УДК 621.315.592+004.942

АЛГОРИТМ ОЦЕНКИ МОЩНОСТЕЙ НАГРЕВАТЕЛЬНЫХ ЭЛЕМЕНТОВ В МНОГОЗОННОЙ УСТАНОВКЕ ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ПО БРИДЖМЕНУ

М.М. Филиппов, Ю.В. Бабушкин, А.И. Грибенюков*, В.Е. Гинсар*

Томский политехнический университет

*Институт мониторинга климатических и экологических систем СО РАН, г. Томск

E-mail: imces@yandex.ru

Рассмотрена модель многозонной термической установки для выращивания кристаллов методом Бриджмена в вертикальном варианте с произвольным числом нагревательных элементов. Разработан алгоритм оценки мощностей нагревателей, формирующих априорно заданное распределение температуры в рабочем объеме. Алгоритм позволяет оперативно оценивать мощности как на этапе проектирования, так и во время эксплуатации термической установки.

Ключевые слова:

Многозонная термическая установка, метод Бриджмена, алгоритм.

Key words:

Multizone thermal device, Bridgman method, algorithm.

Одной из задач, возникающих при проектировании многозонных термических установок, в том числе установок для выращивания монокристаллов методом Бриджмена в вертикальном варианте, является расчет мощностей нагревательных элементов, позволяющих сформировать не только номинально необходимые термические условия для выращивания кристаллов, но и обеспечить возможность оптимизации режимов на всех этапах технологического процесса [1, 2]. Сложность задачи обусловлена тем, что гипотетически оптимальные условия, требуемые для роста монокристаллов (в частности, динамика осевого распределения температур T(z) в рабочем объеме установки в течение технологического процесса) формируются с помощью *N*-го количества дискретных нагревательных модулей, термически связанных между собой через рабочий объем.

В качестве объекта исследования рассматривается термическая установка для выращивания монокристаллов ZnGeP₂ методом Бриджмена. Установка представляет собой многозонную печь на основе планарных нагревательных модулей [3].

Рабочий объем установки представляет собой цилиндр, ограниченный в радиальном направлении внутренними поверхностями кольцевых нагревательных модулей (23 планарных элемента, соосно установленных друг относительно друга и разделенных теплоизолирующими прокладками). На рис. 1, *a*, показан продольный разрез установки с заполненным рабочим объемом. Осевое распределение температуры, номинально обеспечивающее условия для роста кристаллов ZnGeP₂, приведено на рис. 1, *б*.

Управление температурным полем установки производится на основе измерений температуры термопарами, располагаемыми вблизи электрических нагревателей (регулирующие термопары). В качестве источников тепла используются секционные электрические нагреватели, изготовленные по оригинальной технологии в ИМКЭС СО РАН, г. Томск. Максимальные мощности нагревательных элементов приведены в [4].

Пусть для некоторого распределения мощностей нагревателей P_{0j} ($j=\overline{1,N}$, N – количество нагревательных элементов) известно начальное осевое распределение температуры в рабочем объеме установки $T_0(z)$, которое в *i*-ой контрольной точке с координатой z_i имеет значение T_{0i} . Предположим, что по технологическим соображениям в рабочем объеме установки необходимо получить некоторое заранее заданное осевое распределение температур $T_s(z)$ с температурами T_{si} (i=1,M, M – количество точек измерения температуры) в тех же контрольных точках z_i . Требуется определить, при каком распределении мощностей нагревателей P_{sj} будет реализовано распределение T_{si} .

Пусть вариации δP_j (*j*=1,*N*) от начального распределения мощностей нагревателей вызывают изменение начального осевого распределения температуры до некоторого текущего T(z) с значениями T_i , измеряемыми в *i*-ых точках z_i .

Потребуем, чтобы функционал *F* из суммы квадратов невязок текущего осевого распределения температуры, относительно заданного с весовыми коэффициентами *w_i* достигал минимума:

$$F = \sum_{i=1}^{M} w_i (T_i - T_{si})^2 \to \min.$$
 (1)

Полагая $T_i = T_i(P_1, P_2, ..., P_N)$ и ограничиваясь первыми членами разложения T_i в ряд Тэйлора относительно начального осевого распределения температуры T_{0i} , получим:

$$T_i = T_{0i} + \sum_{j=1}^N \frac{\partial T_i}{\partial P_j} \delta P_j, \qquad (2)$$

где $\frac{\partial T_i}{\partial P_j}$ – частные производные от *i*-й температу-

ры по мощности *j*-го нагревателя.

