Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт – Энергетический Направление подготовки – 141100 Энергетическое машиностроение Кафедра – Парогенераторостроения и парогенераторных установок

БАКАЛАВРСКАЯ РАБОТА

Тема работы		
Проект котельной установки паропроизводительностью 220 т/час для расширения Томской ГРЭС-2		
VIIK 621 181 12:621 311 22-047 74(571 16)		

Студент

Группа	ФИО	Подпись	Дата
5B21	Бурягин Дмитрий Александрович		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ст. преподаватель кафедры	Долгих Александр			
ПГС и ПГУ	Юрьевич			

консультанты:

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры	Попова Светлана	=		
Менеджмента	Николаевна			

По разделу «Социальная ответственность»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент	Романцов Игорь	к.т.н.		
	Иванович			

ДОПУСТИТЬ К ЗАЩИТЕ:

Зав. кафедрой	ФИО	Ученая степень, звание	Подпись	Дата
ПГС и ПГУ	Заворин Александр Сергеевич	д.т.н., профессор		

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт – Энергетический Направление подготовки – 141100 Энергетическое машиностроение Кафедра – Парогенераторостроения и парогенераторных установок

УТ	ВЕРЖДАЮ:
Зав. кафедрой	
<u> </u>	_ Заворин А.С
(Подпись) (Дата)	(Ф.И.О.)

ЗАДАНИЕ

на выполнение выпускной квалификационной работы

	Бакалаврской работы				
(бакалаврской рабо	оты, дипломного проекта/работы, магистерской диссертации)				
Студенту:					
Группа	****				
5B21	5В21 Бурягину Дмитрию Александровичу				
Тема работы:					
ПРОЕКТ КОТЕЛЬНОИ У	СТАНОВКИ ПАРОПРОИЗВОЛИТЕЛЬНОСТЬЮ 220 Т/ЧАС				

ПРОЕКТ КОТЕЛЬНОИ УСТАНОВКИ ПАРОП	РОИЗВОДИТЕЛЬНОСТЬЮ 220 Т/ЧАС
ДЛЯ РАСШИРЕНИЯ ТО	ОМСКОЙ ГРЭС-2
Утверждена приказом директора (дата, номер)	№ 601/C от 01.02.2016

Срок сдачи студентом выполненной работы: 07.06.2016

ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

В форме:

Исходные дан	ные к работе
(наименование	объекта
исследования или	и проектирования;
	сть или нагрузка;
режим работ	ы (непрерывный,
	циклический и
т.д.);вид сырья	и или материал
изделия; требов	ания к продукту,
изделию или	процессу; особые
требования к	с особенностям
функционировани	я (эксплуатации)
объекта или	изделия в плане
безопасности	эксплуатации,
влияния на окру	ужающую среду ,
энергозатратам;	экономический
анализ и т.д.)	
Перечень	подлежащих

- 1. Объект проектирования котельная установка с паровым котлом паропроизводительностью 220 т/ч 2.Параметры пара: Рп.п.=13,8 МПа, tп.п.=540 °C.
- 3. Температура питательной воды tп.в.=220 °C.
- 4. Давление в барабане Рб=14,9 МПа.
- Основное сжигаемое топливо уголь марки Д (Кузнецкого бассейна, Кемеровской области),
- 6. Способ сжигания топлива: камерный, топка в газоплотном исполнении.
- 7. Величина непрерывной продувки p=2,3 %.
- 8. За прототип принять котел Е-220-9,8-540ДТ (ОАО "Сибэнергомаш").

Перечень подлежащих исследованию, проектированию и разработке вопросов

(аналитический обзор по литературным источникам с целью выяснения достижении мировой науки техники в рассматриваемой Введение (цель работы и задачи пректа);

- 1. Актуальность проекта.
- 2. Описание производственного объекта и место котла (котельной установки) в нем;
- 3. Обоснование исходных данных, принятых технических решений и методов проектирования;
- 4. Тепловой расчет и конструирование поверхностей нагрева парового котла;

Перечень графического материала (формата A1) (с точным указанием обязательных чертежей) Консультанты по разделам выпускной квалификационной работы (с указанием разделов) Раздел Консультант Финансовый менеджмент, ресурсоэффективность и ресурсосбережение Социальная ответственность Названия разделов, которые должны быть написаны на русском и иностранном языках: Основные разделы ВКР должны быть написаны на русском языке. Заключение переводится на иностранный язык.	области; постановка задачи исследования, проектирования, конструирования; содержание процедуры исследования, проектирования, конструирования; обсуждение результатов выполненной работы; наименование дополнительных разделов,	 5. Аэродинамический расчет газового тракта котельной установки; 6. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение. (Экономические расчеты и технико-экономические показатели). 7. Социальная ответственность. 8. Заключение, в том числе на иностранном языке.
материала (формата A1) (с точным указанием обязательных чертежей) Консультанты по разделам выпускной квалификационной работы (с указанием разделов) Раздел Финансовый менеджмент, ресурсоэффективность и ресурсосбережение Социальная ответственность Названия разделов, которые должны быть написаны на русском и иностранном языках: Основные разделы ВКР должны быть написаны на русском языке. Заключение		
Раздел Консультант Финансовый менеджмент, ресурсоэффективность и ресурсосбережение Социальная ответственность Названия разделов, которые должны быть написаны на русском и иностранном языках: Основные разделы ВКР должны быть написаны на русском языке. Заключение	материала (формата A1) (с точным указанием обязательных чертежей)	2. Расчетная схема компоновки трактов (к аэрод. расчету)- 1 лист.
Раздел Консультант Финансовый менеджмент, ресурсоэффективность и ресурсосбережение Социальная ответственность Названия разделов, которые должны быть написаны на русском и иностранном языках: Основные разделы ВКР должны быть написаны на русском языке. Заключение	Консультанты по разделам вы	ыпускной квалификационной работы
Финансовый менеджмент, ресурсоэффективность и ресурсосбережение Социальная ответственность Названия разделов, которые должны быть написаны на русском и иностранном языках: Основные разделы ВКР должны быть написаны на русском языке. Заключение		Консультант
Названия разделов, которые должны быть написаны на русском и иностранном языках: Основные разделы ВКР должны быть написаны на русском языке. Заключение	Газдел	KURCYJIDIANI
языках: Основные разделы ВКР должны быть написаны на русском языке. Заключение	Финансовый менеджмент, ресурсоэффективность и	Koncyabiani
языках: Основные разделы ВКР должны быть написаны на русском языке. Заключение	Финансовый менеджмент, ресурсоэффективность и ресурсосбережение	Koncyabiani
языках: Основные разделы ВКР должны быть написаны на русском языке. Заключение	Финансовый менеджмент, ресурсоэффективность и ресурсосбережение	Koncyabiani
	Финансовый менеджмент, ресурсоэффективность и ресурсосбережение Социальная ответственность	
	Финансовый менеджмент, ресурсоэффективность и ресурсосбережение Социальная ответственность Названия разделов, которые дязыках:	олжны быть написаны на русском и иностранном
	Финансовый менеджмент, ресурсоэффективность и ресурсосбережение Социальная ответственность Названия разделов, которые дязыках: Основные разделы ВКР должны	олжны быть написаны на русском и иностранном и быть написаны на русском языке. Заключение
	Финансовый менеджмент, ресурсоэффективность и ресурсосбережение Социальная ответственность Названия разделов, которые дязыках: Основные разделы ВКР должны	олжны быть написаны на русском и иностранном и быть написаны на русском языке. Заключение
	Финансовый менеджмент, ресурсоэффективность и ресурсосбережение Социальная ответственность Названия разделов, которые дязыках: Основные разделы ВКР должны	олжны быть написаны на русском и иностранном и быть написаны на русском языке. Заключение

