтронных потоков.

Выделим последнюю группу тепловой, а остальные объединим в группу быстрых нейтронов:

$$I_T = I_{26} = 8,21 \text{ M} I_T^+ = I_{26}^+ = 2,06;$$

 $I_B = \sum_{i=1}^{25} I_i = 31,75 \text{ M} I_B^+ = \sum_{i=1}^{25} I_i^+ = 51,07.$

Усредненные константы рассчитываются по формулам:

$$D_{\rm b} = \frac{\sum_{i=1}^{25} D_{\rm i} \cdot I_{\rm i} \cdot I_{\rm i}^{+}}{\sum_{i=1}^{25} I_{\rm i} \cdot I_{\rm i}^{+}} = 1,47 \, \rm cm; \quad D_{\rm T} = D_{26} = 0,61 \, \rm cm; \quad (2.69)$$

$$\Sigma_{yB}^{B} = \frac{\sum_{k=1}^{25} I_{k}^{+} \cdot \left((\Sigma_{a}^{k} + \Sigma_{3}^{k}) \cdot I_{k} - \sum_{i=1}^{k-1} \Sigma_{3}^{ik} \cdot I_{i} \right)}{\sum_{k=1}^{25} I_{k} \cdot I_{k}^{+}} = 0,1 \text{ cm}^{-1}; \Sigma_{yB}^{T} = \Sigma_{yB}^{26} = 0,01 \text{ cm}^{-1}; \quad (2.70)$$

$$(v_{f} \cdot \Sigma_{f})_{b} = \frac{\sum_{i=1}^{25} v_{f}^{i} \cdot \Sigma_{f}^{i} \cdot I_{i} \cdot I_{i}^{+}}{\sum_{i=1}^{25} I_{i} \cdot I_{i}^{+}} = 0,96 \cdot 10^{-1} \text{ cm}^{-1}; \ (v_{f} \cdot \Sigma_{f})_{T} = v_{f}^{26} \cdot \Sigma_{f}^{26} = 0,03 \text{ cm}^{-1}; \ (2.71)$$

$$\tau = \frac{D_{\rm b}}{\Sigma_{\rm yB}^{\rm b} - (v_{\rm f} \cdot \Sigma_{\rm f})_{\rm b}} = 408 \, {\rm cm}^2 \,, \ L^2 = \frac{D_{\rm T}}{\Sigma_{\rm yB}^{\rm T}} = 61 \, {\rm cm}^2.$$
(2.72)

2.7 Расчёт нуклидного состава

При работе ядерного реактора происходит изменение реактивности вследствие выгорания ядерного топлива, его воспроизводства а также отравления и шлакования. Все это приводит к изменению нуклидного состава.

2.7.1 Выгорание ядерного топлива

В изменение нуклидного состава больший вклад вносят U²³⁵ и Pu²³⁹. Чтобы определить концентрации U²³⁵и Pu²³⁹ необходимо значение глубины выгорания. Среднюю глубину выгорания оценим по формуле:

$$\overline{z} = 1,34 \cdot 10^{-6} \cdot \frac{P \cdot t}{C_{U^{235}}}, MBT \cdot cyT/T,$$
 (2.73)

где $P = \frac{N}{m_{UO_2}} - удельная мощность;$

t – время работы ядерного реактора (сутки).

Объём топлива в активной зоне:

$$V_{\text{TORTA}} = S_{\text{TORT}} \cdot H_{a.3.} \cdot n_{\kappa} \cdot n_{\text{TB} \ni \pi} = 1,04 \cdot 745 \cdot 642 \cdot 18 = 8,95 \cdot 10^{6} \,\text{cm}^{3}, \quad (2.74)$$

где n_к – число топливных кассет в активной зоне.

