

УДК 546.62:544.778.4:542.943:543.573

ВЛИЯНИЕ РАЗМЕРОВ И СТРУКТУРЫ ЧАСТИЦ ПОРОШКОВ АЛЮМИНИЯ НА ЗАКОНОМЕРНОСТИ ИХ ОКИСЛЕНИЯ ПРИ НАГРЕВАНИИ В ВОЗДУХЕ

А.В. Коршунов

Томский политехнический университет E-mail: korshunov@tpu.ru

Исследованы закономерности процесса окисления грубодисперсных и нанопорошков алюминия в воздухе при линейно возрастающей температуре и в изотермических условиях. Показана зависимость режима протекания процесса окисления и фазового состава продуктов от дисперсности и структуры частиц образцов. Рассмотрено влияние условий термогравиметрии на тепловой режим протекания процесса, определены его кинетические параметры. Проведено моделирование кинетических параметров реакции окисления с учетом функции распределения частиц по размерам, показано различие в структуре частиц нанодисперсной и микронной фракций электровзрывного порошка алюминия.

Ключевые слова:

Алюминий, нанопорошки, окисление в воздухе, термогравиметрия.

Key words:

Aluminum, nanopowders, oxidation in air, thermogravimetry.

Введение

Порошки алюминия находят широкое применение в качестве энергетических добавок в твердые топлива и пиротехнические составы, при получении композиционных материалов и интерметаллидов [1, 2]. Повышение активности металлических порошков (пониженные температуры спекания, окисления, воспламенения) при увеличении их дисперсности связывают с проявлением размерного эффекта, обусловленного увеличением доли атомов на поверхности наночастиц. Вместе с тем, взаимосвязь размеров частиц порошков с их реакционной способностью не является однозначной. Так, пассивированные в воздухе нанопорошки Аl (НПА), в отличие от нанопорошков ряда других металлов (Fe, Ti), не являются пирофорными и относительно устойчивы к окислению при хранении [1]. В связи с этим, изучение характера проявления размерного эффекта в химических процессах представляет несомненный интерес как с фундаментальной, так и с прикладной точки зрения.

Известно, что при обычных условиях на поверхности Al формируется защитный рентгеноаморфный оксидный слой толщиной 4...10 нм, в состав которого могут входить гидроксиды (байерит α -Al(OH)₃, бемит γ -AlOOH) [3, 4]. Повышение температуры до ~400 °С приводит к частичной дегидратации гидроксидов Al и сопровождается незначительным ростом толщины оксидного слоя. Скорость окисления АІ при этом описывается параболическим законом, лимитирующей стадией процесса является диффузия катионов Al^{3+} [5, 6]. В интервале 500...600 °С наблюдается возрастание скорости окисления Al, что связывают с нарушением целостности оксидного слоя вследствие кристаллизации аморфного оксида с образованием γ -Al₂O₃. Эффект «растрескивания» оксидного слоя усиливается за счет различия коэффициентов линейного расширения металла и Al₂O₃ [4]. При температурах, превышающих температуру плавления Al ($t_{\pi\pi}$ =660 °C), процесс окисления металла зависит от режима его нагревания [4].

Результаты изучения процесса окисления НПА зачастую противоречивы и не позволяют выявить причину различия реакционной способности НПА и грубодисперсных порошков [1, 7–12]. Прежде всего это связано с условностью термина «нанопорошки», которым в литературе принято называть

