Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт: Электронного обучения

Направление подготовки (специальность): 15.03.01 Машиностроение

Кафедра: Технология автоматизированного машиностроительного производства

УТВЕРЖД	ДАЮ:	
Зав. кафед	рой	
		Арляпов А.Ю.
(Подпись)	(Дата)	(Ф.И.О.)

ЗАДАНИЕ на выполнение выпускной квалификационной работы

В форме:	лнение выпуск	нои квалификационнои расоты	
	Бакалав	врской работы	
(бакалаврско	й работы липломног	о проекта/работы, магистерской диссертации)	
Студенту:	F, A		
Группа		ФИО	
3-8Л11	Мамбетову Ботиру Фуркат угли		
Тема работы:	•		
Проектирование технолог	гического проце	есса изготовления цилиндра и оснастки	
Утверждена приказом ди	ректора (дата, н	омер)	
		<u>'</u>	
Срок сдачи студентом вы	полненной рабо	оты:	
ТЕХНИЧЕСКОЕ ЗАДАНИЕ:			
Исходные данные к работе		Чертеж детали годовая программа выпуска	
(наименование объекта исследования или проектирования; производительность или нагрузка; режим работы (непрерывный, периодический, циклический и т. д.); вид сырья или материал изделия; требования к продукту, изделию или процессу; особые требования к особенностям функционирования (эксплуатации) объекта или изделия в плане безопасности эксплуатации, влияния на окружающую среду, энергозатратам; экономический анализ и т. д.).			
Перечень подлежащих исследованию,		Обзор научно-технической литературы,	
проектированию и разработке		определение типа производства, составление	
вопросов		маршрута, размерный анализ	
(аналитический обзор по литературным источникам с целью выяснения достижений мировой науки техники в рассматриваемой области; постановка задачи исследования, проектирования, конструирования; содержание процедуры исследования, проектирования,		технологического процесса, расчет режимов резания и нормирование операций технологического процесса, конструирование	

конструирования; обсужд работы; наименование до подлежащих разработке;	•	станочного приспособления.			
Перечень графич	неского материала	Чертеж	детали,	чертеж заг	готовки,
(с точным указанием обяз	ательных чертежей)	- '	карта техно	технолог элогического п я, схема сборк	роцесса,
Консультанты п	о разделам выпускной	і квалифик	сационной ра	боты	
(с указанием разделов)					
	Раздел			Консультант	
Технологический	, конструкторский		Алфёрова Е.	A.	
	Финансовый менеджмент, ресурсоэффективность Шулинина Ю.И. и ресурсосбережение.				
Социальная ответственность Кырмакова О.С.					
Названия разделов, которые должны быть написаны на русском и иностранном языках:					
Дата выдачи зад	ания на выполнение в	ыпускной			
квалификационн	юй работы по линейно	ому график	cy		
Задание выдал р				-	
Должность	ФИО	y	ченая степень, звание	Подпись	Дата
Доцент	Доцент Алфёрова Е.А. к.		.н. доцент		
Задание принял	к исполнению студент				
Группа	Ф	ИО		Подпись	Дата
3-8Л11	Мамбетов Ботир Фурн	кат угли			

РЕФЕРАТ

Выпускная квалификационная	гработа <u>9</u>	<u>98 </u>	<u>12</u> рис	с., <u>27 </u> табл., 7
источников, <u>6</u> прил.			_	
Ключевые слова:цилиндр	о, оснастка,	литье,	сверление,	приспособление,
технологический процесс				

Объектом исследования является проектирование технологического процесса изготовления цилиндра

Цель работы: проектирование технологического процесса изготовления цилиндра и оснастки

В процессе исследования проводились анализ технологического процесса, технико-экономическая анализ, конструирование приспособления для сверления

В результате выполнения работы был разработан технологический процесс изготовления детали цилиндр и сконструировано приспособление для сверления

Основные конструктивные, технологические и технико-эксплуатационные характеристики: сконструированное приспособление для сверления состоит из корпуса, штока, рейки, крышка пневмоцилиндра, призмы и плиты кондукторной. Разработанный технологический процесс состоит из двух основных операций.

Степень внедрения: <u>разработанный технологический процесс представлен в отдел</u> главного технолога OAO «TEM3» для анализа и возможного внедрения в производство.

Область применения: цилиндр применяется в отрасли машиностроения для центрирования штока поглощение радиальных нагрузок и удержания смазки

Экономическая эффективность/значимость работы <u>экономический эффект получен</u> за счет рационального технологического маршрута обработки и спроектированного приспособления.

В будущем планируется: возможное внедрение технологического процесса в производство.

Содержание

1.	Назначение и конструкция детали	4
2.	Анализ технологичности конструкции детали и технологический	
KOl	нтроль чертежа	5
3.	Определение типа, форм и методов организации производства	7
4.	Выбор заготовки	9
5.	Принятый маршрутный и операционный техпроцесс	10
6.	Расчет припусков на обработку операционных и исходных размеров	
заг	ОТОВКИ	14
7.	Размерный анализ техпроцесса.	20
8	Расчет режимов резания	23
9.	Выбор оборудования и технологической оснастки	27
10.	. Расчет норм времени операций техпроцесса	30
	. Экономическое обоснование принятого варианта техпроцесса и технономические показатели	
2.]	Разработка карты эскизов технологической операции	37
2.1	Анализ исходных данных и разработка технического задания на	
пр	оектирование специального станочного приспособления	37
2.2	2 Разработка принципиальной схемы и компоновка приспособления	38
2.3	Описание конструкции и работы приспособления	41
2.4	Расчет исполнительных размеров элементов приспособления	42
2.5	Составление расчетной схемы и определение силы зажима	45
2.6	Выбор привода зажимного устройства и расчет его параметров	48
2.7	Выбор привода зажимного устройства и расчет его параметров	49
2.8	В Расчет точности приспособления	49
2.9	Расчет экономической эффективности приспособления	52
3 Г	Іроектирование технологии сборки	55
3 1	Анализ технических требований	55

3.2 Анализ технологичности конструкции	55
3.3 Разработка технологической схемы сборки	56
3.4 Разработка маршрутного технологического процесса сборки и	содержание
операций	57
Заключения	58
Список используемых литератур	59

ВВЕДЕНИЕ

Целью курсового проектирования по дисциплине технологии машиностроения как одного из этапов обучения научить студентов правильно применять теоретические знания, использовать практический опыт работы в предприятиях машиностроения для решения технологического профессионала и задачи дизайна, а также подготовить к дипломному проектированию.

В соответствии с этим в процессе курсового проектирования решаются следующие задачи:

расширение, углубление, систематизация и закрепление теоретических знаний студентов и применение этих знаний для дизайна прогрессивных технологических процессов собрания продуктов и производства деталей, включая дизайн средств технологического оборудования;

•

І. Проектирование технологического процесса

1. Назначение и конструкция детали.

Цилиндр— деталь машины, механизма, прибора цилиндрической или конической формы (с осевой симметрией), имеющая осевое отверстие, в которое входит сопрягаемая деталь. (см. лист 2)

Деталь «Цилиндр» в сборочном узле служит для центрирования штока, поглощения радиальных нагрузок и удержания смазки. Деталь является телом вращения и принадлежит к группе полых цилиндров

Цилиндр имеет наименьшую шероховатость $R_z=2.5$ мкм.

Посадки выполнены на точность k9.

Государственная стандартная сталь спецификации 1050-88 45L легко признает обработку, сокращаясь.

Таблица 1 - Химический состав заявляет стандартной спецификации 1050-88 Стила 45L

		Химический состав в % стали 45Л
С	0,42 - 0,5	
Si	0,2 - 0,52	
Mn	0,4 - 0,9	
Ni	до 0,3	
S	до 0,045	Химический состав
P	до 0,04	марки
Cr	до 0,3	
Cu	до 0,3	
Fe	~97	

2 АНАЛИЗ ТЕХНОЛОГИЧНОСТИ КОНСТРУКЦИИ ДЕТАЛИ

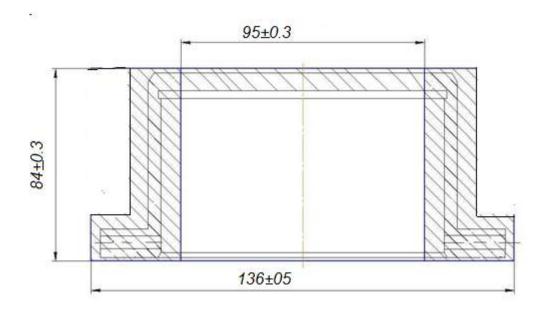
Аналитическая цель — идентификация недостатков согласно данным, которые содержатся в рисунках и технических требованиях о также возможном улучшении технологической эффективности продуманного дизайна.

У технологической эффективности дизайна детали есть прямая связь с производительностью труда, расходами времени для технологической подготовки производства, производства, обслуживания и ремонта продукта.

У рисунка обработанной детали есть все необходимые данные предоставление полные идеи детали, т.е. все прогнозы, сокращения и секции. На рисунке все размеры с необходимыми отклонениями, необходимой грубостью обработанных поверхностей, допустимых отклонений от правильных геометрических форм, и также взаимного предоставления поверхностей определены. Указаны сведения о материале детали, термической обработке, массе детали.

Деталь – цилиндр (приведен на формате A4) – изготавливается из стали марки 45Л (ГОСТ 1050-88) литьем, поэтому конфигурация наружного контура и внутренних поверхности не вызывают значительные трудности, получая подготовку.

4 ВЫБОР ЗАГОТОВКИ


Способ получить подготовку определен на основе рисунка детали, результаты анализа ее офисного назначения, технических требований, программы выпуска и размера ряда, типа производства, доходности производства [1, страница 96].

Для происхождения нужно максимального подхода формы и суммы подготовки к параметрам готовой детали, необходимо применить прогрессивные методы и способы получить приготовления, такие как лепное украшение на расплавленных моделях, лепное украшение под давлением,

штамповкой в закрытых печатях, и т.д. Прогрессивные способы получить приготовления обеспечивают уменьшение в затратах на механическую обработку и улучшение качества производства.

На основе анализа дизайна детали согласно рисунку, образовательному и справочники [1, страница 95; 2, страница 25] мы выбираем подготовку и метод ее производства. Мы получаем подготовку литьем.

Точность 12...14-го квалитета, параметр шероховатости поверхности Rz 80 мкм [2, с. 63].

6 Принятый маршрутный и операционный техпроцесс.