Масса топлива равна:

$$m_{UO_2} = \gamma_{UO_2} V_{TOT} = 10,5 \cdot 8,95 \cdot 10^6 = 93,97 \text{ T};$$
(2.75)

$$P = \frac{N}{m_{UO_2}} = \frac{1500}{93,97} = 15,96 \,\text{MBt/T.}$$
(2.76)

Зададим время работы реактора для определения величины выгорания: 272 суток.

$$z = 1,34 \cdot 10^{-6} \cdot \frac{15,96 \cdot 272}{0,028} = 0,208 \,\mathrm{MBt} \cdot \mathrm{cyt/t}.$$

Концентрация U²³⁵при выгорании:

$$N_{U^{235}} = N_0^{U^{235}} \cdot e^{-z} = 6,56 \cdot 10^{20} \cdot e^{-0,208} = 5,33 \cdot 10^{20} \,\text{ядер/см}^3.$$
(2.75)

Изменение концентрации Pu²³⁹ в процессе работы реактора:

$$\begin{aligned} \sigma_{a}^{Pu^{239}*} &= \sigma_{a}^{Pu^{239}} \cdot \left(1 - (1 - \varphi) \cdot v_{f}^{Pu^{239}} \cdot \frac{\sigma_{f}^{Pu^{239}}}{\sigma_{a}^{Pu^{239}}}\right), \, \text{6H}; \quad (2.76) \\ \sigma_{a}^{Pu^{239}*} &= 1028 \cdot \left(1 - (1 - 0, 917) \cdot 2, 87 \cdot \frac{742}{1028}\right) = 851, 184 \, \text{6H}; \\ N_{Pu^{239}} &= \frac{N_{U^{238}} \cdot \sigma_{a}^{U^{238}}}{\sigma_{a}^{Pu^{239}*}} \cdot \left(1 - e^{\frac{\sigma_{a}^{Pu^{239}*}}{\sigma_{a}^{U^{235}}}}\right) + \frac{v_{f}^{U^{235}} \cdot \sigma_{f}^{U^{235}} \cdot (1 - \varphi) \cdot N_{0}^{U^{235}}}{\sigma_{a}^{U^{235}}} \cdot \left(e^{-z} - e^{\frac{\sigma_{a}^{Pu^{239}*}}{\sigma_{a}^{U^{235}}}}\right) = \\ &= \frac{2, 28 \cdot 10^{22} \cdot 1, 94}{851, 184} \cdot \left(1 - e^{-\frac{851, 184}{463, 62} \cdot 0.208}\right) + \frac{2, 42 \cdot 463, 6 \cdot (1 - 0, 917) \cdot 6, 56 \cdot 10^{20}}{463, 6 \cdot \left(\frac{851, 184}{463, 6} - 1\right)} \cdot \left(e^{-0, 208} - e^{\frac{851, 184}{463, 6} \cdot 0.208}\right) = 1, 227 \cdot 10^{19} \, \text{gdep/cm}^{3}. \quad (2.77) \end{aligned}$$

Время работы ядерного реактора:

$$C_{p_{u}^{239}} = \frac{N_{p_{u}^{239}}}{N_{U^{238}}} = \frac{1,227 \cdot 10^{19}}{2,28 \cdot 10^{22}} = 0,53 \cdot 10^{-3};$$

$$P_{t} = \frac{7,50 \cdot 10^{5} \cdot C_{U^{235}}}{1 - 2 \cdot (1 - \phi)} \cdot (1 - e^{-z}) \cdot (1 - 0,30 \cdot (1 - \phi) \cdot \mu) + \frac{2,42 \cdot 10^{3}}{1 - 2 \cdot (1 - \phi)} \cdot (z - 254 \cdot C_{p_{u}^{239}}) =$$

$$= \frac{7,50 \cdot 10^{5} \cdot 0,02}{1 - 2 \cdot (1 - 0,917)} \cdot (1 - e^{-0,208}) \cdot (1 - 0,30 \cdot (1 - 0,917) \cdot 1,007) +$$

$$+ \frac{2,42 \cdot 10^{3}}{1 - 2 \cdot (1 - 0,917)} \cdot (0,208 - 254 \cdot 0,53 \cdot 10^{-3}) = 3,51 \cdot 10^{3} \text{ MBT \cdot cyt/T.} \qquad (2.78)$$

$$P_{t} = 3,51 \cdot 10^{3}$$

$$t = \frac{P_t}{P} = \frac{3,51 \cdot 10^3}{15,96} = 219,92 \,\text{суток.}$$
(2.79)