Подстановка (2) в (1) приводит функционал к виду:

$$F = \sum_{i=1}^{M} w_i \left(T_{0i} + \sum_{j=1}^{N} \frac{\partial T_i}{\partial P_j} \delta P_j - T_{3i} \right)^2 \to \min.$$
(3)

Условие минимума будет выполнено, если производная от правой части (3) по всем вариациям $\delta P_n (n=\overline{1,N})$ будет равна нулю:

$$\sum_{i=1}^{M} w_i \left(T_{0i} + \sum_{j=1}^{N} \frac{\partial T_i}{\partial P_j} \delta P_j - T_{3i} \right) \frac{\partial T_i}{\partial P_n} = 0, \quad n = \overline{1, N}$$

или

$$\sum_{i=1}^{M} w_i \left(\frac{\partial T_i}{\partial P_n} (T_{0i} - T_{3i}) + \frac{\partial T_i}{\partial P_n} \sum_{j=1}^{N} \frac{\partial T_i}{\partial P_j} \delta P_j \right) = 0, \quad (4)$$
$$n = \overline{1, N}.$$

Расписывая суммирование по индексу *j*, получим

$$\begin{bmatrix} \sum_{i=1}^{M} w_i \frac{\partial T_i}{\partial P_1} \frac{\partial T_i}{\partial P_1} & \sum_{i=1}^{M} w_i \frac{\partial T_i}{\partial P_2} \frac{\partial T_i}{\partial P_1} & \dots & \sum_{i=1}^{M} w_i \frac{\partial T_i}{\partial P_N} \frac{\partial T_i}{\partial P_1} \\ \sum_{i=1}^{M} w_i \frac{\partial T_i}{\partial P_1} \frac{\partial T_i}{\partial P_2} & \sum_{i=1}^{M} w_i \frac{\partial T_i}{\partial P_2} \frac{\partial T_i}{\partial P_2} & \dots & \sum_{i=1}^{M} w_i \frac{\partial T_i}{\partial P_N} \frac{\partial T_i}{\partial P_2} \\ \dots & \dots & \dots & \dots \\ \sum_{i=1}^{M} w_i \frac{\partial T_i}{\partial P_1} \frac{\partial T_i}{\partial P_N} & \sum_{i=1}^{M} w_i \frac{\partial T_i}{\partial P_2} \frac{\partial T_i}{\partial P_N} & \dots & \sum_{i=1}^{M} w_i \frac{\partial T_i}{\partial P_N} \frac{\partial T_i}{\partial P_N} \end{bmatrix} \times \\ \times \begin{bmatrix} \delta P_1 \\ \delta P_2 \\ \dots \\ \delta P_N \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{M} w_i (T_{s1} - T_{01}) \frac{\partial T_i}{\partial P_1} \\ \sum_{i=1}^{M} w_i (T_{s2} - T_{02}) \frac{\partial T_i}{\partial P_2} \\ \dots \\ \sum_{i=1}^{M} w_i (T_{sN} - T_{0N}) \frac{\partial T_i}{\partial P_N} \end{bmatrix}$$

или в матричной форме

$$A \times \delta P = V, \tag{5}$$

где $A[n \times n]$ — матрица, характеризующая интегральное влияние вариации мощностей нагревателей на температуры установки в измеряемых точках, $\delta P[n]$ — вектор вариации мощностей нагревателей, V[n] — вектор, характеризующий отклонение заданного распределения температуры от начального.

На основании полученных соотношений алгоритм расчета распределений мощностей нагревательных элементов сводится к следующему:

- определяется требуемое условиями технологического процесса осевое распределение температур в рабочем объеме многозонной печи *T_{si}*, измеряемое в *i*-ых точках (*i*=1,*M*);
- с помощью математической модели (на этапе проектирования) либо на реальной установке находится начальное осевое распределение температур $T_{0i}(i=1,M)$ для некоторого известного распределения мощностей $P_{0i}(j=1,N)$ нагревателей;
- варьируя последовательно $\delta P_j \approx 1...5$ % от $P_{\emptyset}(j=\overline{1,N})$ регистрируются вариации температур δT_j (*i*=1,*M*);
- рассчитываются коэффициенты влияния нагревателей на изменение температур

$$\frac{\delta T_i}{\delta P_j}, \ (i = \overline{1, M}, j = \overline{1, N});$$

- на основании полученных данных и выбранных весовых коэффициентов рассчитывается матрица *A* и вектор *V*;
- путем решения (5) находится вектор вариаций δP ;
- искомое распределение мощностей электрических нагревателей находится по формуле

$$P_{3i} = P_{0i} + \delta P_i, \ j = 1, N$$

Экспериментальную оценку алгоритма планируется провести на многозонной печи при вводе в эксплуатацию. Проверка алгоритма, реализованного в