Дата выдачи задания на выполнение выпускной квалификационной работы по линейному грфику

Задание выдал руководитель:

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		N 12
Ст. преподаватель	Долгих Александр			
кафедры ПГС и ПГУ	Юрьевич			

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
5B21	Бурягин Дмитрий Александрович		

Планируемые результаты обучения

**		T				
Код	Результат обучения	Требования ФГОС,				
резуль-	(выпускник должен быть готов)	критериев и/или				
тата		заинтересованных сторон				
	Универсальные компетенции					
P1	Готовность к самостоятельной индивидуальной работе и принятию решений в рамках своей профессиональной компетенции, способность к переоценке накопленного опыта и приобретению новых знаний в условиях развития науки и изменяющейся социальной практики, применению методов и средств обучения и самоконтроля, критическому оцениванию своих достоинств и недостатков, осознанию перспективности интеллектуального, нравственного, физического и профессионального саморазвития и самосовершенствования	Требования ФГОС (ОК-6,7,8), Критерий 5 АИОР (п. 1.1, п. 2.6), согласованный с требованиями международных стандартов EUR-ACE и FEANI				
P2	Готовность к кооперации с коллегами, работе в коллективе для выбора путей достижения общей цели при выполнении комплексных инженерных задач, к обобщению и анализу различных мнений, участию в дискуссиях для принятия решений в нестандартных условиях и готовность нести за них ответственность	Требования ФГОС (ОК-1,3,4,12), Критерий 5 АИОР (п. 2.2., п. 2.3), согласованный с требованиями международных стандартов EUR-ACE и FEANI				
Р3	Понимание сущности и значения информации в развитии современного общества и профессиональной среды, владение основными методами, способами и средствами получения, хранения, переработки информации и использования их для решения коммуникативных задач, в том числе с применением государственного и одного из иностранных языков	Требования ФГОС (ОК-2,11,15), Критерий 5 АИОР (п. 1.4), согласованный с требованиями международных стандартов EUR-ACE и FEANI				
P4	Способность и готовность понимать движущие силы, закономерности и место человека в историческом процессе, ответственно участвовать в политической жизни с соблюдением прав и обязанностей гражданина, моральных и правовых норм общества, анализировать социально и экономически значимые проблемы и процессы с использованием методов гуманитарных, социальных и экономических наук, быть активным субъектом экономической деятельности	Требования ФГОС (ОК-5, 9, 10, 14), Критерий 5 АИОР (п. 2.5), согласованный с требованиями международных стандартов EUR-ACE и FEANI				
P5	Способность к эстетическому развитию и самосовершенствованию, бережному отношению к историческому и культурному наследию, уважению многообразия культур и цивилизаций, к физическому самовоспитанию, сохранению и укреплению здоровья для обеспечения	Требования ФГОС (ОК-13,16, ПК-5, 16), Критерий 5 АИОР (п. 2.5, п. 2.6.), согласованный с требованиями международных стандартов				

Код	Popular rott of purousing	Требования ФГОС,
резуль-	Результат обучения (выпускник должен быть готов)	критериев и/или
тата	(выпускник должен оыть тотов)	заинтересованных сторон
	полноценной деятельности; осведомленность в	EUR-ACE и FEANI
	вопросах охраны здоровья, безопасности	
	жизнедеятельности и труда в энергетическом	
	машиностроении и теплоэнергетике	
	Профессиональные компетенци	И
P6	Готовность применять базовые и специальные	Требования ФГОС
	математические, естественнонаучные, социально-	(ПК-1,2,3), Критерий 5
	экономические и профессиональные знания для	АИОР (п. 1.1),
	моделирования, проектирования и	согласованный с
	совершенствования объектов профессиональной	требованиями
	деятельности и процессов в энергетическом	международных стандартов
	машиностроении	EUR-ACE и FEANI
P7	Готовность решать инновационные задачи	Требования ФГОС (ПК-
	инженерного анализа, связанные с созданием и	4,6,7,8), Критерий 5 АИОР
	эксплуатацией энергетических машин, аппаратов	(п. 1.2), согласованный с
	и установок с использованием системного	требованиями
	анализа и формировать законченное	международных стандартов
	представление о принятых решениях средствами	EUR-ACE и FEANI
	нормативно-технической и графической	
\$200000000	информации	
P8	Способность и готовность выполнять	Требования ФГОС (ПК-
	инженерные проекты с применением	9,10,11,12,13), Критерий 5
	современных методов проектирования для	АИОР (п. 1.3,),
	достижения оптимальных результатов,	согласованный с
	соответствующих техническому заданию и	требованиями
	требованиям ЕСКД с учетом экономических и	международных стандартов
	экологических ограничений, подтверждать	EUR-ACE и FEANI
	знания теоретических основ рабочих процессов в	
7.0	энергетических машинах и аппаратах	
P9	Способность и готовность планировать и	Требования ФГОС (ПК-
	выполнять численные и экспериментальные	14,15), Критерий 5 АИОР
	исследования инженерных задач, проводить	(п. 1.4), согласованный с
	обработку и анализ результатов, участвовать в	требованиями
	испытаниях объектов энергетического	международных стандартов
D10	машиностроения по заданной программе	EUR-ACE и FEANI
P10	Способность и готовность осваивать новые	Требования ФГОС (ПК-
	технологические процессы и виды оборудования;	17,18,19,20,21), Критерий 5
	использовать технические средства для	АИОР (п. 1.5),
	измерения основных параметров котлов,	согласованный с
	парогенераторов, камер сгорания,	требованиями
	теплообменников разного назначения, проверять	международных стандартов
	техническое состояние и остаточный ресурс	EUR-ACE и FEANI
	действующего технологического оборудования,	
	осуществлять монтажно-наладочные и сервисно-	
	эксплуатационные работы на энергетических объектах после непродолжительной	
	объектах после непродолжительной профессиональной адаптации	
P11		Троборомия ФГОС (ПИ
ГП	Способность и готовность проводить технико-	Требования ФГОС (ПК-
	экономическое обоснование решений с	22,23,24), Критерий 5 АИОР