С учетом длительности кампании реактора, пересчитаем среднюю глубину выгорания, концентрации U²³⁵и Pu²³⁹:

$$z = 0,17 \text{ MBt} \cdot \text{сут/t}; \text{ N}_{\text{U}^{235}} = 5,51 \cdot 10^{20} \text{ ядер/см}^3; \text{ N}_{\text{Pu}^{239}} = 1,1 \cdot 10^{19} \text{ ядер/см}^3.$$

2.7.2 Отравление реактора

Больший вклад в отравление вносит Xe¹³⁵, имеющий большое сечение поглощения ($\sigma_{xe} = 2,75 \cdot 10^6$ бн). После Xe¹³⁵ по вредности следует изотоп Sm¹⁴⁹. Самарий обладает большим сечением поглощения, достигающим значения $\sigma_{sm} = 5,92 \cdot 10^4$ бн. Sm¹⁴⁹ из за особой степени и характеру воздействия на реактивность часто относят к отравляющим продуктам.

2.7.3 Определение средней плотности потока нейтронов по реактору

$$\Phi = \frac{3,10 \cdot 10^{13} \cdot N}{1,50 \cdot m_{11^{235}}}, \text{нейтрон/см}^2 \cdot \text{c}, \qquad (2.80)$$

где N – тепловая мощность реактора. Macca U²³⁵:

$$N_{U^{235}} = C_{U^{235}} \cdot \frac{m_{UO_2} \cdot N_a}{M_{UO_2}} = 0,028 \cdot \frac{93,97 \cdot 10^6 \cdot 6,02 \cdot 10^{23}}{270} = 5,86 \cdot 10^{27} \,\text{ядер/см}^3; \quad (2.81)$$

$$m_{U^{235}} = \frac{N_{U^{235}} \cdot M_{U^{235}}}{N_{a}} = \frac{5,86 \cdot 10^{27} \cdot 235}{6,02 \cdot 10^{23}} = 2,29 \,\mathrm{T}$$
(2.82)

Средняя плотность потока нейтронов по реактору:

$$\Phi = \frac{3.1 \cdot 10^{13} \cdot N}{1.5 \cdot m_5} = \frac{3.1 \cdot 10^{13} \cdot 1500 \cdot 10^3}{1.5 \cdot 2.29 \cdot 10^6} = 1.35 \cdot 10^{13} \, \text{H} / \text{cm}^2 \cdot \text{c}$$

2.7.4 Определение равновесных ядерных концентраций Xe и Sm

$$N_0^{I} = \frac{\omega_I}{\lambda_I} \cdot \Sigma_f^{UO_2} \cdot \Phi = \frac{5,60 \cdot 10^{-2}}{2,87 \cdot 10^{-5}} \cdot 0,25 \cdot 1,35 \cdot 10^{13} = 6,66 \cdot 10^{15} \,\text{sgep/cm}^3; \quad (2.83)$$

$$N_0^{Xe} = \frac{(\omega_I + \omega_{Xe}) \cdot \Sigma_f^{UO_2} \cdot \Phi}{\lambda_{Xe} + \sigma_a^{Xe} \cdot \Phi}; \qquad (2.84)$$

$$N_0^{Xe} = \frac{(5,60+0,30) \cdot 10^{-2} \cdot 0,25 \cdot 1,35 \cdot 10^{13}}{2,11 \cdot 10^{-5} + 1,65 \cdot 10^{-18} \cdot 1,35 \cdot 10^{13}} = 4,58 \cdot 10^{15}$$

$$N_0^{Pm} = \frac{\omega_{Pm}}{\lambda_{Pm}} \cdot \Sigma_f^{UO_2} \cdot \Phi = \frac{1,30 \cdot 10^{-2}}{3,85 \cdot 10^{-6}} \cdot 0,25 \cdot 1,35 \cdot 10^{13} = 11,39 \cdot 10^{15} \,\text{sgep/cm}^3; \quad (2.85)$$

$$N_0^{Sm} = \frac{\omega_{Pm}}{\sigma_a^{Sm}} \cdot \Sigma_f^{UO_2} = \frac{1,30 \cdot 10^{-2}}{3,56 \cdot 10^{-20}} \cdot 0,25 = 9,12 \cdot 10^{16} \,\text{sgep/cm}^3.$$
(2.86)