Проблема дизайна технологического процесса механической обработки - определение ее такая последовательность, в которой технологические возможности машин наиболее полностью используются, устройства и инструменты, и деталь произведена с самыми маленькими материальными входами. Те же самые проблемы решены также при дизайне технологического процесса восстановления старых и поврежденных деталей. Технологический процесс должен быть развит, приняв во внимание производственные возможности предприятия и методов наиболее успешной практики. Необходимо иметь следующие исходные данные также:

- 1. Ежегодная производственная программа, которая влияет на выбор оборудования, устройств, инструментов, и также структуры технологического процесса.
- 2. Рабочий чертеж детали, на которой делают технологический маршрут из обработки, типов, методов механической обработки и места термообработки в общем технологическом процессе производства детали, определяет, делает технические требования (S) на принятии обработанной детали, выбирает оборудование, устройства и инструмент. Рабочий чертеж детали должен быть выполнен по своим масштабам 1:1. Исключение становится для деталей больших и небольших размеров. На рабочем чертеже подавляет все необходимые размеры для обработки детали. Размеры на соединявших поверхностях приносят с точностью обработки характеристики приема. Кроме того, укажите на погрешность приема относительного расположения отдельных обработанных поверхностей. Грубость обработанного и не обработанных поверхностей определяется обычные знаки согласно государственной стандартной спецификации. На материале рабочего чертежа, из которого деталь, ее масса, термообработка, должна быть сделана твердость детали (ядро), ее отдельные поверхности и другие данные, также определен.
- 3. Инструкции относительно использования доступного оборудования и его погрузки. Если технологический процесс развит для действующего предприятия, то обычно предусматривают в задаче на том, какой оборудование обработать, пронумеруйте изменений работы и т.д.
- 4. Справочные материалы, к который каталоги или данные о паспорте машин, справочников по сокращающимся способам, нормированию, по устройствам, инструмент и т.д. принадлежит.

Выполнив анализ исходных данных, в целях выбора существующей стандартной технологии, которую необходимо установить к тому, какой класс или группа деталей обработанный продукт принадлежат. Разрабатывая технологию необходимо рассмотреть доступный опыт

производства стандартных деталей на продвинутых предприятиях, когда это возможно, использовать новое прогрессивное оборудование, устройства и инструменты, и также самые прекрасные формы организации производства. Чтобы предоставить производству деталей с самыми маленькими расходами, для большинства главных деталей на заводах сериала и особенно производства большой партии делают несколько вариантов технологий. Результатами экономического анализа выбирают самый эффективный выбор.

Таким образом разрабатывая технологию необходимо рассмотреть технические и экономические факторы.

Анализ существующего технологического процесса

Мы будем полагать, что маршрутная карта предлагаемый технологический процесс, сконцентрировав внимание на важные моменты. Диаграмма маршрута технологический процесс представлена в таблице 5.

Таблица 5 Маршрутно-операционный технологический процесс изготовления детали "Цилиндр"

Nº	Наименование	Эскиз
<i>000</i>	Заготовительная Литьё в кокиль	/ Ra 2,5 (v)
010	Токарная с ЧПУ Установ А	A ₅ , 2
1	Подрезать торец 1, выдерживая размер А ₄ .	
2	Точить поверхность 2, выдерживая размеры D_{L} , A_{5} .	
3	Точить галтель на радиус R1	A ₄ 1
015	Токарная с ЧПУ Установ Б	A ₂
1	Падрезать тарец 1, выдерживая размер A ₁ .	
2	Точить поверхность 2, выдерживая размер D ₁	
3	Расточить отверстие 3, выдерживая размер А ₂ , D ₂	A ₁

Таблица 5 продолжения

Nº	Наименование	Эскиз
010	Точить канавку 4, выдерживая размер А₃, D₃	\(\text{Ra 12.5 (\lambda)} \)
015	Вертикально- -сверлильная Позицмя 1	Ø5 \ Ra 12,5 \\)
1	Сверлить отверстие диаметром Ф5.	
2	Сверлить одно отверстие под резьбу М6Н7.	
3	Нарезать резьбу М6–Н7.	M6H7 ^(+0,012) 2 omb.
015	Позицмя 2	ø5 \/ Ra 12,5 (\)
1	Сверлить одно отверстие под резьбу М6Н7.	w w
2	Нарезать резьбу М6-Н7.	M6H7 ^(-0,012) 2 omb.
	Слесарная	
020	Острые кромки сточить напильником.	
025	Технический контроль	

 Таблица 6 - Маршрутная технология предлагаемого технологического

 процесса

Номер			
опера-	Наименование	Модель	Базы
ции	операции	станка	DWSDI
005	Обработка и очистка литье	-	-
010	Токарная Установ А Подрезать торец в размер L-82±0.3мм и точить поверхность в размер Ø120h14 на длину 68h14,точить галтель радиусе R1	Hyundai L300LA	Наружная цилиндрическая поверхность, торец.
	Токарная Установ Б		
10	Подрезать торцы в размер L-80±0.3мм, точить поверхность Ø130h14 на проход. Расточить отверстие в размер Ø100H9 на длину65±0.3мм, проточить канавку в размер Ø102H14 на длину 5H14	Hyundai L300LA	Наружная цилиндрическая поверхность, торец.
015	Вертикально-сверлильная Позиция 1 Сверлить одно отверстие Ø5 под резьбу M6-7H насквозь, одно отверстие Ø5H14 на длину 25±0.26мм, нарезать резьбу M6-7H	2H135	Наружная цилиндрическая поверхность, торец, отверствия.
015	Позиция 2		
013			
	Сверлить одно отверстие Ø5 под резьбу M6-7H на сквозь, нарезать резьбу M6-7H	2H135	
020	Опиливать острые кромки	Верстак механизированный	-
025	Промыть деталь	Моечная машина	-
030	Технический контроль	-	-

7 Расчет припусков на обработку операционных и исходных размеров заготовки.

Обрабатывая приготовления к деталям автомобилей, преувеличенных пособий на обработку, лидерство, в определенных случаях, к удалению самых надежных одеял обработанной детали.

В то же время преувеличенные гранты вызывают необходимость введения дополнительных технологических переходов, увеличивают затраты на оплату труда процессов механической обработки. Расход электроэнергии власти, инструмента и который главная стоимость увеличивает увеличения.

Сокращение грантов обработке - одно из средств экономии металлов и сокращения затрат на оплату труда процессов механической обработки. Однако, недостаточные гранты обработке не обеспечивают возможность удаления дефектных одеял металла и получения необходимых параметров обработанных поверхностей, и в определенных случаях создают недопустимые технологические условия для эксплуатации режущего инструмента в зоне устойчивой корки или масштаба.

В результате недостаточных пособий, числа увеличений брака, которое увеличивает главную стоимость продуктов.

При внедрении вычисления проекта степени пособий на механическую обработку сделан урегулированием и аналитическим методом и согласно столам. Вычисление пособий и определение их размеров для столов сделаны после выбора маршрута, оптимума для этих условий и выбора метода получения подготовки.

Мы сделаем вычисление пособий урегулированием и аналитическим методом для поверхности: □130h14 (-1)

$$p_{\text{\tiny KOD}} = \sqrt{0.5^2 + 0.120^2 + 1.26^2} = 1.36$$
mm

Остаточное пространственное отклонение после каждого перехода

$$\rho_{ocm} = K_{y} \times \rho_{3} \qquad (1.7)$$

где K_у – коэффициент уточнения формы на рассматриваемом переходе;

1-й переход: $K_{\rm Y} = 0.06$, $p_{\it ocm} = 0.06 \cdot 1360 = 81.6$ мкм;

2-й переход: $K_{\rm Y} = 0.05$, $p_{ocm} = 0.05 \cdot 1360 = 68$ мкм;

3-й переход: $K_y = 0.04$, $p_{ocm} = 0.04 \cdot 1360 = 54,4$ мкм

Термообработка: $\rho_{TO} = \sqrt{\rho_K^2 + \rho_{TO-1}^2}$ (1.8)

где ρ_{K} - коробление детали после TO;

 $ho_{{\scriptscriptstyle TO}{\scriptscriptstyle -1}}$ - отклонение детали на операции, предшествующей термообработке;

$$p_{mo} = \sqrt{81.6^2 + 54.4^2} = 98 MKM$$

3 Погрешность установки детали на каждом переходе

$$\varepsilon_y = \sqrt{\varepsilon_\delta^2 + \varepsilon_s^2} \tag{1.9}$$

где $\varepsilon_{\rm f}$ – погрешность базирования;

 $\varepsilon_{6} = 0$ (технологическая и измерительная базы совпадают);

 ε_3 – погрешность закрепления;

1-й переход:
$$\varepsilon_{_{\mathcal{I}}}=80\,$$
 мкм , $\varepsilon_{_{\mathcal{I}}}=\sqrt{0^2+80^2}=80\,$ мкм ;

2-й переход:
$$\varepsilon_j = 0.06 \cdot 80 = 5$$
мкм, $\varepsilon_y = \sqrt{0^2 + 5^2} = 5$ мкм;

3-й переход:
$$\varepsilon_i = 0.05 \cdot 80 = 4$$
мкм, $\varepsilon_y = \sqrt{0^2 + 4^2} = 4$ мкм

4 Минимальное значение межоперационного припуска

$$2Z_{i,min} = 2 \cdot (RZ_{i-1} + h_{i-1} + \rho_{i-1}); \qquad (2.1)$$

где і – выполняемый переход;

1-й переход:2Z_{1min}=2• (140+1360)=2•1500;

2-й переход:2Z_{1min}=2• (140+100+81.6)=2•321.6;

3-й переход: $2Z_{1\min} = 2 \cdot (50 + 50 + 98) = 2 \cdot 198$ мкм;

Мы входим в результаты вычислений в таблице 9.

Мы заполняем колонку "Размер Урегулирования" таблицы 9, начиная с заключительного минимального размера рисунка, последовательным добавлением минимального пособия каждого предыдущего перехода.

3-й переход: $d_{p3} = 130h14$ мм;

2-й переход: $d_{p2} = 130h14_{-1} + 2 \cdot 198 = 130.396$

1-й переход: $d_{p1} = 130.396 + 2 \cdot 321.6 = 131.042$

заготовка: $d_{p0} = 131.042 + 2 \cdot 1500 = 134.042$

Мы входим в допуски в каждый технологический переход в колонке "Допуски на Размере" таблицы 13 (допуск на сумме подготовки, которую мы принимаем в соответствии с ГОСТом 26645).