Код резуль- тата	Результат обучения (выпускник должен быть готов)	Требования ФГОС, критериев и/или заинтересованных сторон
	применением элементов экономического анализа, соблюдать и обеспечивать производственную и	(п. 1.5), согласованный с требованиями
	трудовую дисциплину и осуществлять организационно-управленческую работу с	международных стандартов EUR-ACE и FEANI

РЕФЕРАТ

Выпускная квалификационная работа состоит из 91 страниц, 13 источников, 15 таблиц, пяти рисунков, трёх приложений.

Ключевые слова: котельная установка, тепловой баланс котла, энтальпии воздуха и продуктов сгорания, пар, дымовые газы, излучение, конвекция, органическое топливо, выбросы, предельно допустимая концентрация.

Цель работы – разработка проекта котельной установки с котлом типа Е паропроизводительностью 220 т/ч для работы на Кузнецком угле марки Д.

Задачи проекта заключаются в выборе рациональной компоновки и определении размеров поверхностей нагрева парового котла, определении температур и тепловосприятий рабочего тела и газовой среды в поверхностях нагрева котла, обеспечивающих номинальную паропроизводительность котла при заданных номинальных параметрах пара, а также оценки возможности включения котла в существующий аэродинамический тракт станции.

Расчеты проводятся конструкторским и поверочным методами, в зависимости от рассчитываемой поверхности нагрева.

Результатом работы являются полученные расчетные характеристики котельной установки, выбор необходимых тягодутьевых машин на основе определения производительности тяговой и дутьевой систем и перепада полных давлений в газовом и воздушном трактах, рассчитанная стоимость вырабатываемого пара, выявленный уровень опасных и вредных факторов рабочего места конструктора.

Работа выполнена в текстовом редакторе MicrosoftOffice, с использованием программы КОМПАС 3D-V14.

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ, СОКРАЩЕНИЯ

Обозначения и сокращения:

Е-220-13,8-540КТ–Е — паровой котел с естественной циркуляцией, 220 — паропроизводительность, 13,8 — давление перегретого пара, 540 — температура перегретого пара, К — каменный уголь, Т — твердое шлакоудаление

В данной работе применены следующие термины с соответствующими определениями:

Котельная установка – паровой котел в совокупности с оборудованием, обеспечивающим его работу.

Паровой котел — устройство для преобразования химически связанной тепловой энергии сжигаемого топлива в потенциальную энергию перегретого пара высокого давления и температуры на основе использования законов теплопередачи от высокотемпературных продуктов сгорания топлива к рабочей среде (воде, пару), протекающей внутри поверхностей нагрева.

Поверхность нагрева – поверхность металлических стенок элементов котла, с одной стороны омываемых топочными газами, а с другой – пароводяной смесью.

Предельно допустимая концентрация (ПДК) — максимальное количество вредного вещества в единице объема или массы воздуха, которое при ежедневном воздействии в течение неограниченного времени не вызывает каких-либо болезненных изменений в организме человека.

1100000		
II	_	параллельно
3-аг	_	трехатомные газы
AB	·	аэродинамический выступ
Вдт	_	внутренний диаметр трубы
BO	_	выходное окно
возд.	_	воздух
ВПО	_	впрыскивающий пароохладитель
ГВ	-	горячий воздух
ΓΓ	_	горизонтальный газоход

гкм – геометрическая компоновка

ГП – газовый поток

ГС – гидравлическое сопротивление

гх – газоход

ДГ – дымовые газы

ДПН – дополнительные поверхности нагрева

д-ние – давление

жс – живое сечение

И – излучение

ИП – испарительные поверхности КИВ – коэффициент избытка воздуха

кн – конденсат кол-во – коэффициент

КПД – коэффициент полезного действия

КПП 1 — конвективный пароперегреватель первой ступени КПП 2 — конвективный пароперегреватель второй ступени

КТИ – коэффициент теплоотдачи излучением КТК – коэффициент теплоотдачи конвекцией

КТО – коэффициент теплоотдачи

КТЭ – коэффициент тепловой эффективности

 КШ
 –
 конвективная шахта

 МШО
 –
 межширмовый объем

НТС – низшая теплота сгорания

ОП – опускные трубы

ОПРШ – относительный продольный шаг

ОПТ – оптическая толщина

ОПШ – относительный поперечный шаг

ОХЛ – конвективное охлаждение

ПВ – питательная вода
ПВС – пароводяная смесь
ПО – пароотводящие трубы

ПО1 — пароохладитель первой ступени ПО2 — пароохладитель второй ступени

ПОМ – продольное омывание

ПП – перегретый пар

ППОМ – поперечное омывание прк – перекрестный ток

прт – противоток

РПП	_	радиационный пароперегреватель
		p.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

РТ – рабочее тело

ТВК – тепловосприятие конвекцией

ТВС – тепловосприятие

ТИС – толщина излучающего слоя

ТК – топочная камера

т-во – топливо

ТН – температурный напорТОБ – теоретический объем

т-ра – температура

УКТ – уравнение конвективного теплообмена

УТБ – уравнение теплового баланса

фсв – физические свойства

фхр – физические характеристики

XB – холодный воздухэк – экранные трубы

энт. – энтальпия

ОГЛАВЛЕНИЕ

Введение
1 Описание производственного объекта и сжигаемого в нем топлива13
2 Обоснование принятых технических решений и методов
проектирования15
3 Тепловой расчет и конструирование поверхностей нагрева парового
котла
4 Аэродинамический расчет газового тракта котельной установки с паровым
котлом Е-220-13,8-540 КТ
5 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение 61
6 Социальная ответственность
Заключение
Conclusion89
Список используемых источников90
Приложение А Тепловой расчет и конструирование поверхностей нагрева
парового котла Е-220-13,8-540 КТ
Приложение Б Средние объемные характеристики продуктов сгорания для
отдельных газоходов котла
Приложение В Таблица энтальпий120
Графические материалы:
ФЮРА.311233.002 BO Паровой котел E-220-13,8-540 KT (продольный
разрез) ФЮРА.311233.003 BO Паровой котел E-220-13,8-540 KT
(поперечный разрез)
ФЮРА.311233.004 ВО Паровой котел Е-220-13,8-540 КТ (вид сверху)
ФЮРА.311233.005 ВО Схема газового тракта котельной установки с
паровым котлом Е-220-13,8-540 КТ