2.7.5 Определение потери реактивности при отравлении Xe и Sm в любой момент времени до установления стационарного значения

$$\rho_{Xe} = \rho_0^{Xe} \cdot \left(\frac{\lambda_{Xe} + \sigma_a^{Xe} \cdot \Phi}{\lambda_{Xe} + \sigma_a^{Xe} \cdot \Phi - \lambda_I} \cdot \left(e^{-(\lambda_{Xe} + \sigma_a^{Xe} \cdot \Phi) \cdot t} - e^{-\lambda_I \cdot t} \right) - \left(e^{-(\lambda_{Xe} + \sigma_a^{Xe} \cdot \Phi) \cdot t} - 1 \right) \right); \quad (2.87)$$

$$\rho_0^{Xe} = -\theta \cdot \left(\omega_I + \omega_{Xe} \right) \cdot \frac{\sigma_a^{Xe}}{\lambda_{Xe} + \sigma_a^{Xe} \cdot \Phi} \cdot \frac{\Sigma_f^{UO_2}}{\Sigma_a^{UO_2}} \cdot \Phi =$$

$$= -\frac{0,69 \cdot (5,60+0,30) \cdot 10^{-2} \cdot 1,65 \cdot 10^{-18}}{2,11 \cdot 10^{-5}+1,65 \cdot 10^{-18} \cdot 1,35 \cdot 10^{13}} \cdot \frac{0,25}{0,34} \cdot 1,35 \cdot 10^{13} = -0,026.$$
(2.88)

$$\rho_{\rm Sm} = \rho_0^{\rm Sm} \cdot \left(1 - \frac{\lambda_{\rm Pm} \cdot e^{-\sigma_a^{\rm Sm} \cdot \Phi \cdot t}}{(\lambda_{\rm Pm} - \sigma_a^{\rm Sm} \cdot \Phi)} + \frac{\sigma_a^{\rm Sm} \cdot \Phi \cdot e^{-\lambda_{\rm Pm} \cdot t}}{(\lambda_{\rm Pm} - \sigma_a^{\rm Sm} \cdot \Phi)} \right); \tag{2.89}$$

$$\rho_0^{\rm Sm} = \frac{-\omega_{\rm Pm} \cdot \theta \cdot \Sigma_{\rm f}^{\rm UO_2}}{\Sigma_{\rm a}^{\rm UO_2}} = \frac{-1,30 \cdot 10^{-2} \cdot 0,872 \cdot 0,25}{0,34} = -0,83 \cdot 10^{-2} \,. \tag{2.90}$$

Запас реактивности на начало кампании для «горячего» реактора:

$$\rho_{_{3a\pi}} = \frac{k_{_{9\phi}} - 1}{k_{_{9\phi}}} = 0,295.$$

Величина стационарного отравления ксеноном:

$$q_{cr}^{Xe} = (\omega_{I} + \omega_{Xe}) \cdot \frac{\sigma_{a}^{Xe}}{\lambda_{Xe} + \sigma_{a}^{Xe} \cdot \Phi} \cdot \frac{\Sigma_{f}^{UO_{2}}}{\Sigma_{a}^{UO_{2}}} \cdot \Phi =$$

$$= \frac{(5,60 + 0,30) \cdot 10^{-2} \cdot 1,65 \cdot 10^{-18}}{2,11 \cdot 10^{-5} + 1,65 \cdot 10^{-18} \cdot 1,35 \cdot 10^{13}} \cdot \frac{0,25}{0,34} \cdot 1,35 \cdot 10^{13} = 2,23 \cdot 10^{-2}.$$
(2.91)