высокодисперсные порошки с некоторой фракцией частиц диаметром 100 нм и менее, доля которой не регламентируется. Так, в [1, 7–11] с использованием метода термогравиметрии показано, что существенное повышение скорости окисления НПА наблюдается в интервале температур 450...600 °С, т. е. ниже $t_{\pi\pi}$ алюминия. Напротив, в [12] с использованием метода масс-спектрометрии единичных частиц найдено, что окисление наночастиц Al (~50 нм), взвешенных в потоке газа, не происходит вплоть до 800 °С. В [1, 8, 11] эффект резкого увеличения скорости окисления авторы объясняют растрескиванием оксидной оболочки частиц, в [7, 10] - воспламенением образца. По мнению [12], быстрое окисление НПА происходит в момент плавления металла, при этом расширение металлического ядра частиц Al на 12 % приводит к росту избыточного давления внутри частиц до 88 тыс. атм, что способствует разрыву оксидной оболочки. С другой стороны, в [10] авторы рассматривают математическую модель зависимости t_{m} наночастиц Al от их диаметра, в которой учитывают толщину поверхностного оксидного слоя, но разницей молярных объемов кристаллического и жидкого Al пренебрегают. В [11] предложена усовершенствованная методика расчета, согласно которой оксидная оболочка частиц Al должна растрескиваться при любых температурах в условиях линейного нагрева.

Анализ литературных данных показывает, что применение подхода, основанного на температурной зависимости характеристик оксидной оболочки, не вносит ясности в понимание характера влияния дисперсности порошков Al на их реакционную способность. В связи с этим целью настоящей работы являлось установление различий химической активности грубодисперсных порошков Al и НПА на основе анализа кинетических закономерностей процесса их окисления при нагревании в воздухе.

Материалы и методы исследования

В работе использовали грубодисперсные промышленные порошки Al марок АСД-1 и АСД-4 (производятся путем распыления расплава) и нанопорошок (НПА), полученный при помощи метода электрического взрыва проводников (ЭВП) [1]. Элементный состав образцов изучали с использованием атомно-абсорбционной (АС) спектроскопии (iCAP 6300 Duo) и рентгенофлюоресцентного (РФ) анализа (Quant X). Дисперсный состав и морфологию образцов изучали при помощи растрового электронного микроскопа (РЭМ) JSM-5500. Величину площади удельной поверхности измеряли с использованием метода БЭТ по низкотемпературной адсорбции аргона. Распределение частиц Al по диаметру определяли при помощи приборов Microsizer-201 и Nanosizer ZS при 25 °С в среде этиленгликоля. Структуру и состав поверхностного слоя частиц Аl изучали при помощи просвечивающего электронного микроскопа

(ПЭМ) высокого разрешения (JEOL JEM-3010 с EDS-анализатором). Состояние поверхностного оксидного слоя изучали методом ИК-спектроскопии (FTIR Nikolet 5700). Фазовый состав исходных порошков и продуктов их окисления определяли методом рентгенофазового анализа (РФА) (дифрактометр Shimadzu XRD 6000, СиК_а-излучение), идентификацию кристаллических фаз проводили с использованием базы данных PDF-2 [13]. Определение структурных характеристик Al проводили по методикам [14].

Параметры процесса окисления порошков Al при нагревании в атмосфере сухого воздуха определяли методом дифференциально-термического анализа (ДТА) с применением термоанализатора SDT Q 600. Нагрев навесок ($m_0 = 5...15$ мг) образцов проводили до *t*=1200 °C в открытых алундовых тиглях вместимостью 90 мкл при линейно возрастающей температуре печи co скоростью $v_t=3...10$ град./мин, а также в изотермических условиях. Объемную скорость потока воздуха *v*_{возд} через рабочую зону печи изменяли в интервале 50...200 мл/мин. Изменение массы образца регистрировали с точностью до 1 мкг, точность измерения температуры по ДТА составляла 0,001°.

Обсуждение результатов

Усредненные характеристики использованных в работе порошков приведены в табл. 1. Увеличение дисперсности приводит к закономерному росту $S_{y_{\pi}}$ порошков (табл. 1), хотя величина $S_{y_{\pi}}$ НПА вследствие их агломерированности сравнительно мала, размеры агломератов НПА составляют 5...20 мкм. Судя по данным РЭМ и ПЭМ, частицы образца АСД-1 имеют форму эллипсоида, частицы АСД-4 и НПА – сферические (рис. 1); функция распределения частиц по диаметру близка к нормально-логарифмической.