ВВЕДЕНИЕ

Энергетика является одним из важнейших звеньев экономики. Рост материальных и трудовых ресурсов в решающей степени определяются состоянием топливно-энергетического комплекса и величиной производимой энергии. В силу этого, начиная структурную перестройку экономики, необходимо прежде всего обратить внимание на состояние и тенденции развития энергетики, наличие в ней потенциала энергосбережения и внедрения ресурсосберегающих технологий [1].

Развитие энергетической отрасли в настоящее время имеет огромное значение для Российской Федерации. В течение следующих десятилетий ожидается значительное увеличение энергопотребления, связанное с развитием экономики и приростом населения. Это приведет к росту давления на систему энергоснабжения и потребует повышенного внимания к эффективности использования энергии [1].

Целью данной работы является проектирование котельного агрегата. Из поставленной цели формируются задачи для данного проекта:

- расчет котельного агрегата
- проектирование котельного агрегата
- аэродинамический расчет газового тракта
- оценка возможности включения нового спроектированного котла
 (на замену старому) в существующую схему станции.

Томская область занимает юго-восточную часть Западно-Сибирской равнины и имеет площадь 316,9 км². В условиях суровой сибирской зимы расходы на теплоносители составляют чуть менее половины бюджета области. Подавляющая часть тепла и электроэнергии производится на тепловых электростанциях и котельных [1].ГРЭС-2 давно не справляется с ежегодным приростом тепловой нагрузки, так как свободных мощностей у станции нет, сейчас там образовался дефицит порядка 130 гигакалорий тепловой энергии. Дальнейшее подключение новых нагрузок ведет к

лавинному ухудшению качества теплоснабжения южной и центральной частей Томска. Проще говоря, подключение К центральному теплоснабжению каждого нового дома автоматически ухудшает качество теплоснабжения всех остальных зданий. С учетом крайней степени эксплуатируемого более 50 изношенности устаревания лет И энергооборудования, становится актуальным вопрос закупки новых котельных агрегатов [2].

Таким образом, будущее предприятия зависит от его экономической успешности и, в частности, наличия современного оборудования, генерирующего энергию.

1. Описание производственного объекта

1.1 Тепловая электростанция ГРЭС-2, филиал ОАО «Томскэнерго»

Согласно заданию, котел проектируется для ГРЭС-2, которая располагается в городе Томск, Томской области. Принята в эксплуатацию в 1945 году, в 1963 году была включена в Объединённую энергосистему Сибири. На предприятии производится тепловая и электрическая энергия, которая используется для собственных нужд комбината и снабжения города [3].

В настоящее время на станции используется как газ, так и уголь: в качестве топлива уголь, газ для растопки котлов и для подсвечивания. На станции действует пять турбин и 10 котлоагрегатов. Высота над уровнем моря составляет 142 метра [3].

Выброс вредных веществ составляет 1200 тонн в год. Старый золоотвал ГРЭС-2 был введён в эксплуатацию в 1973 году и находится в долине р. Ушайки, и в настоящее время не используется. На нём накоплено 450 тыс. тонн золошлаковых отходов. Новый золоотвал в долине р. Малой Киргизки введён в эксплуатацию в 1986 году, и сейчас на его площади в 60,9 га накоплено 1251 тыс. тонн отходов [3].

Установленная электрическая и тепловая мощность 331 МВт и 815 Гкал/ч соответственно. В 2009 году была введена в эксплуатацию турбоустановка Т-50 мощностью 50 МВт и 106 Гкал, также запланирована установка парогазовой установки ПГУ-210, которая будет вырабатывать 200 МВт электроэнергии и 250 Гкал/ч тепла [3].

Котлы работающие на Томской ГЭС-2 близкие по размерам проекта котла E-220-13,8-540КT, что упрощает замену старых котлов на новые.

1.2 Особенности сжигания Кузнецких длиннопламенных углей

Маркировка каменного угля зависит от способа добычи, а так же от параметров, характеризующих поведение углей в процессе термического воздействия на них. Длиннопламенные угли не спекаются и относятся к энергетическим углям. Направления использования этих углей — энергетическое и коммунально-бытовое топливо, поэтому их наиболее существенной характеристикой является теплота сгорания [4]. В качестве основного топлива для паровых котлов рассматриваемого предприятия принимается Кузнецкий каменный уголь марки Д [3].

Угли длиннопламенные характеризуются выходом летучих веществ от 39 %. В проектируемом паровом котле используется топливо с выходом летучих 40,5 %, влажность и зольность 12 и 15 % соответственно. Используют в энергетических, или коммунально-бытовых нуждах. На данный момент является самым популярным топливом. Это связано с тем, что в отличии от антрацита, длиннопламенный уголь имеет менее плотную структуру. Благодаря этой особенности он легче разжигается в котлах и печах разных видов и конструкций. К тому же, нет необходимости в поддуве: топливо легко возгорается за счет простой естественной тяги [5]. Все эти свойства делают применение Кузнецкого угля Д эффективным, а затраты на него – оправданными.

Основным источником длиннопламенных сортовых углей в России являются разрезы и шахты Кузбасса. В связи с близостью месторождений угля и Томской ГРЭС-2 проектируемый паровой котел E-220-13,8-540 КТ можно рассматривать в качестве замены старого котлоагрегата [3].

2 Обоснование принятых технических решений

2.1 Тепловая схема

Принимается П-образная компоновка, наиболее распространенная. Ее преимущество заключается в подаче топлива и выходе газов, производимых в нижней части агрегата, что удобно для вывода жидкого шлака и установки дробевой очистки. Тягодутьевые машины устанавливают на нулевой отметке, что исключает вибрационные нагрузки на каркас котла [6].