В колонке "Чрезвычайный Размер" таблицы 13 dmin оценивает, мы получаем округление суммы урегулирования соответствующего перехода к точности приема многочисленной партии, и мы решаем, что d макс. оценивает дополнением к dmin допуска соответствующего перехода

3-й переход:
$$d_{min3} = 130$$
 мм, $d_{max3} = 130+0,16 = 130.16$ мм; 2-й переход: $d_{min2} = 130,39$ мм, $d_{max3} = 130.39+0,25 = 130.64$ мм; 1-й переход: $d_{min1} = 131.04$ мм, $d_{max1} = 131.04+0,62 = 131.66$ мм; заготовка: $d_{min0} = 134.04$ мм, $d_{max0} = 134.04+2,5 = 136.52$ мм;

В колонке "Экстремумы Пособий" таблицы 13 мы определяем максимальные экстремумы пособий как различие самой большой чрезвычайной суммы предыдущего и выполнили переходы, и мы определяем минимальные экстремумы пособий как различие самой маленькой чрезвычайной суммы предыдущего и выполнили переходы.

3-й переход:
$$2Z_{\text{max3}}^{\text{пр}} = 130.64\text{-}130.16 = 0,48 \text{ мм};$$
 $2Z_{\text{min3}}^{\text{пр}} = 130.396\text{-}130\text{=}0,396 \text{ мм};$ $2\text{-й переход: }2Z_{\text{max2}}^{\text{пр}} = 131.66\text{-}130.64\text{=}1.02 \text{ мм};$ $2Z_{\text{min2}}^{\text{пр}} = 131.04\text{-}130.39 = 0,65 \text{ мм};$ $1\text{-й переход: }2Z_{\text{max1}}^{\text{пр}} = 136.52 - 131,66 = 4,8 \text{ мм};$ $2Z_{\text{min1}}^{\text{пр}} = 133.96\text{-}131.04\text{=}2,92 \text{ мм};$

Общий минимальный припуск определяем как сумму минимальных промежуточных припусков:

$$2Z^{\circ}_{\min} = 0.396 + 0.65 + 2.92 = 3.966 \text{MM};$$

Общий максимальный припуск определяем как сумму максимальных промежуточных припусков:

$$2Z_{max}^{\circ} = 0.48+1.02+4.8=6.30$$
mm;

Общий номинальный припуск

$$2Z^{\circ}_{\text{HOM}} = 2Z^{\circ}_{\text{min}} + H_3 - H_{\text{JJ}};$$
 (2.2)

где H_3 – нижнее отклонение допуска заготовки;

$$H_3 = 0.8 \text{ MM};$$

 $H_{\rm Л}$ – нижнее отклонение допуска детали = 0мм;

$$2Z_{\text{HOM}}^{\circ} = 3,966 + 0,8 = 4,766 \text{ MM};$$

Номинальный диаметр заготовки определяем как сумму номинального диаметра детали и общего номинального припуска

$$d_{\text{hom}0} = 130+4,766=134,766$$
mm

Проверяем правильность выполненных расчетов

$$2Z_{\text{maxi}}^{\text{np}} - 2Z_{\text{mini}}^{\text{np}} = \delta d_{i-1} - \delta d_{i}$$
 (2.3)

1-й переход: 4.8 - 2.92 = 2.5 - 0.62 или 1.88 = 1.88 (верно);

2-й переход: 1,02-0,65=0,62-0,25 или 0,37=0,37 (верно);

3-й переход: 0,48 - 0,39 = 0,25 - 0,16 или 0,09 = 0,09 (верно);

$$2Z_{\text{max}}^{\circ} - 2Z_{\text{min}}^{\circ} = \delta d_0 - \delta d_3$$
 (2.4)

$$6,30 - 3,96 = 2,5 - 0,16$$
 или $2,34 = 2,34$ (верно);

Поскольку условия уравнений удовлетворены, вычисление меж эксплуатационных пособий сделано правильно.

8 Размерный анализ техпроцесса

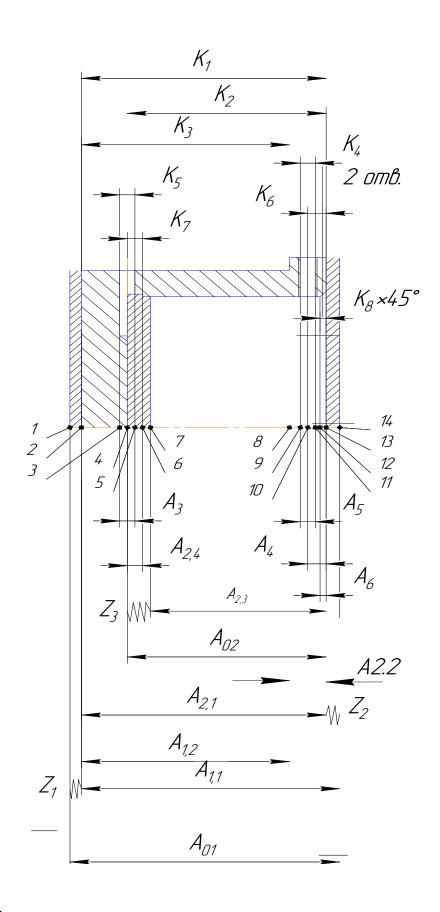


Таблица 7

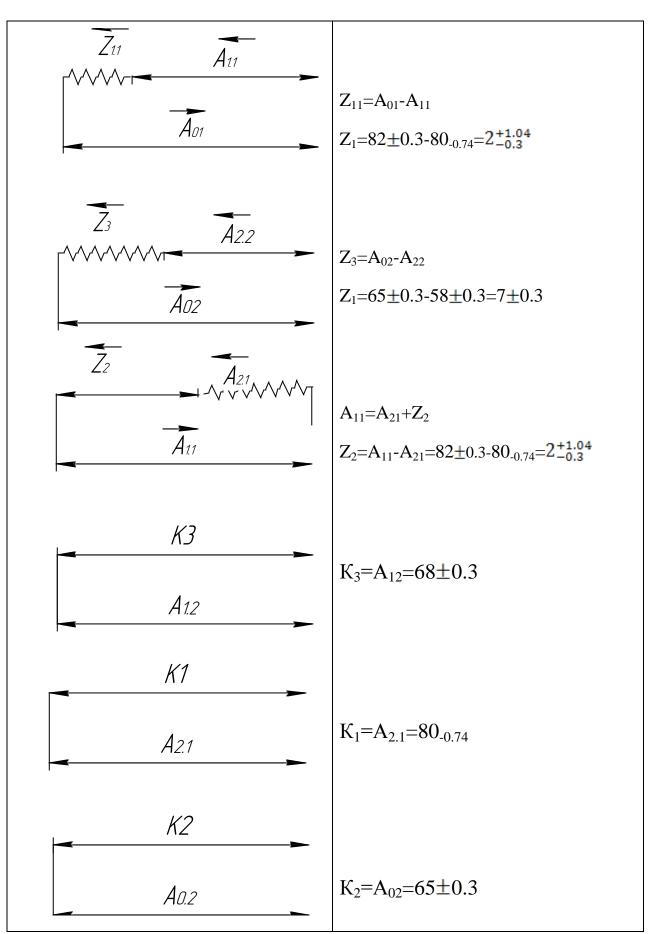
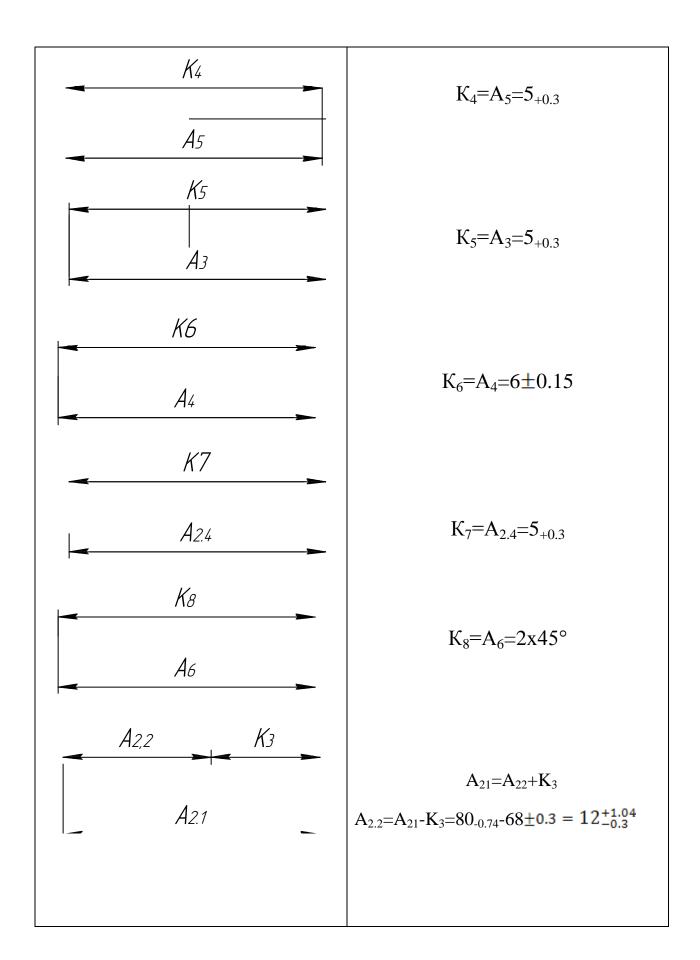



Таблица 7 продолжения

9 Расчет режимов резания.

Вычисление способов сокращения и норм времени для операции 005

- 1. Деталь зафиксирована в боссе.
- 2. Материал детали 45L.
- 3. Схема базирования: на лице конца приспосабливающий основу и на внешнем диаметре с сосредоточением и фиксацией в кулаках удваивают основную основу.

Начальный день:

- машина превращение с ChPU Hyundai L300LA
- инструменты превращение резаков, геометрические параметры: f = 93 °, = 5, g = 12 °, материал устойчивый сплав T15K6;
- адаптация босс, поворачивающий клен с тремя кулаками с пневматическим двигателем;
 - обработка сделана для одного прохода с охлаждением.

Для обработки стали сокращения до 20 мм подробно рекомендуемое предоставление равно 0,25 мм / о.

Операция 005: переулок 1 – чтобы обострить деталь о контуре.

Режущий инструмент: пластина ГОСТА 196613-0362-120612 T15K6 19048-80.

Глубина сокращения t=1,2 mm.

Давая на повороте Так =0,4 мм / о, мы принимаем согласно рекомендациям [8] для проекта, становящегося каменноугольными несвежим образом.