Рис. 1. Микрофотография электровзрывного нанопорошка алюминия, полученная при помощи РЭМ

Образец НПА в значительной степени окислен, для него также характерно повышенное содержание примесей Fe и Zn по сравнению с грубодисперсными порошками (табл. 1). Содержание Si во всех образцах близко и составляет в среднем 0,018 мас. %. Образец НПА, помимо перечисленных, содержит примесь W (0,02 %), присутствие которого объясняется эрозией электродов установки ЭВП. Сопоставление данных микроанализа, РФ и АС свидетельствует об относительно равномерном распределении примесей Fe и Zn в объеме частиц Al.

Таблица 1. Характеристики порошков алюминия

	Плошаль Д	Диапазон	Сродно-	Массовая доля, 9			
Обра- зец	удельной поверхно- сти, <i>S_{уд}</i> ·10 ⁻³ , м ² /кг	распреде- ления ча- стиц по диаметру, мкм	число- вой мак- симум, мкм	АІ (металл)	Fe	Zn	
АСД-1	0,15	540	15	99,70	0,15	0,01	
АСД-4	0,36	330	8	98,90	0,18	0,01	
ΗΠΑ	10,50	0,081,6	0,12	88,20	0,21	0,02	

Фазы оксидов в порошках при помощи РФА не фиксируются. Судя по данным ПЭМ высокого разрешения, толщина оксидного слоя частиц Аl составляет в среднем 3...10 нм. В поверхностном слое частиц НПА наблюдаются участки с упорядоченной структурой, межплоскостные расстояния которых (0.22 нм) соответствуют байериту [13]. По данным ИК-спектроскопии, характер координационного окружения атомов Al в оксидном слое образцов различен. Колебаниям связи Al-О октаэдрически координированных атомов [AlO₆] соответствует набор полос поглощения в области 400...550 см⁻¹, который более характерен для АСД-1 (рис. 2) [15]. Это свидетельствует о присутствии в составе оксидной пленки областей упорядочения со структурой α-Al₂O₃. Полосы поглощения малой интенсивности при 773,2 и 751,4 см-1, в большей степени проявляющиеся в спектрах АСД-4 и НПА, соответствуют колебаниям связей Al-О тетраэдрически координированных атомов алюминия [AlO₄] в γ -Al₂O₃ [15].

Судя по данным РФА, основной кристаллической фазой исходных порошков является металлический Al с ГЦК-решеткой. Усредненные характеристики структуры металлического ядра частиц Al приведены в табл. 2.

Таблица 2. Параметры структуры AI порошков по данным РФА

			-	
Обра-	0600	Размеры областей	Микрона-	Среднеквадратичные
	oopa-	когерентного рас-	пряжения	статические смещения
	зец	сеяния <i>D</i> _{окр} , нм	Δ d/d, %	<i>u</i> ²·10³, нм²
	АСД-1	80	0,05	0,97
	АСД-4	54	0,08	1,50
	ΗΠΑ	30	0,13	2,53

Судя по данным табл. 2, с увеличением дисперсности образцов происходит значительное уменьшение величин D_{okp} и увеличение микронапряжений и статических смещений атомов Al относительно положений равновесия. Эти данные свидетельствуют о значительном вкладе разупорядочения на границах областей когерентного рассеяния в НПА. Высокая степень напряженности структуры частиц НПА обусловлена неравновесными (в отличие от АСД) условиями их формирования [16].

Рис. 2. ИК-спектры порошков алюминия: 1) АСД-1; 2) АСД-4; 3) НПА

Из данных термогравиметрии (рис. 3) следует, что в условиях линейного нагрева прирост массы образцов за счет окисления происходит в две стадии: первая — ниже температуры плавления Al, вторая — выше (табл. 3).