В качестве организации движения рабочей среды в паровом котле принимается естественной циркуляция, т.к. в таком случае обеспечивается достаточная надежность, высокая паропроизводительность и отсутствие требований больших затрат на химводоочистку [7].

2.1 Выбор шлакоудаления

В проектируемом котлоагрегате в качестве топлива взят Кузнецкий каменный уголь марки Д (длиннопламенный) с выходом летучих веществ V^{daf} =40,5% и температурой жидкоплавкого состояния t_c =1450, что является дополнительным аргументом при выборе шлакоудаления в пользу твердого шлакоудаления (ТШУ), которое применяется при сжигании топлива с относительно тугоплавкой золой t_c >1450 0 C, а также топлив с выходом летучих веществ V^{daf} >18 %.

2.2 Пылеприготовление и мельница

Для каменных углей при коэффициенте размола $K_{\pi o}$ =1,1 и выходе летучих V^{daf} =40,5 % применяют валковые среднеходные мельницы.

Также необходимо выбрать систему пылеприготовления, которая представляет собой совокупность оборудования, необходимого для размола топлива, его сушки и подачи готовой пыли в горелки топочной камеры.

В результате принято решение использовать индивидуальную систему пылеприготовления с прямым вдуванием и валковой мельницей с шахтным сепаратором.

2.3 Обоснование принятия необходимых значений температур

Рекомендуемые температуры газов на выходе из топки для различных твердых топлив не должны превышать температуры начала деформации золы t_{A} . При сжигании каменного угля 9_m ≤ 1170 °C. Мы принимаем 9_m = 1050 °C.

Температура дымовых газов на выходе из котла θ_{yx} для расчетов также принимается в соответствии с рекомендациями [10, с.26], в зависимости от вида сжигаемого топлива. Характеристики топлива позволяют принять температуру уходящих дымовых газов в диапазоне 135—150 °C, следовательно, принимается температура уходящих дымовых газов $\theta_{yx} = 145$ °C.

По таблице 4.3 [6, стр. 9] в соответствии с рекомендациями, для топки с ТШУ и замкнутой системе с воздушной сушкой, с низкой рабочей влажностью $W^r=12~\%$ и высокой реакцией угля принимаем температуру горячего воздуха $t_{r,b}=320^{\circ}\mathrm{C}$.

2.4 Горелки

Для сжигания каменных углей с высоким выходом летучих (>30 %) могут использоваться горелки типа ГПЛ с прямоточным вводом в топку первичного воздуха и с лопаточным завихрителем вторичного воздуха. Компоновка горелок в сочетании с геометрическими характеристиками топочной камеры, в основном, определяют аэродинамику топочной камеры. При использовании ГПЛ рекомендована встречная компоновка горелок.

5 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение

В условиях рыночной экономики устойчивое развитие предприятия может быть обеспечено только при поддержании его финансовой системы на соответствующем уровне. Заметно возрастает значение технико-экономического обоснования инженерных решений. Такое обоснование позволяет находить оптимальные решения при проектировании котельного агрегата и его элементов, предотвращать излишние затраты, повышать надежность конструкции.

Целью данного раздела является оценка конкурентоспособности разработки, а так же расчет капитальных инвестиций и годовых эксплуатационных расходов проектируемого котельного агрегата.

5.1 Анализ конкурентоспособности технических решений

Детальный анализ конкурирующих разработок, существующих на рынке, проводится систематически, поскольку рынки пребывают в постоянном движении. Такой анализ помогает вносить коррективы в научное исследование, чтобы успешнее противостоять своим конкурентам. Важно реалистично оценить сильные и слабые стороны разработок конкурентов.

С этой целью может быть использована вся имеющаяся информация о конкурентных разработках:

- технические характеристики разработки;
- конкурентоспособность разработки;
- уровень завершенности научного исследования;
- бюджет разработки;
- уровень проникновения на рынок;

-финансовое положение конкурентов, тенденции его изменения и т.д.

Анализ конкурентных технических решений с позиции ресурсоэффективности и ресурсосбережения позволяет провести оценку сравнительной эффективности научной разработки и определить направления для ее будущего повышения.

Целесообразно проводить данный анализ с помощью оценочной карты, которая приведена в таблице 7. Для сравнения выбраны проектируемый котел E-230-12,1-525 и котел на ТЭЦ ОАО «ДГК» БКЗ-220-100Ф.

Таблица 7 — Оценочная карта для сравнения конкурентных технических решений (разработок)

	Bec	Баллы		Конкуренто-	
Критерии оценки	критерия	Бф	Б _{к1}	Кф	$K_{\kappa l}$
Технические критерии оценки ресурсоэф	рфективности	A			
Повышение производительности труда пользователя	0,07	3	2	0,21	0,14
Удобство в эксплуатации		047			
(соответствует требованиям	0,13	4	3	0,52	0,39
потребителей)					0.15
Помехоустойчивость	0,03	4	4	0,12	0,12
Энергоэкономичность	0,10	3	3	0,30	0,30
Надежность	0,20	4	3	0,80	0,60
Уровень шума	0,04	2	1	0,08	0,04
Безопасность	0,20	4	3	0,80	0,60
Экономические критерии оценки эффект	гивности				
Конкурентоспособность продукта	0,03	4	3	0,12	0,09
Уровень проникновения на рынок	0,04	1	1	0,04	0,04
Цена	0,06	2	2	0,12	0,12
Предполагаемый срок эксплуатации	0,10	5	4	0,50	0,40
Итого	1,00	36	29	3,61	2,84

Критерии для сравнения и оценки ресурсоэффективности и ресурсосбережения, приведенные в табл.7, подбираются, исходя из выбранных объектов сравнения с учетом их технических и экономических особенностей разработки, создания и эксплуатации.

Позиция разработки и конкурентов оценивается по пятибалльной шкале, где 1 — наиболее слабая позиция, а 5 — наиболее сильная. Веса показателей, определяемые экспертным путем, в сумме должны составлять 1.

Анализ конкурентных технических решений определяется по формуле:

$$K = \sum B_i \cdot B_i ,$$

К – конкурентоспособность научной разработки или конкурента;

Ві – вес показателя (в долях единицы);

 B_i – балл і–го показателя.

Уязвимость позиции конкурентов обусловлена главным образом устареванием эксплуатируемого оборудования и его износом. Следовательно, предполагаемый срок эксплуатации у конкурентного оборудования будет меньше.