Твердость минуты. Инструмент T=50.

Сокращение скорости, когда превращение определено формулой:

$$V = \frac{C_{\nu}}{T^m \cdot t^x \cdot S^y} \cdot K_{\nu}, \qquad (2.5)$$

где C_v , m, x, y – эмпирические коэффициенты.

Значения коэффициентов и показателей степени определяем по [5]:

 $C_V = 290$; x = 0.15; y = 0.35; m = 0.2; T = 50 мин.

$$K_{v} = K_{Mv} \cdot K_{Hv},$$
 (2.6)
 $K_{Mv} = K_{r} \left(\frac{750}{\sigma_{r}}\right)^{n} = 1 \left(\frac{750}{980}\right)^{1} = 0,77,$

где $K_{\text{мv}}$ =0,77 — коэффициент, учитывающий марку обрабатываемого материала (сталь 40X);

 K_{nv} =0,9 - коэффициент, учитывающий состояние поверхности, в данном случае это поперечно-клиновой прокат;

 K_{uv} =1 — коэффициент, показывающий, что Сталь 45Л обрабатываем инструментом из твердого сплава.

$$K_v$$
=0,77·0,8·1=0,7;
$$V = \frac{290}{50^{0.2} \cdot 1.2^{0.15} \cdot 0.4^{0.35}} \cdot 0,7 = 144 \text{ м/мин.}$$

Частота вращения шпинделя:

$$n = \frac{1000 \cdot v}{\pi \cdot D},$$

$$n = \frac{1000 \cdot 144}{314 \cdot 165} = 278 \text{ мин}^{-1}.$$

Принимаем ближайшую меньшую частоту согласно паспорта станка $n=300~\mathrm{Muh}^{-1}$.

Определим действительную скорость резания:

$$V_{\perp} = \frac{\pi \cdot n \cdot D}{1000}, \qquad (2.8)$$

$$V_{\text{д}} = \frac{3,14 \cdot 300 \cdot 165}{1000} = 154.4 \text{ м/мин.}$$

Минутная подача:

$$S_{M} = S_{O} \cdot n = 0, 4.300 = 120$$
 мм/мин.

Длина рабочего хода:

$$L_{p.x.}=l_1+L+l_2,$$
 (2.9)

где l_1 – длина врезания инструмента, мм;

 l_2 – длина перебега инструмента, мм;

L – длина, мм.

 $L_{p.x.} = 2 + 82 + 2 = 86 \text{ MM}.$

Основное время:

$$T_0 = \frac{L_{p.x.}}{n \cdot S} = \frac{86}{300 \cdot 0.26} = 1.1$$
мин

Сверлильная операция: сверление отверстия Ø5H14

Материал сверла – быстрорежущая сталь Р6М5.

- 1. Глубина резания $t = 0.5 \cdot D = 0.5 \cdot 5 = 2.5$ мм.
- 2. Подача по таблице 35 [4 ,c.381]: S=0,06 мм/об.
- 3. Скорость резания определяется по формуле:

$$V = \frac{C_V \cdot D^q}{T^m \cdot S^y} \cdot K_V \tag{13}$$

Период стойкости инструмента принимаем по таблице 40 [4, с.384]: T=15мин.

Значения коэффициентов: $C_V = 7.0$; q = 0.4; m = 0.2; y = 0.7 — определены по таблице 38 [4, c.383].

Коэффициент K_V :

$$K_{V} = K_{MV} \cdot K_{IV} \cdot K_{VV}, \qquad (14)$$

где K_{IV} - коэффициент, учитывающий глубину сверления.

$$K_{MV} = K_{\Gamma} \left(\frac{750}{\sigma_{B}}\right)^{n_{V}} = 1.0 \cdot \left(\frac{750}{750}\right)^{1} = 1$$

Значение коэффициента K_{Γ} и показатель степени n_V для сверла из быстрорежущей стали при обработке заготовки из Ст45 берем из таблицы 2 [4, c.359]: $K_{\Gamma} = 1,0$, $n_V = 1$.

По таблице 6 [4, c.361] $K_{\text{HV}} = 1$.

По табл. 41 [4, c.385]: $K_{IV} = 0.6$.

$$K_V = K_{MV} \cdot K_{IV} \cdot K_{HV} = 0.6 \cdot 1 \cdot 1 = 0.6$$

Скорость резания, формула (13):

$$V = \frac{C_V \cdot D^q}{T^m \cdot S^y} \cdot K_V = \frac{7,0 \cdot 5^{0,4}}{25^{0,2} \cdot 0,06^{0,7}} \cdot 0,6 = 31.8 \frac{M}{MUH}$$

4. Расчётное число оборотов шпинделя:

$$n = \frac{1000 \cdot V}{\pi \cdot d} = \frac{1000 \cdot 31.8}{3,14 \cdot 5} = 2025.47 \frac{\text{об}}{\text{мин}}.$$

Принимаем фактическое число оборотов, с учетом типа станка:

$$n_{ct} = 2000$$
 об/мин.

5. Фактическая скорость резания:

$$V = \frac{\pi \cdot d \cdot n}{1000} = \frac{3,14 \cdot 5 \cdot 2000}{1000} = 31.4 \frac{M}{MUH}.$$

6. Определяем крутящий момент по формуле:

$$M_{\kappa p} = 10 \cdot C_{M} \cdot D^{q} \cdot S^{y} \cdot K_{p}$$
 (15)

Значения коэффициентов: $C_M=0.0345;\ q=2;\ y=0.8$ — определены по таблице 42 [4, c. 385].

Коэффициент $K_P = 1$

Крутящий момент, формула (15):

$$\begin{aligned} M_{\kappa p} \; &=\; 10 \, \cdot \, C_M \, \cdot \, D^q \, \cdot \, S^y \, \cdot \, K_p = \\ \\ &=\; 10 \, \cdot \, 0,0345 \, \cdot \, 5^2 \, \cdot \, 0,06^1 \cdot 1 \, = 0,51 \, H \cdot \text{m}. \end{aligned}$$

7. Определяем осевую силу по формуле:

$$P_o = 10 \cdot Cp \cdot D^q \cdot S^y \cdot Kp \tag{16}$$

Значения коэффициентов: $C_p=68;\ q=1,0;\ y=0,7$ – определены по таблице 42 [4, c.385].

Осевая сила по формуле (19):

$$P_o = 10 \cdot Cp \cdot D^q \cdot S^y \cdot Kp =$$

= $10 \cdot 68 \cdot 5^1 \cdot 0.06^{0.7} \cdot 1 = 474 \text{ H}.$

8. Мощность резания:

$$N = \frac{M_{\text{кр}} \cdot n}{9750} = \frac{0,51 \cdot 2000}{9750} = 0,10$$
кВт.

10. Выбор оборудования и технологической оснастки.

Выбор оборудования

Токарный центр с ЧПУ. Hyundai L300LA.

Рисунок 3 - Токарный центр с ЧПУ. Hundai L300LA.

Токарные станки с ЧРU с наклоненной кроватью mnogofunktsionalna, обладайте высокой точностью и скоростью обработки. Предназначены для производства высокой точности и трудных деталей на предприятиях различных отраслей промышленности с использованием современных инструментов. Наклоненная кровать обеспечивает свободный спуск бритья и удобного доступа к обработанной детали. Дизайн кровати сделан на

современной технологии со склонностью 60 или 45 градусов в зависимости от машинной модели, которая способствует сокращению свободного времени оборудования. Наклоненная кровать занимает меньшее место, которое позволяет чистить легко бритье и очищать машину. В стандартном выборе ось положения, система ЧРU FANUC 0i-помощника, водители сервомотора FANUC, шпиндельный двигатель с конвертером частоты, гидравлический босс установлен 12-е. pintle задней бабушки с гидравлическим двигателем. Она двигается легко и зафиксированный.

Универсальный сверлильный станок 2Н135

Рисунок 4 - Сверлильный станок 2Н135

Машина предназначена для проекта и справедливой обработки тренировкой или завода не умеренные детали различной формы и конфигурации. У

полуавтоматического устройства есть конфигурация с горизонтальной пластиной продукта.

Технические характеристики:

Таблица 6 - Технические характеристики станка 2Н135

11 Расчет норм времени операций техпроцесса.

Расчет штучного времени и нормирование работ для операции 010 (1-й переход)

Определяем штучное время штучное время

$$T_{\text{IIIT}} = T_0 + T_{\text{B}} + T_{\text{O}} + T_{\text{OT}},$$

где T_0 - основное время, мин.;

Т_в - вспомогательное время, мин.;

Тоб - время на обслуживание рабочего места, мин.;

 $T_{\text{от}}$ - время перерывов на отдых личные надобности.

Вспомогательное время состоит из затрат времени на отдельные приемы:

$$T_{\text{вм}} = T_{\text{ус}} + T_{\text{30}} + T_{\text{уп}} + T_{\text{из}},$$

где T_{yc} - время на установку и снятие детали, мин.;

 $T_{3.0.}$ - время на закрепление и открепление детали, мин.;

 $T_{y\pi}$ - время на приемы управления, мин.;

 $T_{\mbox{\tiny H3}}$ - время на измерение детали, мин.

$$T_{oп} = T_0 + T_B$$
, мин.

Время на обслуживание рабочего места состоит:

$$T_{ob} = T_{opr} + T_{rex}$$
, мин.

где $T_{\text{орг}}$ - время на организационное обслуживание рабочего места, мин.

 $T_{\text{тех}}$ - время на техническое обслуживание рабочего места, мин.

Время на техническое обслуживание определяется по формуле:

$$T_{\text{oб.ot}} = \frac{T_{\text{of}} \cdot \Pi_{\text{oб.ot}}}{100}$$

где $\Pi_{\text{об.от}}$ - процент затрат времени на обслуживание и отдых.

Основное время на операцию $T_0 = 1,28$ мин.

$$T_{yc}=0.07$$
 мин. [табл. 5.3; 3]; $T_{3.0}=0.015$ мин. [табл. 5.7; 3]; $T_{y\pi}=0.045$ мин. [табл. 5.8, 5.9; 3]; $T_{H3}=0.031$ мин. [табл. 5.12; 3]; $T_{B}=(0.07+0.015+0.045+0.031)=0.161$ мин. $T_{o\pi}=1.2+0.161=1.361$ мин. $T_{o\pi}=\frac{T_{o}\cdot T_{cM}}{T}=\frac{1.2\cdot 2.4}{30}=0.096$ мин $T_{ope}=\frac{T_{on}\cdot \Pi_{ope}}{100}=\frac{1.361\cdot 1}{100}=0.013$ мин. $T_{ofc\pi}=0.096+0.013=0.11$ мин. $T_{om}=\frac{T_{on}\cdot \Pi_{om}}{100}=\frac{1.361\cdot 6}{100}=0.081$ мин.