Таблица 3. Параметры процесса окисления порошков AI при нагревании в сухом воздухе (m₀=10 мг, v_i=10 град./мин, v_{возд}=100 мл/мин)

	Температу-	Первая стадия по ТГ			Вторая стадия по ТГ		
Образец	ра начала окисления <i>t_{н.о.},</i> °С	t _{max,1} , °C	V _{max,1} .10³, МИН ^{−1}	$\Delta m_1/m_0$, %	t _{max,2} , °C	V _{max,2} .10 ² , МИН ⁻¹	$\Delta m_2/m_0$, %
АСД-1	570	596	0,98	0,2	1050	1,12	17,5
АСД-4	560	590	3,6	0,7	1022	2,30	33,3
ΗΠΑ	400	580	1270	33,0	955	1,12	63,0

При нагревании образцов до ~400 °С увеличения их массы за счет окисления практически не происходит. Более того, при повышении температуры до 350 °С для НПА и АСД-4 наблюдается снижение массы (до 1,5 %) за счет дегидратации гидроксидов в составе оксидного слоя.

Увеличение дисперсности образцов при прочих равных условиях приводит к понижению $t_{\rm H,0}$, увеличению прироста массы и скорости процесса на первой стадии (табл. 3). В этом отношении поведение НПА принципиально отличается от АСД: увеличение массы НПА в ~45 раз, а скорость окисления – более чем на 2 порядка превышает параметры для грубодисперсных образцов. Судя по величинам $\Delta m_1/m_0$, при окислении порошков АСД происходит увеличение толщины оксидной оболочки частиц (без существенного изменения ее структуры), тогда как НПА окисляется более чем на треть массы навески. Продуктом окисления НПА является γ -Al₂O₃ с

высоким значением S_{ya} (~1,6·10⁵ м²/кг), превышающим S_{ya} исходного образца более чем на порядок (табл. 1).

Рис. 3. Изменение массы образцов порошков алюминия при нагревании в воздухе (m₀=10 мг, vt=10 град./мин, vвозд=100 мл/мин) и температуры печи термоанализатора: 1) АСД-1; 2) АСД-4; 3) НПА; 4) температура

На второй стадии значения скорости окисления образцов близки (рис. 3, табл. 3), что объясняется сходством размеров и состояния частиц (капли расплавленного Al, заключенные в оксидную оболочку). При этом частицы ACД-1, имеющие тонкую оксидную оболочку, в большей степени подвержены коалесценции с образованием относительно крупных капель, что обусловливает более низкую степень превращения образца даже при 1200 °С (рис. 3, табл. 3). Очевидно, что дисперсность образцов и структура частиц Al уже не определяют закономерности окисления на данной стадии, поэтому более детально будет рассмотрена первая стадия процесса.

Окисление Al сопровождается выделением большого количества теплоты $(\Delta_{\ell} H^{\circ}_{208}(Al_2O_3)) =$ =-1674,86 кДж/моль), поэтому изменение условий термогравиметрического эксперимента (скорости возрастания температуры нагревателя v, и скорости потока воздуха *v*_{возд} через рабочую зону печи термоанализатора) в интервале 450...600 °С приводит к изменению режима процесса. При *v*_{возд}<100 мл/мин и $v_t > 5$ град./мин теплообмен в системе затруднен, при этих условиях на графиках зависимости $\alpha = f(T)$ при *t*≈580 °С фиксируется зигзагообразный участок, обусловленный повышением температуры (на ~40°) рабочей термопары относительно термопары сравнения (рис. 4, кривая 1). При этом основной прирост массы образца (около 20 %) происходит за ~30 c.

По достижении величины $\alpha \approx 0.38$, которая хорошо воспроизводится при изменении массы навески для одного и того же образца НПА, показания обеих термопар также быстро выравниваются. При $v_i < 5$ град./мин и $v_{\text{возд}} > 100$ мл/мин образец не перегревается и температуры термопар совпадают, ТГзависимость на соответствующем участке является

монотонной (рис. 4). При этом значения $t_{\text{H,o}}$ и v_{max} несколько уменьшаются.