Главное конкурентное преимущество разработки — её новизна. Это делает её более надежной в сравнении с конкурентом, а так же более легкой в эксплуатации, что способствует повышению производительности труда рабочих. Удобство в эксплуатации так же сказывается на стоимости производимого пара в сторону её удешевления.

5.2 Характеристика проектируемого котельного агрегата

Паровой котел с естественной циркуляцией, П-образной компоновки, однокорпусный. Проектным топливом является каменный уголь Кузнецкого бассейна.

Номинальные значения основных параметров выделены в таблице 8.

Таблица 8 – Номинальные значения основных параметров котельного агрегата E-220-13,8-540

Название	Обозначение	Единица измерения	Значение
Паропроизводительность	D	т/ч	220,00
Давление перегретого пара	Рпп	МПа	13,80
Температура перегретого пара	t _{ππ}	°C	540,00
Температура питательной воды	$t_{\scriptscriptstyle{\Pi B}}$	°C	220,00
Температура уходящих газов	$oldsymbol{artheta}_{ m yx}$	°C	145,00
КПД котла(брутто	η_{κ}	%	92,02
Расход топлива, подаваемого в топку	В	кг/с	7,43

5.3 Расчет капитальных вложений в проектируемый паровой котел

На стадии предварительных экономических расчетов капитальные вложения можно определять по формуле (разработка ЦКТИ им. Ползунова):

$$K = C_{\text{пол}} + \frac{C_{\text{пол}} * P_{\text{H}}}{100} + K_{\text{тр}} + K_{\text{пот}} + K_{\text{стр}},$$

Спол-полная себестоимость парогенератора;

 $P_{\rm H}$ — средняя рентабельность по парогенераторостроению (принимается равной 20 %);

 $K_{\rm Tp}-$ транспортно—заготовительные расходы (принимаются 2 % ${
m orC}_{\rm non}$);

 $K_{\text{пот}}$ — сопутствующие затраты у потребителя;

 $K_{\rm crp}$ – затраты на строительную часть у потребителя.

Себестоимость изготовления парогенератора зависит от его параметров и рассчитывается как произведение коэффициентов:

$$C_{\text{пол}} = D * K_1 * K_2 * K_3 * K_4 * K_5 * K_6 * K_7 * K_8 * 2000 * K_{\text{пер}},$$

 K_1 — коэффициент, учитывающий паропроизводительность, согласно [10] при D=220 т/ч:

$$K_1 = 0.8$$
;

 ${\rm K_2- \kappao}$ фонциент, учитывающий параметры пара, согласно [10] при температуре перегретого пара 540 °C и давлении 13,8 МПа:

$$K_2 = 1$$
;

 K_3 — коэффициент, учитывающий перегрев пара, согласно [10] при отсутствии промежуточного перегрева:

$$K_3 = 1;$$

 K_4 — коэффициент, учитывающий способ поставки, согласно [10] при поставке блоками:

$$K_4 = 1,15$$
;

К₅ –коэффициент, учитывающий вид топлива, согласно [10] при сжигании каменных углей:

$$K_5 = 1$$
;

 ${\rm K}_6$ — коэффициент, учитывающий компоновку парогенератора, согласно [9] при Π -образной компоновке:

$$K_6 = 1.04$$
;

 K_7 — коэффициент, учитывающий число корпусов, согласно [10] для однокорпусного парогенератора:

$$K_7 = 1$$
;

 K_8 — коэффициент, учитывающий тип парогенератора, согласно [10]для барабанных котлов:

$$K_8 = 1$$
;

 $K_{\text{пер}}$ – коэффициент пересчета на современные цены, согласно [10]:

$$K_{\text{nep}} = 53;$$

Подставив численные значения, найдено значение полной себестоимости:

$$C_{\text{пол}} = 220*0.8*1*1*1.15*1*1.04*1*1*2000*53;$$

$$C_{\text{пол}} = 22312576 \frac{\text{py6}}{\text{T/Y}};$$

Тогда, значение транспортно-заготовительных расходов:

$$K_{\text{тр}} = 0.02 * C_{\text{пол}} = 446251,52 \frac{\text{руб}}{\text{т/ч}};$$

Сопутствующие затраты у потребителя, согласно [10], определяются по формуле:

$$K_{\text{not}} = K_{\text{M}} + K_{\text{ofm}}$$

 $K_{\rm M}$ — затраты на монтаж, принимаются равными 8% от себестоимости котла; $K_{\rm OбM}$ — затраты обмуровку, принимаются равными 10% от себестоимости котла;

Подставив численные значения, найдено:

$$K_{\text{пот}} = 0.08 * C_{\text{пол}} + 0.1 * C_{\text{пол}} = 0.18 * C_{\text{пол}};$$

$$K_{\text{пот}} = 0.18 * 22312576 = 4016263.68 \frac{\text{py6}}{\text{т/ч}};$$

Затраты на строительство, согласно [9], определяются по формуле:

$$K_{\rm crp} = K_{\rm 3d} + K_{\rm \phi}$$
,

где $K_{3д}$ — стоимость здания, приходящаяся на парогенератор, определяется по формуле:

$$K_{3A} = S_{\pi \Gamma} * k_{A\pi} * \coprod_{3A} * h_{\text{kot}},$$

где $S_{\pi \Gamma}=170\ \text{м}^2-$ площадь парогенератора (согласно чертежам котла); $k_{\pi \pi}-$ коэффициент, учитывающий дополнительную площадь

$$k_{\rm д\pi} = 2,3;$$

 $h_{\rm кот}$ — высота котельного цеха, принимается равнойверхней отметке котла с запасом 3-4 метра, согласно чертежам котла:

$$h_{KOT} = 42 \text{ M};$$

Подставив значения, получено:

$$K_{3A} = 170 * 2.3 * 1200 * 42 = 19706400 \frac{\text{py6}}{\text{T/y}};$$

 K_{Φ} – стоимость фундамента, определяется по формуле:

$$K_{\Phi} = D * k_{\Phi}$$

 ${\bf k}_{\varphi}-$ коэффициент, учитывающий влияние производительности котла на стоимость фундамента, определяется по формуле:

$$k_{\Phi} = \eta_{\kappa} * 10^4 = 0.92015 * 10^4;$$

Подставив значения, получено:

$$\begin{split} K_{\varphi} &= 220*0,92015*10^4 = 2024330 \, \frac{py6}{T/4}; \\ K_{crp} &= 19706400 + 2024330 = 21730730 \, \frac{py6}{T/4}; \\ K &= 22312576 + \frac{22312576*20}{100} + 446251,52 + 4016263,68 + \\ &+ 21730730 = 52968336,4 \, \frac{py6}{T/4} = 52968,3364 \, \frac{\text{T. p.}}{T/4}; \end{split}$$

Все полученные результаты сведены в таблицу 9.