13. Экономическое обоснование принятого варианта техпроцесса и технико-экономические показатели.

 $T_{\text{HIT}} = 1.28 + 0.096 + 0.11 + 0.081 = 1.57 \text{ Muh.}$

Стоимость предела обработки сравненными вариантами. Критерий оптимальный минимум данных затрат на единицу производства. Час, данный расходы (rub/h), может быть определен формулой:

$$Spz = Sz + Schz + ханьский \square (Ks + Kz)$$

где Sz – главная и дополнительная зарплата с обвинениями, полицейским/час;

 S_{chc} — час расходов на операции рабочего места, тритесь/час; Ханьско-стандартный коэффициент экономической эффективности капиталовложений, 0,15 [1, p. 81];

Кз — определенные капиталовложения часа к зданию, тритесь/час;

Кс — определенные капиталовложения часа в машину, тереться/час.

Главная и дополнительная зарплата окупается с обвинениями и

бухгалтерским учетом мультимашинного обслуживания на формулу:

$$C_3 = e \square Stf \square k \square y$$
,

где е – коэффициент к тарифной ставке часа, равняйтесь 1.53 [1, р. 81]; Stf – тарифная ставка часа машинного оператора-сдельщика соответствующей категории, 4500 rub/h;

k – коэффициент, рассматривая зарплату военнослужащего;

у – коэффициент компенсации рассмотрения времени части рабочего в мультимашинном обслуживании;

Мы считаем затраты часа на операцию рабочего места на формуле:

Schz = Schzbp км
$$\square$$
,

где Schz. BP - практические расходы часа по основному рабочему месту,

Schz. BP =
$$5000 \text{ трется/час}$$
, [1, p. 81].

км — содействующий показ, в сколько времени расхода, связанного с эксплуатация этой машины это больше, чем подобные расходы, связанные с эксплуатацией основной машины;

$$Kc = \coprod / (F \cdot \eta_3),$$

где Ц-балансовая стоимость станка, руб;

F—эффективный годовой фонд времени работы станка, 4140 ч; ηз—коэффициент загрузки станка, ηз =0.05.

$$K_3 = (\coprod_{3 \neq 1} (\coprod_{3 \neq 1} (F \cdot \eta_3) ,$$

где Цзд—стоимость одного м² производственной площади,

Цзд = 60000 руб [1, стр.83];

А—производственная площадь, занимаемая станком с учетом проходов

$$A = f \cdot k_f$$
;

где f – площадь станка, м 2 ;

 $k_f = 3,5$

Технологическая себестоимость операции механической обработки:

Co=(Сп
$$3 \cdot$$
 Тшт.к) / ($60 \cdot$ kв),

где кв—коэффициент перевыполнения, кв = 1,3.

Тшт.к—штучно-калькуляционное время обработки детали на данном станке, мин.

Базовый вариант

Обработка заготовки, полученой базовым методом, на операции 005.

Ц =
$$1600000 \cdot 1,1 = 1600000$$
 руб;
Тшт.к.= $8,7$ мин;
 $f = 2.98$ м²;
 $\epsilon = 1,53$ [1, стр. 81];
 $k = 1, y = 1, [1, \text{ стр. } 81];$
 $km = 4.1$ [1, стр. 219];
 $Cт\phi = 450$ руб./ч., [1, стр. 219];
 $C_3 = 1.53 \cdot 450 \cdot 1,6 \cdot 1 \cdot 1 = 1101$ руб/ч;
 $C_{43} = 500 \cdot 4.1 = 2050$ руб/ч;
 $K_c = \frac{\mathcal{U}}{F_o \cdot \eta_s} = \frac{1600000}{4140 \cdot 0,8} = 483$ $\frac{py\delta}{\sqrt{q}}$
 $K_s = \frac{A \cdot \mathcal{U}_s}{F_o \cdot \eta_s} = \frac{10.43 \cdot 60000}{4140 \cdot 0.8} = 189$ $\frac{py\delta}{\sqrt{q}}$
 $C_{\Pi 3} = 1101 + 189 + 0.15 \cdot (483 + 189) = 1391$ руб/ч;
 $C_o = \frac{1391 \cdot 4,7}{60 \cdot 1.3} = 84$ руб/ q

Проектный вариант

Обработка заготовки, получаемой прогрессивным методом, на операции 005

$$C_3 = 1.53 \cdot 450 \cdot 1, 6 \cdot 1 \cdot 1 = 1101$$
 руб/ч;

$$C$$
ч $_3 = 500 \cdot 4.1 = 205$ руб/ч;

$$K_c = \frac{II}{F_o \cdot \eta_s} = \frac{1600000}{4140 \cdot 0.8} = 483$$
 pyő./

$$K_{_{3}} = \frac{A \cdot II_{_{3}}}{F_{_{\partial}} \cdot \eta_{_{3}}} = \frac{10.43 \cdot 60000}{4140 \cdot 0.8} = 189 \quad pyo/q$$

$$C_{\Pi 3} = 1101 + 189 + 0.15 \cdot (483 + 189) = 1390 \text{ py6/y};$$

$$C_o = \frac{1390 \cdot 2,85}{60 \cdot 1.3} = 51.5 \, py6 \, / \, u$$

2. Разработка карты эскизов технологической операции

На формате А4 приведен технологический эскиз операции 015 маршрутного технологического процесса механической обработки цилиндра, выполняемой на вертикально-сверлильном станке модели 2H135. За один рабочий ход получаем одно отверстие Ø 5 мм.

На чертеже указаны все необходимые размеры, технические требования, шероховатость обрабатываемых поверхностей, места приложения усилий (для фиксации детали) в соответствии с ГОСТ 3.1107-81 [1, с. 237], проставлены базы [7, с. 9]. Показан режущий инструмент (в конце рабочего хода) и траектории его движения.

2.1. Анализ исходных данных и разработка технического задания на проектирование специального станочного приспособления

Спецификация (S) на дизайне специальных средств технологического оборудования развита согласно ГОСТу 15.001-73 [1, страница 175].

ТЗ на проектирования специального приспособления для получения двух отверстий в заготовке показана в 2-ом таблице.

Таблица 8

Раздел	Содержание раздела
Наименование и	Приспособление для сверления в заготовке (цилиндр) двух отверстий
область	диаметром $5H10^{+0,048}$ мм, глубиной 15 мм с углом расположения
применения	центров отверстий 180° на вертикально-сверлильном станке модели
	2Н135 (операция 015);
Основание для	Операционная карта технологического процесса механической
разработки	обработки цилиндра;
Цель и	Разработанная адаптация должна обеспечить:
назначение	точная установка и надежная фиксация подготовки цилиндра, и также
разработки	постоянного предоставления подготовки вовремя относительно стола
	машины и режущего инструмента в целях получения необходимой
точности размеров открытий и их ситуации относительно други	
поверхностей подготовки; удобство установки, фиксации и удален	
подготовки;	
	инсталляционное время подготовки не должно превышать 0,05
	минуты;
	рост производительности труда на этой операции на 10 15%;
Технические	Тип производства – крупносерийный; программа выпуска – 40000 шт.
(тактико-	в год;
технические)	Установочные и присоединительные размеры приспособления
требования	должны соответствовать станку 2Н118;
	Регулирование конструкции приспособления не допускается

Время закрепления заготовки не более 0,05 мин.; Уровень унификации и стандартизации деталей приспособления 70%; Входные данные о заготовке, поступающей на сверлильную операцию

025:

наружный диаметр заготовки $130h14_{(-1,0)}$ мм, $R_z = 80$ мкм;

внутренний диаметр заготовки $100\text{H9}^{(+0,087)}$ мм, $R_a = 2.5$ мкм;

длина заготовки $80h14_{(-0,74)}$ мм, шероховатость торцов заготовки

 $R_z = 80$ мкм; Выходные данные операции 025:

диаметр отверстий $5H10^{+0,048}$ мм;

глубина отверстий 15 мм;

угол расположения центров отверстий 180°;

Адаптация подается оператором 3-й категории;

Техническая характеристика машины 2Н118:

рабочая поверхность стола, тт; 320х360;

расстояние от шпинделя заканчивает лицо на рабочую поверхность стола, mm: 650;

ширина Т-образного углубления стола машины 2Н118: 18 мм;

Особенность режущего инструмента:

диаметр сверла 5_{-0,018} мм;

материал сверла Р6М5;

Операция выполняется за два перехода;

2.2 Разработка принципиальной схемы и компоновка приспособления

Имея технические решения и исходные данные, представленные TZ (таблица 2), мы начинаем дизайн адаптации. Цель этой секции — чтобы создать эффективный, экономический в производстве и дизайне адаптации, отвечающем всем требованиям.

Перед разработкой схематической диаграммы и перед конфигурацией адаптации, будет необходимо определить касающийся что поверхности подготовки произойти ее фиксация во время обработки на машине. Мы будем представлять подготовку с указанием возможных мест приложения усилий (рис. 1).

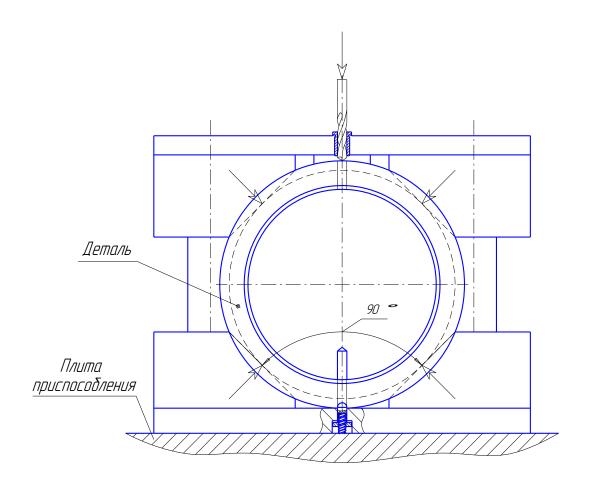


Рис. 1. Заготовка с указанием возможных мест приложения усилий (для фиксации ее во время обработки на станке)

Для получения экономичного И простого В изготовлении приспособления, целью a также cуменьшения металлоемкости закрепляющих элементов, выбираем закрепление заготовки относительно наружного диаметра. В соответствии с выбором изображаем компоновку приспособления (рис. 2) [1, с. 178] для сверления отверстий.