2.7.6 Определение изменения плотности ядер I, Xe, Pm, Sm после остановки реактора

$$\mathbf{N}_{\mathrm{I}}(t) = \mathbf{N}_{0}^{\mathrm{I}} \cdot e^{-\lambda_{I} \cdot t}; \qquad (2.92)$$

$$N_{Xe}(t) = N_0^{Xe} \cdot e^{-\lambda_{Xe} \cdot t} - \frac{N_0^I}{1 - \frac{\lambda_{Xe}}{\lambda_I}} \cdot (e^{-\lambda_{Xe} \cdot t} - e^{\lambda_I \cdot t}); \qquad (2.93)$$

$$\mathbf{N}_{\mathrm{Pm}}(\mathbf{t}) = \mathbf{N}_0^{\mathrm{Pm}} \cdot e^{-\lambda_{\mathrm{Pm}} \cdot \mathbf{t}}; \qquad (2.94)$$

$$N_{\rm Sm}(t) = N_0^{\rm Sm} - N_0^{\rm Pm} \cdot (1 - e^{-\lambda_{\rm Pm} \cdot t}).$$
 (2.95)

Изменение концентраций I, Xe, Pm, Sm показано на рисунке E.1 и E.2 (приложение E).

2.7.7 Определение времени достижения полной глубины йодной ямы и 90% полного прометиевого провала

$$t(N_{Xe}) = -36, 4 \cdot \ln\left(0, 743 + \frac{0, 59}{2, 11 + \Phi \cdot \sigma_{a}^{Xe} \cdot 10^{5}}\right) =$$

$$= -36, 4 \cdot \ln\left(0, 74 + \frac{0, 59}{2, 11 + 1, 35 \cdot 10^{13} \cdot 1, 65 \cdot 10^{-18} \cdot 10^{5}}\right) = 4, 7 \text{ y}; \qquad (2.96)$$

$$N_{\max}^{Xe} = 8, 30 \cdot 10^{2} \cdot \Phi \cdot \Sigma_{f}^{UO_{2}} \cdot \left(1 + \frac{0, 81}{2, 11 + \Phi \cdot \sigma_{a}^{Xe} \cdot 10^{5}}\right)^{3, 76} =$$

$$= 8, 30 \cdot 10^{2} \cdot 1, 35 \cdot 10^{13} \cdot 0, 25 \cdot \left(1 + \frac{0, 81}{2, 11 + 1, 35 \cdot 10^{13} \cdot 1, 65 \cdot 10^{-18} \cdot 10^{5}}\right)^{3, 76} =$$

$$= 5, 21 \cdot 10^{15} \text{ sggep/cm}^{3}; \qquad (2.97)$$

$$t(N_{max}^{Sm}) = \ln \frac{0.1}{\lambda_{Pm}} = \ln \frac{0.1}{3.85 \cdot 10^{-6}} = 10 \text{ суток.}$$
 (2.98)

2.7.8 Шлакование реактора

В зависимости от сечения поглощения шлаки разделяют на 3 группы (для определения потерь на шлаках необходимо знать величину выгорания, MBT·cyT/T):

1. Сильно поглощающие шлаки (Sm¹⁴⁹,Gd¹⁵⁷,Eu¹⁵⁵,Cd¹¹³), для которых $\sigma_a^i >> \sigma_a^{U^{235}} \approx 700$ бн. Относительное поглощение в шлаках первой группы равно:

$$q'_{\rm mu1} = 1,51 \cdot 10^{-2};$$

2. Шлаки, для которых $\sigma_a^i \approx \sigma_a^{U^{235}}$ (Kr⁸³,Xe¹³¹,Nd¹⁴³,Sm¹⁵²,Eu¹⁵³): $q_{mn2}^i = 4,14 \cdot 10^{-2} \cdot z = 4,14 \cdot 10^{-2} \cdot 0,17 = 0,7 \cdot 10^{-2};$

3.Все остальные шлаки со слабым поглощением $\sigma_a^i < \sigma_a^{U^{235}}$ (Kr⁸²,Mo⁹⁵,Ag¹⁰⁰,I¹²⁷,I¹²⁹,Cs¹³²):

$$q'_{11173} = 1,14 \cdot 10^{-2} \cdot z = 1,14 \cdot 10^{-2} \cdot 0,17 = 1,94 \cdot 10^{-3}.$$