Таблица 9 – Сводная таблица капитальных вложений (инвестиций)

	Велич	Величина			
Состав капитальных вложений	Тыс.руб	%			
Себестоимость парогенератора	22312,57	42,1			
Затраты на монтаж	1785,00	3,4			
Затраты на обмуровку	2231,25	4,2			
Стоимость строительства	21730,73	41,1			
Транспортно-заготовительные расходы	446,25	0,8			
Наценка на ПГ	4462,51	8,4			

5.4 Расчет годовых эксплуатационных расходов

Расходы, составляющие себестоимость продукции парогенератора, в данном случае – пара, состоят из следующих статей затрат:

 $И_{\text{топ}}$ – затраты на топливо;

И_а- амортизационные расходы;

 $И_{\text{т.р.}}$ – затраты на текущий ремонт;

 $И_{\rm B}$ – затраты на воду;

И_э – затраты на электроэнергию (на собственные нужды);

И_{зп}- заработная плата обслуживающего персонала;

 M_{ch} – отчисления на социальные нужды;

Ипр- прочие расходы.

Следовательно, формула для определения расходов на производство пара будет иметь вид:

$$И_{\text{год}} = И_{\text{топ}} + И_{\text{a}} + И_{\text{т.р.}} + И_{\text{B}} + И_{\text{9}} + И_{\text{3п}} + И_{\text{сн}} + И_{\text{пр}};$$

5.4.1 Расчет затрат на топливо

$$M_{\text{топ}} = \text{B} * \text{h}_{\text{год}} * \frac{100 + \text{B}_{\text{топ}}}{100} * \text{Ц}_{\text{т}},$$

В – часовой расход натурального топлива

$$B = 7,43 \frac{K\Gamma}{C} = 26,748 \frac{T}{4};$$

 $h_{\rm rog}$ – число часов использования установленной мощности, согласно [10] принимается:

$$h_{\text{год}} = 6500 \frac{\text{ч}}{\text{год}};$$

 $B_{\text{топ}}$ — суммарная величина потерь топлива на территории котельной в % от годового потребления топлива, согласно [10] принимается:

$$B_{TOII} = 7.1\%;$$

 $\ensuremath{\mathsf{L}}_{\ensuremath{\mathsf{T}}}-$ цена тонны топлива с учётом доставки, согласно [10] для кузнецкого каменного угля составляет:

Подставив численные значения, получено:

$$M_{\text{топ}} = 26,748 * 6500 * \frac{100 + 7,1}{100} * 1350 = 251378,373 \text{ т. р.}$$

5.4.2 Расчет амортизационных отчислений

Амортизационные отчисления рассчитываются по формуле:

$$И_a = p_H * K$$
,

где $p_{\rm H}$ – норма амортизационных отчислений на капитальный ремонт и реновацию, принимается $p_{\rm H} = 3.7$ %;

К – капитальные вложения (рассчитаны ранее);

Подставив значения, получено:

$$\text{И}_{\text{a}} = 0,037 * 52968,3364 = 1959,83 \text{ т. р.}$$

5.4.3 Расчет затрат на текущий ремонт

$$\rm M_{\rm r.p.} = 0.2*M_a = 0.2*1959,83 = 391,96$$
 т. р.

5.4.4 Расчет затрат на воду

Определяются затраты на воду, которая потребляется для добавки в цикл с целью компенсации потерь и для хозяйственных нужд.

Поэтому на стадии предварительных расчетов проще рассчитать затраты, исходя из пароводяного баланса котельного цеха, чем по производительности фильтров:

$$\mathsf{H}_{\scriptscriptstyle \mathrm{B}} = \mathsf{Д}_{\scriptscriptstyle \mathrm{B}} * \mathsf{h}_{\scriptscriptstyle \mathrm{ГОД}} * \mathsf{Ц}_{\scriptscriptstyle \mathrm{B}}$$

где \mathcal{L}_{B} – часовой расход воды, согласно курсовому проекту по дисциплине «Паровые котлы» равен:

$$Д_{B} = 6,11 \frac{T}{u};$$

 ${\rm L}_{\rm B} = 85 \ {\rm py6 \over {\rm m}^3} - {\rm c}$ тоимость воды с учётом химводоочистки;

Подставив значения, получено:

$$M_{\rm B} = 6.11 * 6500 * 85 = 3375.77 \text{ T. p.}$$

5.4.5 Расчет затрат на электроэнергию

Расходы на электроэнергию определяются по двухставочному тарифу:

где $N_{ycr} = 80 \text{ кВт-}$ установочная мощность токоприемников парогенератора;

 ${
m k}_{_{\rm B}}={
m k}_{_{\rm \Pi}}=0$,9 – коэффициенты времени и потерь электроэнергии;

Подставив значения, получено:

$$\text{M}_9 = 80 * 6500 * 0.9 * 0.9 * 2.7 + 80 * 210 = 1154.04 \text{ T. p.}$$

5.4.6 Расчет заработной платы обслуживающего персонала

Расходы на содержание обслуживающего персонала складываются из: заработной платы эксплуатационного, ремонтного и управленческого персонала котельного цеха, отнесенной на один парогенератор. Прямая заработная плата определяется из штатного расписания котельного цеха и должностных окладов, приведенных в таблице 10.

Таблица 10 – Штатное расписание котельного цеха

Наименование должностей	Норма обслуживания в смену	Месячный оклад руб./чел.	Месячный оклад руб/ПГ
Старший машинист	3	21000	7000
Машинист котлов 4 разряда	2	14000	7000
Машинист котлов 3 разряда	1	19000	19000
Машинист багерной насосной	6	18000	3000
Машинист насосных установок	3	18000	6000
Машинист обходчик по оборудованию	3	21000	7000
Котлочист	3	19200	6400
Зольщик	3	19740	6580
Слесарь по ремонту	2	20000	10000
Дежурный слесарь	6	18000	6000
Дежурный электрик	6	18000	6000
Электросварщик	6	20400	3400
Газосварщик	6	20400	3400
Газорезчик	6	20400	3400
Печник	3	18000	6000
Крановщик	6	18900	3150
Токарь	6	19200	3200
Кладовщик	3	15000	5000
Уборщица	3	12000	4000
Итого	36	657180	657180
Нач. цеха	12	26400	2200
Зам. нач. цеха	12	24000	2000
Нач. смены	12	22800	1900
Ст. мастер	12	21000	1750
Мастер	6	18000	3000
Итого	5	112200	65100
Всего по котельному цеху	41	769380	722280

Сумма расходов на заработную плату складывается из зарплат обслуживающего и управленческого персоналов, которые в свою очередь включают в себя основную и дополнительную зарплаты.