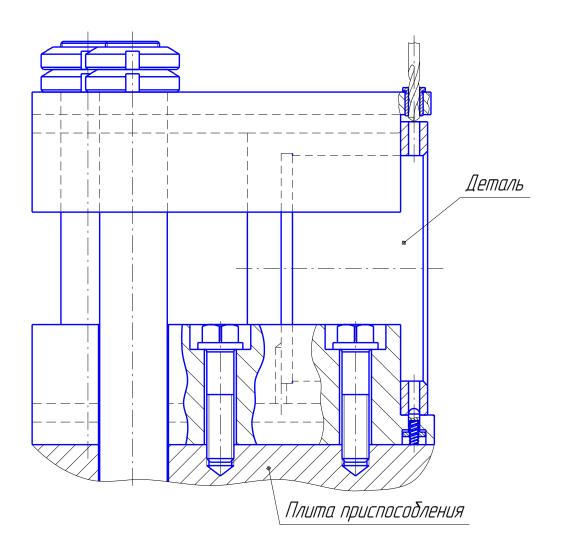


Рис. 2. Компоновка приспособления

2.3 ОПИСАНИЕ КОНСТРУКЦИИ И РАБОТЫ ПРИСПОСОБЛЕНИЯ

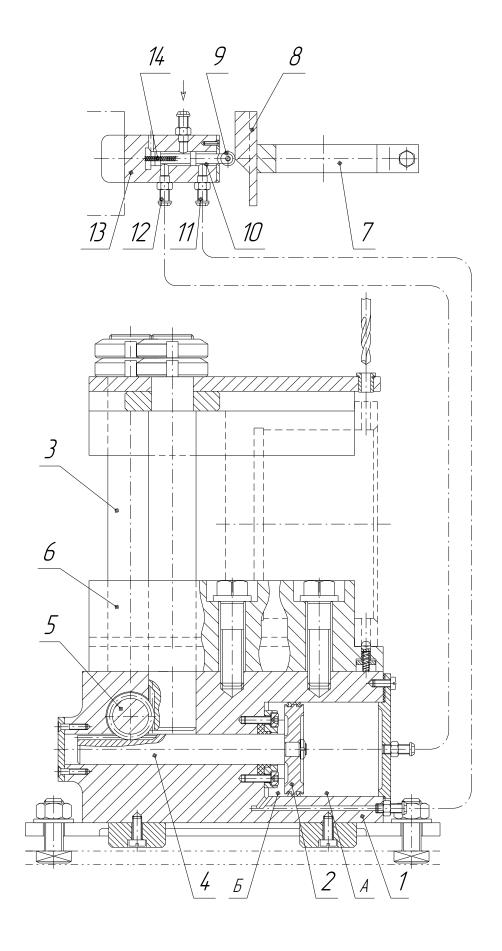


Рис.3. Скальчатый кондуктор с пневмоприводом для автоматизированного зажима и раскрепления деталей

Приспособление (рис.3) применяется для сверления в заготовке (цилиндр) двух отверстий диаметром 5H10 мм, на вертикально-сверлильном станке модели 2H118 (операция 015).

Приспособление представляет собой скальчатый проводник пневматическим двигателем бурения радиальных открытий ДЛЯ В приемах проводника скрепки и насыпи цилиндрических деталях. В приготовлений посредством подъемного крана путешествия переключение автоматизированы.

Адаптация состоит из случая 1 со встроенным цилиндром в который поршень 2 о пруте - планка 4 шага. Последнее вращает ролик механизма 5, который, в свою очередь, снимает или понижает планки — колонки 3 с konduktorny пластиной, закрепленной на них. Оператор, устанавливает левой рукой на призме 6 обработанных деталей, и право, вращая руль или ручку, опускает шпиндель. На рукаве шпинделя машины установлен воротник 7 с копировальным устройством 8 приложенных ему. Прежде, чем сверлить копировальное устройство 8 сталкивается с роликом 9-го цилиндрического zolotnik 10. Дистрибутивный подъемный кран 13 закрепленных на машинной кровати в этом случае передает сжатый воздух через союз 12 во впадине И цилиндре. Есть скрепка подготовки. После бурения, поднимая шпиндель, копировальное устройство спускается с ролика, zolotnik под влиянием весны 14 возвращается к стартовой позиции, и воздух через союз 11 прибывает во впадину В цилиндра (гаzzhy), и от впадины, И через подъемный кран идет в атмосферу.

2.4 Расчет исполнительных размеров элементов приспособления

На основные поверхности обработанной детали там переписываются, регулируя поверхности адаптации.

Детали поверхностей наладки подшипника устройств применяются в форме основных исследований, пластин, призм, регулируя пальцы, и т.д. В

некоторых случаях система наладки включает сосредоточение или выравнивание механизмов и механизмов поддержки.

Наладка деталей и механизмов разделена на основное и вспомогательный глагол.

Основное обеспечено схемой базирования и определяет предоставление детали согласно правилу шести пунктов.

Вспомогательный иногда вводятся в приспосабливающуюся систему не для базирования, и только для увеличения стабильности и жесткости обработанной детали и противодействия к сокращению сил.

В нашем случае торцовая поверхность детали (цилиндр), несущая три опорные точки, является установочной базой. Цилиндрическая поверхность несущая две опорные точки, является направляющей базой. Боковая поверхность отверстия эквивалентна одной опорной точке и является опорной базой.

Конструкции и размеры установочных деталей должны выбираться по ГОСТ или нормалям машиностроения, т.к. большинство из них гостированы или нормализованы [7, с. 31].

В нашем случае конструкции и размеры установочных деталей (элементов) используемые в приспособлении не гостируются, поэтому их размеры назначаем конструктивно.

Приведем схему базирования заготовки (цилиндра) с установочными элементами приспособления (рис. 4) [7, с. 9].

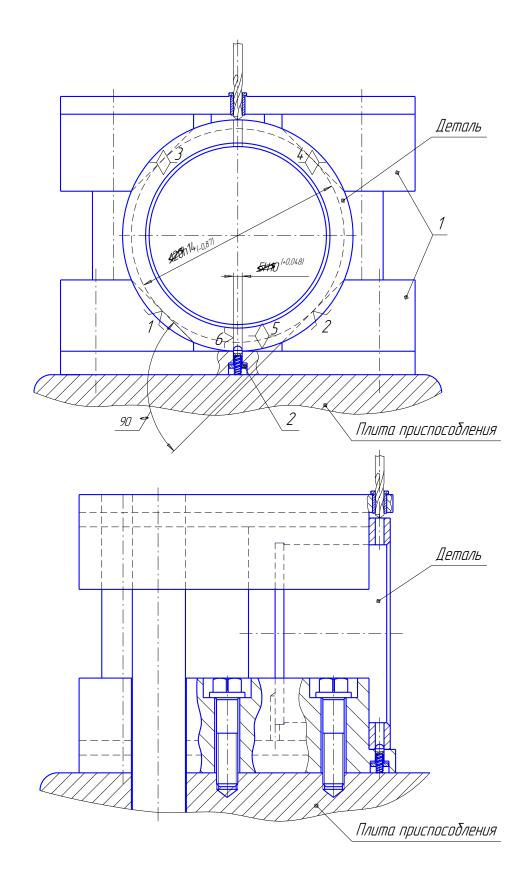


Рис. 4. Схема базирования заготовки (цилиндр) с установочными элементами приспособления: 1. призмы; 2. палец подпружиненный

Поверхности установочных деталей должны обладать большой износоустойчивостью. Поэтому их обычно изготавливают и сталей 15 и 20 с

цементацией на глубину 0.8-1.2 мм. и с последующей закалкой до твердости HRC_{\ni} 50...55.

2.5 Составление расчетной схемы и определение силы зажима

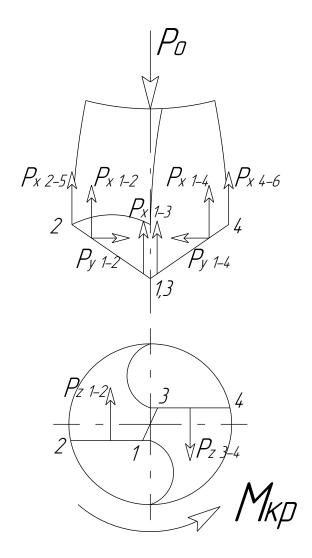


Рис.5 Схема действия сил при сверлении

 $P_{\scriptscriptstyle X}$ – осевая составляющая силы резания;

 $P_{\scriptscriptstyle Y}$ – радиальная составляющая силы резания.

При правильно заточенном сверле составляющие P_{Y} взаимно уравновешиваются.

Сумма всех составляющих $P_{\scriptscriptstyle X}$ дает осевую силу сверления $P_{\scriptscriptstyle O}$.

Составляющие P_Z в сумме дают крутящий момент при сверлении M_{KP} .

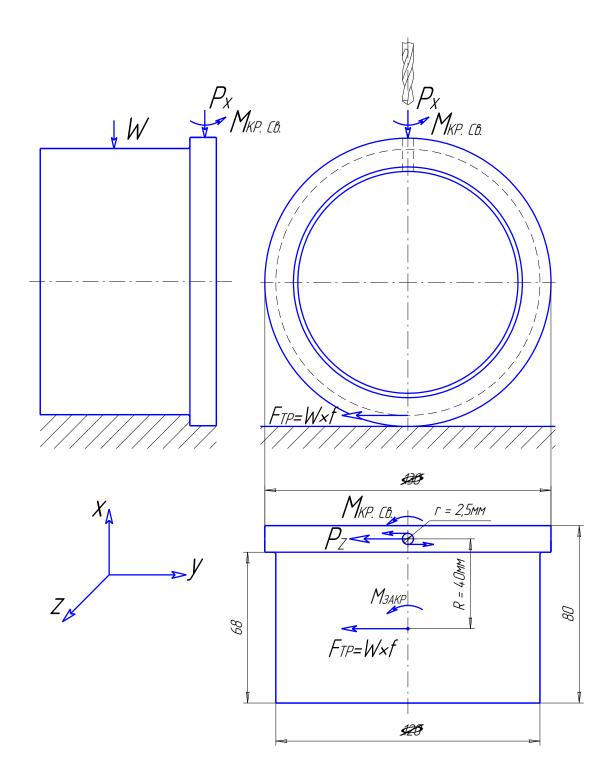


Рис. 6. Принципиальная расчетная схема для сверления отверстий

На основе принятой схемы компоновки приспособления разрабатываем принципиальную расчетную схему (рис. 6).