Суммарное поглощение тепловых нейтронов шлаками всех групп:

$$q_{\mu\nu\eta} = q'_{\mu\nu\eta1} + q'_{\mu\nu\eta2} + q'_{\mu\nu\eta3} = (1,51+0,7+0,19) \cdot 10^{-2} = 2,4 \cdot 10^{-2}.$$

ЗАКЛЮЧЕНИЕ

В результате выполненных расчетов реактора типа УГР были найдены размеры активной зоны, найден эффективный коэффициент размножения для «холодного» и «горячего» состояния реактора 1,45 и 1,44 соответственно. Выбранный состав активной зоны обеспечивает отрицательное значение температурного коэффициента реактивности, что говорит о саморегулируемости и устойчивости реактора при работе. Так же проведена оценка изменения нуклидного состава активной зоны в результате отравления и шлакования реактора, выполнен расчёт длины кампании, составивший 220 суток.

Приложение А

Приложение Б

Приложение В

Материал	Δ		N	$\xi \nabla_{c}$	Ν	Ликросече	ение, барн		Макросечение, см ⁻¹			
Материал	A	Ŷ	11	$\zeta \Delta S$	σ_a	σ_{f}	σ_{s}	σ_{tr}	Σ_a	Σ_{f}	Σ_s	Σ_{tr}
UO ₂	270	10,5	$2,34 \cdot 10^{22}$	2,42·10 ⁻²					0,37	0,27	0,41	0,78
U ²³⁵	235		$6,56 \cdot 10^{20}$	8,35·10 ⁻⁵	496	423	15	511	0,32	0,27	9,84·10 ⁻³	8,35·10 ⁻⁵
U^{238}	238		$2,28 \cdot 10^{22}$	1,80·10 ⁻³	2,05	$2 \cdot 10^{-5}$	9,43	11,48	4,66·10 ⁻²		0,21	0,26
О(топливо)	16		$3,35 \cdot 10^{22}$	$2,23 \cdot 10^{-2}$	1,44.10-4		3,97	3,97	6,74·10 ⁻⁶		0,18	0,18
H ₂ O	18	1	$3,11\cdot10^{22}$	1,35					2,21.10-2		2,67	2,31
Графит	12	1,6	8,03·10 ²²	6,26·10 ⁻²	3,51·10 ⁻³		4,93	4,66	2,15.10-4		0,39	0,37
Сплав	91,3	6,4	$4,22 \cdot 10^{22}$	5,76·10 ⁻³					0,62.10-2		0,26	0,26
Zr	91,2		$4,18.10^{22}$	9,69·10 ⁻³	0,91		10,64	11,55	3,80·10 ⁻²		0,45	0,48
Nb	93		$4,22.10^{20}$	5,75·10 ⁻⁵	0,87		6,36	7,23	3,69.10-4		$2,68 \cdot 10^{-3}$	3,05.10-3

Таблица В.1 – Микро- и макросечения для материалов «холодного» ядерного реактора

Продолжение приложения В

Материал	$N_{10}^{22} - 3$	۲ ۲ -1	Мик	росечен	ие, бар	Н	Макросечение, см ⁻¹						
	N, 10 CM	$\xi \Sigma_{\rm s}, {\rm CM}^{-1}$	σ_{a} σ_{f}		σ_{s}	$\sigma_{\rm tr}$	Σ_{a}	$\Sigma_{ m f}$	$\Sigma_{ m s}$	$\Sigma_{ m tr}$			
UO ₂	2,34	$2,42 \cdot 10^{-2}$	_	—	_	_	0,35	0,26	0,41	0,76			
U ²³⁵	$6,56 \cdot 10^{-2}$	$8,35 \cdot 10^{-5}$	463,62	395,06	15	478,06	0,31	0,26	$0,98 \cdot 10^{-2}$	0,31			
U ²³⁸	2,27	$1,81 \cdot 10^{-3}$	1,94	—	9,44	11,38	0,04	$4,33 \cdot 10^{-7}$	0,21	0,26			
O ₂	4,68	$2,23 \cdot 10^{-2}$	-	-	3,97	7 3,97 $6,39 \cdot 10^{-6}$		_	0,19	0,19			
H ₂ O	2,93	1,25	_	—	_	-	$2,04 \cdot 10^{-2}$	_	2,46	2,13			
C	8,03	$6,26 \cdot 10^{-2}$	$0,27 \cdot 10^{-2}$	—	4,94	4,94	$2, 2 \cdot 10^{-4}$	_	0,39	0,39			
Zr	4,18	$9,68 \cdot 10^{-3}$	0,86	—	10,64	11,51	0,04	-	0,44	0,48			
Nb	$4,22 \cdot 10^{-2}$	$5,74 \cdot 10^{-5}$	0,83	_	6,36	7,19	$0,35 \cdot 10^{-3}$	_	$0,27 \cdot 10^{-2}$	$0,31 \cdot 10^{-2}$			