Мощность, Вт	Нагреватели									
	H1	H2	H3	H4	H5	H6	H7	H8	H9	
P _{0j}	267,21	113,99	94,33	76,65	72,13	70,36	68,79	61,32	54,83	
P _{3j}	267,21	113,99	94,33	76,65	72,13	70,36	68,79	61,35	54,89	
	H10	H11	H12	H13	H14	H15	H16	H16	H17	
P _{0j}	41,27	10,92	203,3	10,92	127,92	10,4	125,64	125,64	10,4	
P _{3j}	43,65	11,91	203,41	12,07	126,5	10,59	127,4	127,4	13,59	
	H18	H19	H20	H21	H22	H23	H24	H24	H25	
P _{0j}	116,5	6,24	111,93	5,46	109,65	6,24	148,48	148,48	141,52	
P _{3j}	110,75	4,68	113,59	2,99	111,12	5,42	157,35	157,35	138,79	
	H26	H27	H28	H29	H30					
P _{0j}	193,9	192,6	230,67	175,68	432,89	-	-	-	-	
P _{3j}	193,97	192,56	230,66	175,68	432,89					

Таблица 1. Распределение мощностей нагревательных элементов

Таблица 2. Осевое распределение температуры

Температура, К	Контрольные точки										
	ť1	t2	t3	t4	<i>t</i> 5	t6	t7	<i>t</i> 8			
$ au_{0i}$	1255,26	1282,15	1293,13	1302,76	1307,48	1308,63	1308,58	1308,16			
$ au_{3i}$	1257,26	1284,15	1295,13	1304,76	1309,48	1310,63	1310,58	1310,16			
$ au_{pi}$	1257,27	1284,15	1295,13	1304,76	1309,48	1310,63	1310,58	1310,16			
	t9	t10	t11	t12	t13	t14	t15	t16			
$ au_{0i}$	1308,48	1308	1307,59	1306,91	1305,95	1304,6	1302,35	1297,47			
$ au_{3i}$	1310,48	1310	1309,59	1308,91	1307,95	1306,6	1304,35	1299,47			
$ au_{pi}$	1310,48	1309,99	1309,59	1308,9	1307,94	1306,58	1304,32	1299,81			
	t17	t18	t19	t20	t21	t22	t23				
$ au_{0i}$	1293,71	1287,41	1286,78	1286,65	1285,38	1277,74	1297,47	_			
$ au_{3i}$	1295,71	1289,41	1288,78	1288,65	1287,38	1279,74	1299,47				
$ au_{pi}$	1295,69	1289,41	1288,78	1288,61	1287,39	1279,75	1299,81				

пакете Matlab [5], производилась на математической модели многозонной термической установки, рис. 1, *a*, для M=23 и N=30. Начальное распределение тепловых мощностей электрических нагревательных элементов P_{0j} и соответствующее ему распределение температуры τ_{0j} приведены в таблицах 1 и 2.

С помощью математической модели установки [4] найдем коэффициенты влияния нагревателей на изменение температур.

При $w_i=1$ рассчитаем элементы матрицы *А*. Найдем распределение мощностей, необходимое для перехода от исходного профиля температуры к профилю с температурами, повышенными на 2°. Решая (5), найдем распределение мощностей для реализации нового распределения температуры. Для полученного распределения мощностей P_{ij}

СПИСОК ЛИТЕРАТУРЫ

- Kurz M., Muller G. Control of thermal conditions during crystal growth by inverse modeling // Journal of Crystal Growth. – 2000. – V. 208. – № 1. – P. 341–349.
- Lin K., Boschert S., Dold P., Benz K.W., Kriessl O., Schmidt A., Siebert K.G., Dziuk G. Numerical methods for industrial vertical Bridgman growth of (Cd,Zn)Te // Journal of Crystal Growth. – 2002. – V. 237-239. – № 39. – P. 1736–1740.
- Пат. 1830132 СССР. МПК⁵ F27B 5/06. Трубчатая печь / В.Е. Гинсар, В.А. Десятов. Заявлено 22.01.1991; Опубл. 23.07.1993, Бюл. № 27. – 8 с.: ил.

рассчитаем осевое распределение τ_{pi} , (табл. 1 и 2). Видно, что максимальное отклонение расчетного распределения температуры от заданного в контрольных точках не превышает 0,34°.

Выводы

- Предложен алгоритм оценки мощностей нагревательных элементов многозонной термической установки для выращивания кристаллов методом Бриджмена в вертикальном варианте.
- Алгоритм позволяет оперативно найти распределение тепловых мощностей нагревательных элементов для формирования заданного температурного распределения в рабочем объеме установки.
- Филиппов М.М., Бабушкин Ю.В., Грибенюков А.И., Гинсар В.Е. Оценка динамики температурного поля в рабочем объеме вертикальной установки Бриджмена при продольноосевом перемещении ростового контейнера в процессе выращивания кристаллов // Известия Томского политехнического университета. – 2009. – Т. 315. – № 2. – С. 104–109.
- Официальный сайт Matlab [Электронный ресурс]. режим доступа: http://www.mathworks.com/. – 07.09.2009.

Поступила 09.09.2009 г.