Рис. 4. Зависимости α=f(T) для НПА (1, 2) и АСД-4 (3) (m₀=10 мг) при различных условиях термогравиметрии: 1) v_t=10 град./мин, v_{возд}=50 мл/мин; 2) v_t=3 град./мин, v_{возд}=200 мл/мин; 3) v_t=10 град./мин, v_{возд}=100 мл/мин

В ряде работ [1, 7, 10] высказывались предположения о причинах саморазогрева нанопорошков Al за счет тепловыделения при окислении и даже их возможном воспламенении в сходных условиях, хотя экспериментально эти эффекты зафиксированы не были. Визуальные наблюдения в нашем эксперименте с использованием навесок в интервале 10...500 мг не подтверждают факта воспламенения взятого образца НПА при 580 °С. Действительно, в случае воспламенения образца следовало ожидать намного больших и невоспроизводимых значений α , а также больших температур его перегрева. При этом в случае выполнения критических условий воспламенения увеличение скорости потока воздуха приводило бы к увеличению скачка температуры [17], а не наоборот (рис. 4). Вероятно, причиной наблюдаемого эффекта является быстрое окисление частиц наноразмерной фракции образца НПА, структура которых, а также структура образующегося продукта, определяют протекание процесса при пренебрежимо малом диффузионном сопротивлении.

С целью обоснования данного предположения была изучена кинетика окисления образца НПА в изотермических условиях. На рис. 5 приведены кинетические кривые процесса окисления НПА для ряда температур. Характерной особенностью процесса при данных условиях является отсутствие периода индукции (рис. 5). При нагревании навесок в интервале температур 100 < t < 400 °C их масса незначительно уменьшается (до 0,2 %). Нагревание образца при 400 °C приводит к возрастанию массы навесок в среднем на 1,5 % (рис. 5), при этом зависимость степени превращения от времени линеаризуется в параболических координатах $\alpha^2 = f(\tau)$, что свидетельствует о протекании процесса в диффузионном режиме [4]. Скорость окисления НПА

при данной температуре определяется толщиной и структурой оксидной оболочки, поэтому для образцов с различным сроком хранения величина $t_{\rm H,0}$ и температурный интервал протекания процесса могут различаться.

Рис. 5. Зависимости α=f(τ) окисления НПА при различных температурах изотермической выдержки (v_{возд}=100 мл/мин): 1) 400; 2) 460; 3) 500; 4) 540; 5) 540 °C (v_{возд}=200 мл/мин)

В интервале температур 450...500 °С окисление протекает более интенсивно, кинетические кривые линейны, период замедления процесса проявляется при больших временах нагрева (рис. 5). Изменение величин $v_{\text{возд}}$ и m_0 практически не влияет на скорость процесса. Зависимость $\alpha = f(\tau)$ аппроксимируется уравнением сжимающейся сферы [18]:

$$3[1-(1-\alpha)^{1/3}]=k\tau,$$
 (1)

где k — эффективная константа скорости реакции, мин⁻¹ (табл. 4). Наблюдаемый вид зависимости $\alpha = f(\tau)$ свидетельствует о том, что образующийся в ходе окисления частиц НПА оксидный слой не является плотным [18].

Выше 500 °С скорость окисления НПА значительно возрастает. Существенным является тот факт, что при t>500 °С скорость процесса зависит от величины $v_{\text{возд}}$. Поскольку на данную область температур приходятся максимальные значения скорости реакции (и тепловыделения), замедленный теплоотвод будет приводить к разогреванию образца. Так, на рис. 6 изображены графики зависимости $v=f(\alpha)$ для t=540 °С при различных $v_{\text{возд}}$. Из рисунка видно, что уменьшение $v_{\text{возд}}$ приводит к появлению на графике максимума, тогда как при больших значениях $v_{\text{возд}}$ зависимость практически линейна. С учетом этого, для определения кинетических параметров реакции (табл. 4) использовали данные, полученные при $v_{\text{возд}} \ge 200$ мл/мин.

Кинетические кривые процесса окисления при t>500 °С имеют вид сигмоиды (рис. 5). Анализ зависимости $\alpha = f(\tau)$ с использованием метода приведенного времени [19] показывает, что процесс окисления, соответствующий линейному участку кривых ($\alpha \le 0, 17$), описывается ур. (1). В интервале $0,17 < \alpha < 0,22$ процесс подчиняется параболическому закону, при больших степенях превращения зависимость $\alpha = f(\tau)$ является логарифмической.