Таблица В.2 – Микро- и макросечения для материалов «горячего» ядерного реактора

Приложение Г

№группы	$\Sigma_{a}^{},10^{-2}{ m cm}^{-1}$	Σ ₃ , см ⁻¹	$\Sigma_{_{\mathrm{YB}}},$ см ⁻¹	$\Sigma_{ m tr}$, см ⁻¹	D , см	$\Sigma_{\rm f}$, 10^{-5} см ⁻¹	ε _i	ν_{i}	I, отн.ед.	I ⁺ , отн.ед.
1	0,75	0,08	0,82	0,05	6,31	71,71	0,02	3,40	0,19	2,0509
2	0,26	0,09	0,36	0,07	4,88	41,86	0,09	3,04	0,97	2,0503
3	0,05	0,12	0,17	0,09	3,75	42,05	0,18	2,79	1,93	2,0414
4	0,04	0,14	0,18	0,11	3,11	35,97	0,27	2,63	2,79	2,0407
5	0,01	0,21	0,22	0,20	1,65	3,82	0,20	2,52	4,00	2,0407
6	0,01	0,26	0,28	0,24	1,36	2,42	0,14	2,46	2,86	2,0407
7	0,01	0,36	0,38	0,27	1,21	2,77	0,06	2,47	2,01	2,0408
8	0,02	0,49	0,50	0,32	1,03	3,34	0,02	2,45	1,47	2,0408
9	0,03	0,59	0,62	0,39	0,87	4,13	0,01	2,44	1,27	2,0408
10	0,04	0,70	0,73	0,44	0,76	5,21	0,00	2,43	1,07	2,0408
11	0,05	0,77	0,82	0,48	0,70	6,69	0,00	2,42	0,96	2,0409
12	0,06	0,81	0,87	0,50	0,67	8,65	0,00	2,42	0,92	2,0409
13	0,08	0,82	0,90	0,50	0,66	10,62	0,00	2,42	0,90	2,0410
14	0,09	0,84	0,93	0,51	0,65	14,21	0,00	2,42	0,89	2,0411
15	0,12	0,84	0,96	0,51	0,65	21,20	0,00	2,42	0,88	2,0413
16	0,12	0,84	0,96	0,51	0,65	30,52	0,00	2,42	0,88	2,0415
17	0,15	0,84	1,00	0,51	0,65	37,64	0,00	2,42	0,87	2,0417
18	0,15	0,85	0,99	0,51	0,65	52,31	0,00	2,42	0,87	2,0421
19	0,25	0,85	1,10	0,52	0,65	80,53	0,00	2,42	0,87	2,0423
20	0,29	0,85	1,13	0,52	0,65	56,64	0,00	2,42	0,87	2,0427
21	0,64	0,85	1,48	0,52	0,64	72,76	0,00	2,42	0,86	2,0428
22	0,08	0,85	0,92	0,51	0,65	29,10	0,00	2,42	0,86	2,0469
23	0,13	0,85	0,97	0,51	0,65	68,83	0,00	2,42	0,86	2,0473
24	0,19	0,85	1,03	0,52	0,65	125,86	0,00	2,42	0,85	2,0478
25	0,44	1,81	2,25	0,52	0,64	304,81	0,00	2,42	0,83	2,0479
26	1,53	0,00	0,01	0,55	0,61	1144,52	0,00	2,42	8,21	2,0566