Основная заработная плата обслуживающего персонала:

$$\Pi_{\text{осн}}^{\text{оп}} = 3\Pi^{\text{оп}} + 3\Pi^{\text{оп}} * (k_{\text{доп}} + k_{\text{прем}} + k_{\text{рк}}),$$

 ${
m k}_{
m доп} = 1$,2 – коэффициент, учитывающий доплаты до часового фонда времени;

 $k_{\text{прем}} = 0.43 -$ коэффициент, учитывающий премии;

 $k_{\rm pk} = 0.3$ – районный коэффициент.

$$\Pi_{\text{OCH}}^{\text{OII}} = 657,18 + 657,18 * (1,2 + 0,43 + 0,3) = 1925,5 \text{ T. p.}$$

Дополнительная заработная плата обслуживающего персонала:

$$\Pi_{\text{доп}}^{\text{оп}} = 0.08 * 3\Pi^{\text{оп}} = 0.08 * 657.18 = 52.57 \text{ т. р.}$$

Общая заработная плата обслуживающего персонала:

$$\Pi_{\text{обш}}^{\text{оп}} = \Pi_{\text{осн}}^{\text{оп}} + \Pi_{\text{поп}}^{\text{оп}} = 1925.5 + 52.57 = 1978.07 \text{ T. p.}$$

Основная заработная плата управленческого персонала:

$$3\Pi_{\text{och}}^{\text{pyk}} = 3\Pi^{\text{pyk}} + 3\Pi^{\text{pyk}} * (k_{\text{прем}} + k_{\text{pk}});$$

$$3\Pi_{\text{осн}}^{\text{рук}} = 112,2 + 112,2 * (0,43 + 0,3) = 194,106 \text{ т. р.}$$

Дополнительная заработная плата руководящего персонала:

$$\Pi_{\text{доп}}^{\text{рук}} = 0.08 * 3\Pi^{\text{рук}} = 0.08 * 112.2 = 8.97$$
 тыс. руб.

Общая заработная плата руководящего персонала:

$$\Pi_{\rm o G III}^{
m py \kappa}=\Pi_{\rm o C H}^{
m py \kappa}+\Pi_{
m d o II}^{
m py \kappa}=194{,}106+8{,}97=203{,}076{
m T.}\,{
m p.}$$

Затраты на заработную плату:

$$\rm M_{\rm 3\Pi} = 12*(\Pi^{o\pi}_{\rm o 6m} + \Pi^{pyk}_{\rm o 6m}) = 12*(1978,07+203,076) = 26173,75\ {\rm t.\,p.}$$

5.4.7 Расчет отчислений на социальные цели

$$\rm M_{ch} = 0,3*M_{3\Pi} = 0,3*26173,75 = 7852,125$$
 т. р.

5.4.8. Расчет прочих расходов

Прочие расходы принимаются как 12 % от ранее найденных годовых эксплуатационных расходов:

$$\begin{split} \mathbf{M}_{\pi p} &= \left(\mathbf{M}_{TO\Pi} + \mathbf{M}_{a} + \mathbf{M}_{T.p.} + \mathbf{M}_{B} + \mathbf{M}_{9} + \mathbf{M}_{3\Pi} + \mathbf{M}_{CH}\right) * 0,12; \\ \mathbf{M}_{\pi p} &= \left(251378,373 + 1959,83 + 391,96 + 3375,77 + 1154,04 + 26173,75 + 1154,04 + 26173,15 + 1154,04 + 26173,15 + 1154,04 + 26173,15 + 1154,04 +$$

$$+7852,125$$
) * $0,12 = 35074,3018$ T. p.

Все статьи эксплуатационных расходов представлены в таблице 11.

Таблица 11 – Эксплуатационные расходы

Наименование затрат	Обозначение	Величина, т.р.	Уд.вес %
Затраты на топливо	Итоп	251378,37	76,8
Амортизационные отчисления	Иа	1959,83	0,6
Затраты на текущий ремонт	И _{т.р.}	391,96	0,1
Затраты на воду	Ив	3375,77	1,0
Затраты на электроэнергию	Иэ	1154,04	0,4
Заработная плата	Изп	26173,75	8,0
Отчисления на соц. цели	Исн	7852,12	2,4
Прочие расходы	Ипр	35074,30	10,7
Итого	Игод	327360,15	100,0

Анализ данных эксплуатационных расходов показывает, что наибольшими затратами являются затраты на топливо (76,8 % от общих затрат). Следующими по значимости являются расходы на заработную плату и прочие расходы. Таким образом, определяющим фактором в величине эксплуатационных расходов является сжигаемое топливо, а именно: его стоимость, качество, транспортный тариф, дальность расположения от станции и сложности в транспортировке и хранении.

Себестоимость выработанной тонны пара:

$$C_{\text{выр}} = \frac{M_{\text{год}}}{M_{\text{год}}}$$

Себестоимость отпущенной тонны пара:

$$C_{\text{отп}} = \frac{M_{\text{год}}}{A_{\text{отп}}},$$

Дотп – количество тонн отпущенного пара:

 \mathcal{L}_{ch} – годовой расход пара на собственные нужды

$$Д_{\text{отп}} = Д_{\text{год}} - 0.05 * Д_{\text{год}} = 0.95 * Д_{\text{год}};$$

$$C_{_{\rm OT\Pi}} = \frac{ \textit{$\mathrm{II}_{_{\rm TOJ}}$}}{0.95*\textit{$\mathrm{\rlap/}_{\rm TOJ}$}} = \frac{327360,\!15}{0.95*1430000} = 0,\!240 \frac{\rm T.\,p.}{\rm T} = 240,\!97~\frac{\rm py6}{\rm T}.$$

Расчет капитальных инвестиций и годовых эксплуатационных расходов, а так же анализ конкурентных технических решений позволили доказать и обосновать технико-экономическую целесообразность эксплуатации спроектированной установки. Благодаря этому можно избежать излишних затрат, а так же повысить конкурентоспособность и надежность котлоагрегата.