Необходимо чтобы выполнялось условие равновесия заготовки, находящейся под действием моментов: $M_{\mathit{KP.CB.}} \leq K \cdot M_{\mathit{3AKP.}}$,

где $M_{\mathit{KP.CB.}}$ - крутящий момент возникающий при сверлении, $(H \cdot {}_{\mathit{M}})$;

 $M_{3AKP.}$ - момент закрепления, $(H \cdot M)$;

K – коэффициент запаса (K=1,5...2,5).

Заготовка находится под воздействием момента $M_{\textit{KP.CB.}}$ и осевой составляющей силы резания $P_{_{X}}$.

Из схемы, приведенной на рис. 6, находим: $M_{3AKP} \cdot K = W \cdot f \cdot R$;

Где W – сила зажима заготовки, (H);

f – коэффициент трения, [9, с. 121];

R — длина плеча, (м).

Из этой зависимости выразим силу зажима заготовки:

$$W = \frac{M_{3AKP.} \cdot K}{f \cdot R}, (H).$$

Определим крутящий момент при сверлении по формуле [4, с. 277]:

$$M_{\mathit{Kp.Ce.}} = 10 \cdot C_{\mathit{M}} \cdot D^{\mathit{q}} \cdot s^{\mathit{y}} \cdot K_{\mathit{MP}}, \ H \cdot \mathit{M}; \ \mathsf{гдe}:$$

 $C_{\scriptscriptstyle M}$, q, y – коэффициенты [4, с. 281];

 $D\,$ – диаметр сверлимого отверстия, мм;

S — подача, мм/об [4, с. 277];

 K_{MP} — поправочный коэффициент, учитывающий влияние качества обрабатываемого материала на силовые зависимости [4, с. 264].

$$M_{K_{D},C_{B}} = 10 \cdot C_{M} \cdot D^{q} \cdot s^{y} \cdot K_{MP} = 10 \cdot 0.0345 \cdot 5^{2} \cdot 0.3^{0.8} \cdot 1.0 = 3.29 \ H \cdot M.$$

Определим составляющую Р силы резания из следующего уравнения:

$$M_{Kp.Ce.} = P_{Z.} \cdot r;$$

$$P_Z = \frac{M_{Kp.C_{B.}}}{r} = \frac{3,29H \cdot M}{0,0025M} = 1316H;$$

r – радиус сверлимого отверстия, (м).

Определим крутящий момент возникающий в результате закрепления:

$$M_{34KP} = P_Z \cdot R = 1316H \cdot 0.04M = 52.64H \cdot M;$$

Определим силу зажима заготовки, предварительно назначив коэффициенты запаса K = 2 [2, c.45] и трения f = 0.15 [9, c. 121]:

$$W = \frac{M_{3AKP.} \cdot K}{f \cdot R} = \frac{52,64 \cdot 2}{0,15 \cdot 0,04} = 17546,7 \ H.$$

Примем силу зажима заготовки W = 18000 H.

2.6 Выбор привода зажимного устройства и расчет его параметров

Как двигатель сцепления мы применяем пневматический цилиндр двустороннего действия.

Пневматические двигатели предназначены для обеспечения необходимых усилий и скоростей рабочих органов, доходности, надежности и длительности, безопасности и скорости, используя сжатый воздух с параметрами набора и при сервисных условиях набора.

Вычисление уменьшено до определения диаметра цилиндра в усилии по набору на пруте и давлении воздуха.

Для цилиндров двустороннего действия [7, с.222]:

$$Q = 0.785D^2 P \eta;$$
 (1)

где Q – усилие на штоке (кгс), оно равно силе зажима заготовки W:

$$Q = W = 18\kappa c;$$

D – диаметр цилиндра, (мм);

P – давление сжатого воздуха, (кгс / мм 2);

 η - коэффициент полезного действия цилиндра, (η = 0,85...0,9).

От формулы (1) возможно определить диаметр цилиндра D, если известны Q и Рублю. Поскольку упрощение вычисления и создания некоторого запаса усилия исключает от формулы до. пункты, но увеличение potrebny сила Q

нашла вычисление на пруте 1,5 раза, и найдите диаметр цилиндра двустороннего действия от уравнения:

$$1,5Q = 0,785D^2P,$$

откуда

$$D \approx 1.4 \sqrt{\frac{Q}{P}}$$
.

Принимаем $P = 4\kappa c c / c m^2$. Тогда

$$D \approx 0.7\sqrt{Q} = 0.7 \cdot \sqrt{18} = 2.97$$
см ≈ 30 мм; ;

Примем диаметр цилиндра D=50мм , для данного значения диаметра цилиндра диаметр штока d=25мм [7, с.206].

2.7. Разработка технических требований на изготовление и сборку приспособления

Машинная адаптация должна обеспечить строго определенное предоставление обработанных поверхностей, которые определены размерами координирования и геометрическими отношениями – параллелизм, coaxiality, перпендикулярность, и т.д. Все необходимые требования, признаки максимальных отклонений, форм и мер поверхностей обеспечены на рисунке адаптации, согласно ГОСТу 2.308-68.

2.8 Расчет точности приспособления

При выполнении операции 015 (сверлильная) определить необходимую точность приспособления для обеспечения следующих требований и размеров:

- отклонение диаметров $5\mathrm{H}10^{+0.048}$ мм двух отверстий относительно торца детали не более 0.3 мм;
 - диаметр отверстий $5H10^{+0.048}$ мм;

$$\varepsilon_0 \leq \delta$$
.

1. Определить необходимую точность приспособления для обеспечения отклонения диаметра центров двух отверстий диаметром $5H10^{+0.048}$ мм относительно торца детали не более 0.3 мм;

Для расчета точности приспособления ε_{np} следует пользоваться формулой [9, с. 85]:

$$\varepsilon_{np.} \leq \delta - k_T \sqrt{(k_{T_1} \cdot \varepsilon_B)^2 + \varepsilon_3^2 + \varepsilon_y^2 + \varepsilon_H^2 + \varepsilon_H^2 + (k_{T_2} \cdot \omega)^2}$$
, где:

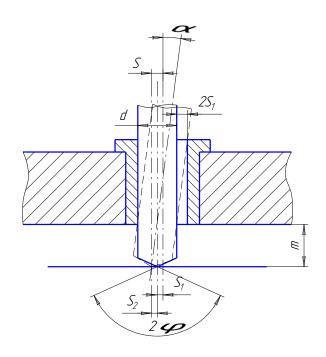


Рис. 7 Схема для расчета перекоса и смещения сверла в кондукторной втулке $\varepsilon_{II}=s_1+2\ s_1\ m/l=0,012+2*0,012*5/10=0,024\ мм$

где 1 – длинна направляющего элемента

т – зазор между обрабатываемой поверхностью и торцом

 s_1 – односторонний максимальный зазор

 ω – экономическая точность обработки, ω = 0,4 [9, c. 216].

$$\begin{split} & \boldsymbol{\varepsilon}_{\textit{np.}} \leq \delta - k_{\textit{T}} \sqrt{\left(k_{\textit{T}1} \cdot \boldsymbol{\varepsilon}_{\textit{E}}\right)^2 + \boldsymbol{\varepsilon}_{\textit{3}}^{\ 2} + \boldsymbol{\varepsilon}_{\textit{y}}^{\ 2} + \boldsymbol{\varepsilon}_{\textit{H}}^{\ 2} + \boldsymbol{\varepsilon}_{\textit{H}}^{\ 2} + \left(k_{\textit{T}2} \cdot \boldsymbol{\omega}\right)^2} = \\ & = 0.3 - 1.1 \sqrt{\left(0.8 \cdot 0\right)^2 + 0.09^2 + 0.02^2 + 0.024^2 + 0.01^2 + \left(0.6 \cdot 0.4\right)^2} = 0.015 \ \textit{MM}. \end{split}$$

Это значение допуска должно соответствовать техническому требованию 1 на чертеже приспособления.

1. Диаметр отверстий $5H10^{+0.048}$ мм.

Предельные отклонения диаметра инструмента (сверла) для обработки отверстий принимаем в соответствии с [8, с. 178]: диаметр сверла 5_{-0.018} мм.

2. Расстояние от торца до оси отверстия 6±h14/2±0,15 мм.

С учетом погрешности базирования данный размер выполняется.

При сверлении распространенной погрешностью является так называемый увод сверла, т.е. смещение и перекос оси обработанного отверстия по отношению к оси вращения шпинделя. Удельный увод сверла $\Delta_{yд}$ (на 1 мм длины отверстия) и начальное смещение C_0 можно оценить с помощью следующих эмпирических формул [10, с. 46]:

$$\Delta_{V/I} = 0.66 + 2.06 exp(-0.99 \cdot d)$$
; где :

d,мм – диаметр сверла.

$$\Delta_{\text{VII}} = 0.66 + 2.06 \exp(-0.99 \cdot d) = 0.66 + 2.06 \exp(-0.99 \cdot 5) = 0.674 \text{ MKM}.$$

$$C_O = 5\sqrt{d} = 5\sqrt{5} = 11,18 \text{ мкм}.$$

Определяем полный увод сверла [10, с. 46]:

$$\Delta = \sqrt{(L \cdot \Delta_{yJ})^2 + C_O^2}$$
, где:

L,мм. – длина сверления.

$$\Delta = \sqrt{\left(L \cdot \Delta_{_{Y\!\!/\!\!1}}\right)^2 + {C_{_{O}}}^2} = \sqrt{\left(15 \cdot 0{,}67\right)^2 + 11{,}18^2} = 15 \text{ MKM.} = 0{,}015 \text{ MM.}$$

На данной длине (15 мм) увод сверла допустим.

Расчет точности показывает, что данное приспособление обеспечивает заданную точность при обработке заготовки.

2.9 Расчет экономической эффективности приспособления

Целесообразность использования адаптации должна быть экономно оправдана. Вычисления экономической эффективности использования адаптации основаны на сравнении ежегодных плат и экономики. Расходы развиваются расходов по обесцениванию и операции адаптации, и экономика достигнута должная уменьшиться в стоимости обработки приготовлений на

этой операции в результате сокращения трудозатрат, и иногда категории работы. Использование адаптации считают целесообразным, если ежегодная экономика больше, чем ежегодные платы, связанные.

Экономический эффект от применения приспособления рассчитывается как разность между годовой экономией и годовыми затратами на приспособление.

Экономическая оправданность (рентабельность) применения приспособления выражается зависимостью [11, с. 20]

$$P$$
 ≤ Э, где:

Э, руб. – годовая экономия от использования приспособления;

Р, руб. – годовые затраты на эксплуатацию приспособления.