Таблица Г.1 – Таблица многогрупповых констант

Продолжение приложения Г

Таблица Г.2 – Таблица переходов

N⁰	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Из 1	0,0278	0,0309	0,0148	0,0123	0,0078	0,0054	0,0026	0,0011	0,0006	0,0002	0,0002	0,0278	0,0309	0,0148	0,0123	0,0078										
Из 2		0,0501	0,0414	0,0224	0,0127	0,0087	0,0044	0,0021	0,0011	0,0005	0,0002	0,0002														
ИзЗ			0,0748	0,0577	0,0251	0,0171	0,0085	0,0043	0,0022	0,0011	0,0005	0,0002	0,0001													
Из 4				0,0894	0,0672	0,0388	0,0194	0,0097	0,0051	0,0024	0,0011	0,0005	0,0002	0,0002												
Из 5					0,1653	0,1172	0,0459	0,0229	0,0123	0,0057	0,0026	0,0012	0,0006	0,0002	0,0002											
Изб						0,2423	0,1442	0,0605	0,0324	0,0151	0,0070	0,0032	0,0015	0,0007	0,0004											
Из 7							0,2319	0,1926	0,0921	0,0429	0,0198	0,0092	0,0043	0,0020	0,0009	0,0004	0,0002									
Из 8								0,2739	0,2684	0,1163	0,0538	0,0250	0,0117	0,0054	0,0025	0,0012	0,0005	0,0005								
Из 9									0,3479	0,3234	0,1424	0,0661	0,0307	0,0142	0,0066	0,0030	0,0014	0,0006	0,0006							
Из 10										0,3960	0,3805	0,1689	0,0784	0,0364	0,0169	0,0079	0,0036	0,0017	0,0008	0,0006						
Из 11											0,4302	0,4224	0,1882	0,0874	0,0405	0,0188	0,0087	0,0040	0,0019	0,0009	0,0008					
Из 12												0,4467	0,4402	0,1963	0,0912	0,0423	0,0196	0,0091	0,0042	0,0019	0,0009	0,0008				
Из 13													0,4546	0,4491	0,2004	0,0930	0,0432	0,0200	0,0093	0,0043	0,0020	0,0009	0,0008			
Из 14														0,4589	0,4557	0,2034	0,0945	0,0438	0,0203	0,0094	0,0044	0,0021	0,0009	0,0008		
Из 15															0,4594	0,4580	0,2044	0,0949	0,0441	0,0204	0,0095	0,0044	0,0021	0,0009	0,0008	
Из 16																0,4607	0,4601	0,2054	0,0954	0,0443	0,0206	0,0096	0,0045	0,0021	0,0009	0,0008
Из 17																	0,4618	0,4605	0,2054	0,0954	0,0443	0,0206	0,0096	0,0045	0,0021	0,0018
Из 18																		0,4620	0,4624	0,2065	0,0959	0,0445	0,0206	0,0096	0,0045	0,0039
Из 19																			0,4628	0,4628	0,2065	0,0959	0,0445	0,0206	0,0096	0,0083
Из 20																				0,4620	0,4624	0,2065	0,0959	0,0445	0,0206	0,0179
Из 21																					0,4616	0,4623	0,2065	0,0959	0,0445	0,0386
Из 22																						0,4611	0,4622	0,2065	0,0959	0,0830
Из 23																							0,4611	0,4622	0,2065	0,1789
Из 24																								0,4612	0,4622	0,3854
Из 25																									0,4612	1,8116
Из 26																										0,9497

Приложение Д

Рисунок 1 – Спектр плотностей потоков нейтронов

Рисунок 2 - Спектр ценностей потоков нейтронов

Рисунок Д.1 – Изменение концентраций ядер I и Xe в зависимости от времени $(--N_I(t);$ —— $N_{Xe}(t))$

Рисунок Г.2 – Изменение концентраций ядер Sm и Pm в зависимости от времени (—— $N_{Sm}(t)$; – – – $N_{Pm}(t)$)