Определяем годовую экономию от использования приспособления:

$$\Theta_n = (T_{um} - T'_{um}) \cdot \frac{C_{y3} \cdot N}{60} \cdot k_{\mathcal{U}},$$
 где:

 $T_{\rm шт}$, мин — норма штучного времени при обработке заготовки без приспособления.

Определим основное время для выполнения сверлильной операции:

$$T_0 = (1 + t/tg \ \varphi + 1_{CX} + 1_{\Pi Д})*i/(n*S) = (15 + 2,5/tg \ 60^0 + 1+1)*2/(2000*0,3) = 0.061$$
 мин;

Определим вспомогательное время для выполнения сверлильной операции [2, с. 197]:

$$T_{\it B} = T_{\it V.C} + T_{\it 3.O} + T_{\it VII} + T_{\it H.3} = 0.046 + 0.153 + 0.18 = 0.379$$
 мин ,

где $T_{y.c.}$ - вспомогательное время на установку и снятие детали,

 $T_{\rm 3.0.}$ - вспомогательное время на закрепление и открепление,

 $T_{\!\scriptscriptstyle V\!I\!I\!I\!I}$ - вспомогательное время на приемы управления станком,

 $T_{H3.}$ - вспомогательное время на измерение.

Определим норму штучного времени при обработке заготовки без приспособления:

$$T_{\mathit{um}} = T_{\mathit{O}} + T_{\mathit{B}} + T_{\mathit{mex}} + T_{\mathit{ope}} + T_{\mathit{om}} = 0,061 + 0,379 + 0,3 + 0,02 + 0,11 = 0,87$$
 мин;
$$T_{\mathit{HIT}} = 0,87$$
 мин.

 $T'_{\rm шт}$, мин — норма штучного времени при обработке заготовки с приспособлением.

Определим основное время для выполнения сверлильной операции:

$$T_0 = (1 + t/tg \ \varphi + l_{CX} + l_{\Pi Д})*i/(n*S) = (15 + 2,5/tg \ 60^0 + 1+1)*2/(2000*0,3) = 0,061 \text{ мин;}$$

Определим вспомогательное время для выполнения сверлильной операции [2, с. 197]:

$$T_{B} = T_{V.C} + T_{3.O} + T_{VII} + T_{H.3} = 0,046 + 0,062 + 0,18 = 0,288$$
мин ,

Определим норму штучного времени при обработке заготовки с использованием приспособления:

$$T'_{um} = T_O + T_B + T_{mex} + T_{ope} + T_{om} = 0.061 + 0.288 + 0.3 + 0.02 + 0.11 = 0.78$$
 muh ;

$$T'_{\text{HIT}} = 0.78 \text{ MUH.};$$

 C_{43} , коп./час — часовые затраты на эксплуатацию рабочего места;

N, шт/год — годовая программа выпуска деталей, N = 7800 шт/год;

 $k_{I\!I}$ — коэффициент, учитывающий разность цен приведенных в справочнике и цен на сегодняшний день, $k_{I\!I}=20$;

На основании рекомендаций [9,стр.24] принимаем:

$$C_{y_3} = C'_{y_3} \cdot k_m$$
, где:

 C'_{y3} , коп./час – скорректированные затраты на базовом рабочем месте,

$$C'_{y3} = 33,6$$
 коп./час

$$k_m = 0.5.$$

$$C_{y_3} = C'_{y_3} \cdot k_m = C_{y_3} = 33.6 \cdot 0.5 = 16.8 \text{ py}6.$$

$$\Im_{n} = (T_{um} - T'_{um}) \cdot \frac{C_{u_{3}} \cdot N}{60} \cdot k_{II} = (0.87 - 0.78) \cdot \frac{16.8 \cdot 7800}{60} \cdot 20 = 3931.2 \text{ pyb.}$$

Определяем годовые затраты на эксплуатацию приспособления:

$$P = S_{np} \cdot (k_a + k_p) \cdot k_u$$
,где:

 S_{np} , руб. – цена приспособления (кондуктор с пневматическим приводом),

$$S_{np} = 180 \text{ py6.};$$

 k_a — коэффициент, учитывающий отчисления на амортизацию приспособления, $k_a = 0.5$;

 k_p — коэффициент, учитывающий отчисления на ремонт и хранение приспособления, $k_p = 0.2$;

$$P = S_{np} \cdot (k_a + k_p) \cdot k_u = 180 \cdot (0.5 + 0.2) \cdot 20 = 2520 \text{ py}6.$$

Экономический эффект от применения приспособления сверлильного

$$\Delta = \Im_{\Pi} - P = 3931,2 - 2520 = 1411,2$$
 py6.

3. Проектирование технологии сборки

3.1. Анализ технических требований

Технические требования:

- 1. Отклонение от перпендикулярности оси кондукторной втулки поз. 17 относительно базы В не более 0,05 мм.
- 2. Допуск параллельности оси кондукторной втулки поз. 17 и оси зубчатой рейки поз. 5 не более 0,05 мм.
- 3. Допуск параллельности оси обрабатываемой детали относительно базы B не более 0,05 мм.

Отклонение от перпендикулярности оси кондукторной втулки относительно базы В достигается за счет токарной обработки наружной поверхности и за счет точности сборки.

Допуск параллельности оси кондукторной втулки и оси зубчатой рейки достигается за счет точности обработки зубчатой рейки и точности ее установки в корпусе приспособления.

Допуск параллельности оси обрабатываемой детали относительно базы В достигается за счет точности обработки наружных поверхностей корпуса поз.1 и призмы поз. 3, а также за счет точности сборки приспособления и установки его на столе станка.

3.2. Анализ технологичности конструкции

Сконструированное приспособление сверлильное достаточно технологично. Корпус приспособления поз.1 изготавливается литьем с последующей механической обработкой. Корпус приспособления имеет встроенный пневмоцилиндр поз. 8, в результате чего мы имеем достаточно компактные габариты. Подача сжатого воздуха осуществляется через специальные каналы в приспособлении.

В основании приспособления профрезерован паз, для дальнейшего запрессовывания в него (при сборке) шпонок поз. 31 (для точной установки приспособления относительно рабочего стола станка). В корпус устанавливаются скалки поз. 4, являющиеся направляющими элементами. Кондукторная плита имеет форму призмы и перемещается в вертикальном направлении при помощи зубчатой рейки поз. 5, установленной в корпусе приспособления.

Призма поз. 3 является установочным элементом приспособления, ее установка осуществляется четырьмя винтами поз. 25.

При зажиме заготовка самоустанавливается в приспособлении, что дает возможность избежать дополнительной коррекции положения заготовки в приспособлении.

Разработанное нами приспособление облегчает зажим заготовки и ускоряет обработку двух отверстий.

Недостатком приспособления является то, что область его применения ограничена, т. к. в приспособление можно устанавливать заготовки определенной длины и диаметра. Данное приспособление целесообразно применять только в серийном или массовом производстве.

3.3. Разработка технологической схемы сборки

Последовательность Генеральной Ассамблеи продукта обычно определяется его конструктивными особенностями, и принятые методы достижения необходимой точности, и на нем не могут быть никем. На данном этапе важно быть в состоянии ассигновать правильно в продукте компоновочные блоки соответствующего заказа, которые характеризуются независимостью и полнотой собрания, и при транспортировке на рабочих местах собрания на разбиваются, чтобы отделить детали [1, страница 60]. Технологическая схема собрания адаптации дана в формате А2.

3.4. Разработка маршрутного технологического процесса сборки и содержание операций

На основании рекомендаций [1,стр.32] составим технологическую карту сборки приспособления сверлильного, маршрут технологического процесса сборки приведен в таблице 3.

Таблица 9

№ операци и	Название операции	Содержание операции
05	Сборка шток - рейки (1 Сб. 7)	1. Установить кольцо уплотнительное 9 на поршень 8; 2. Установить поршень 9; 3. Завинтить гайку 28;
10	Сборка крышки пневмоцилиндра (1 Сб. 14)	1. Установить прокладку уплотнительную 15; 2. Ввинтить штуцер 32;
15	Сборка призмы (1 Сб. 3)	1. Установить палец 16; 2. Установить пружину 29;
20	Сборка плиты кондукторной (1 Сб. 2)	1. Запрессовать втулку кондукторную 17;
25	Сборка приспособления сверлильного	1. Установить прокладку 11; 2. Установить крышку прижимную 10; 3. Ввинтить винты 23; 4. Установить шток – рейку 1 Сб. 7; 5. Установить крышку пневмоцилиндра 1 Сб. 14; 6. Ввинтить винты 22; 7. Ввинтить штуцер 32; 8. Установить крышку 13; 9. Ввинтить винты 21; 10. Установить валик зубчатый 6; 11. Установить крышки 18; 12. Ввинтить винты 20; 13. Установить рейку зубчатую 5; 14. Ввинтить скалки 4; 15. Установить призму 1 Сб. 3; 16. Ввинтить винты 25; 17. Установить кольцо упорное 12; 18. Установить плиту кондукторную 1 Сб. 2; 19. Завинтить гайки 27;
30	Контрольная	1. Проверить отклонение от перпендикулярности оси кондукторной втулки поз. 17 относительно базы В; 2. Проверить допуск параллельности оси кондукторной втулки поз. 17 и оси зубчатой рейки поз. 5; 3. Проверить допуск параллельности оси обрабатываемой детали относительно базы В.

Заключение

В дипломной работе был составлен маршрутный технологических (таблица 5); процесс изготовления цилиндра размерный технологического процесса и расчет припусков, разработана карта эскизов технологической операции. Задачей дипломный работы являлась разработка и конструкторская проработка приспособления для сверления двух отверстий в детали цилиндр. Закрепили навыки нахождения конструктивных решений на поставленные задачи. разработано техническое задание на проектирование станочного приспособления (таблица 9); разработана специального принципиальная схема и компоновка приспособления; проведен расчет исполнительных размеров элементов приспособления; составлена расчетная схема определена сила зажима; дополнен расчет точности приспособлении; расчет экономической эффективности приспособления.

С учетом того, что приспособление устанавливается на вертикальносверлильный станок, модели 2H135 конструктивно проработали компоновку приспособления. В качестве привода зажимного устройства, с учетом рекомендаций, применяем пневмоцилиндр.

Расчет экономической эффективности от применения приспособления показывает что его использование целесообразно, т.к. годовая экономия больше, чем годовые затраты, связанные с ним.