Таблица 4. Кинетические параметры процесса окисления НПА

t, °C	Интервал $lpha$	<i>k</i> ·10³, мин⁻¹	<i>Е</i> а, кДж/моль
460	00,04	0,7	
480	00,12	1,5	
500	00,21	4,0	182±5
520	00,17	8,0	
540	00,14	13,0	

Рис. 6. Зависимости скорости окисления НПА при 540 °С от степени превращения (m₀=10 мг) при различных скоростях потока воздуха: 1) 100; 2) 200 мл/мин

Оценку возможного влияния особенностей структуры частиц НПА на процесс зародышеобразования в ходе окисления проводили путем обработки полученных данных с использованием уравнения Ерофеева—Аврами [18]:

$$\alpha = 1 - \exp(-K\tau^{n}), \qquad (2)$$

где K — константа, имеющая смысл скорости образования и роста зародышей фазы оксида, мин⁻¹; n параметр размерности реакционного пространства. Эффективную константу скорости зародышеобразования k_{sap} вычисляли по уравнению $k_{sap} = n \cdot K^{1/n}$ [18]. Параметры процесса зародышеобразования приведены в табл. 5. Полученные результаты свидетельствуют о постоянной скорости образования зародышей фазы оксида в ходе процесса окисления.

Таблица 5. Параметры процесса зародышеобразования при окислении НПА

t, °C	<i>К</i> , мин ⁻¹	п	k _{зар} , мин⁻¹
460	0,0005	1,10	0,001
500	0,0048	0,96	0,003
540	0,0130	0,99	0,014

Поскольку $n \rightarrow 1$ (табл. 5), в процессе роста зародыши не перекрываются с формированием сплошного слоя продукта, а образуют кристаллиты конечных размеров [18]. При n=1 уравнение (2) преобразуется в уравнение 1-го порядка [18]:

$$\alpha = 1 - \exp(-k_1 \tau), \tag{3}$$

где k_1 — эффективная константа скорости, мин⁻¹. Аппроксимация экспериментальных данных с использованием ур. (1) и (3) дает эквивалентный результат, значения констант k и k_1 близки. Таким образом, в изученном температурном интервале процесс окисления НПА не лимитируется зародышеобразованием и может рассматриваться как реакция 1-го порядка, протекающая с образованием на поверхности частиц Al рыхлого слоя продукта, не обладающего значительным диффузионным сопротивлением.

Эффективную энергию активации Е_а процесса окисления определяли по зависимости lnk-1/T. Величина, найденная для изотермических условий (табл. 4), несколько меньше величины, полученной по методу Ньюкирка [20] с использованием неизотермических данных (Е₂≈200 кДж/моль). Из этого следует, что в условиях линейного нагрева даже при сравнительно малых скоростях (3 град./мин) не удается избежать некоторого перегревания образца НПА за счет тепловыделения при окислении. Значение E_a=200 кДж/моль использовали для численной оценки критерия воспламенения образца НПА по уравнению [17]:

$$\theta = \frac{(T_{\rm n} - T_{\rm r})E_{\rm a}}{RT_{\rm r}^2},\tag{4}$$

где θ – безразмерный параметр разогрева поверхности образца; T_{π} и T_{r} – температуры, соответственно, поверхности и газа, К. С учетом фиксируемого в неизотермических условиях скачка температуры образца $\Delta T = (T_{\pi} - T_{r}) \approx 40^{\circ}$ (рис. 4) параметр θ составляет 1,3, тогда как критическим условием воспламенения для реакций 1-го порядка является $\theta > 4$ [17]. Таким образом, в условиях термогравиметрии переход процесса из кинетического режима во внешнедиффузионный не происходит, величина T_{π} за счет теплового эффекта окисления не превышает критическую температуру воспламенения.

Значение $\alpha_{\text{макс}}$ для НПА, не превышающее 30...35 % при различных режимах нагревания (рис. 4, 5), свидетельствует, с одной стороны, об особенностях распределения частиц по размерам в данном образце, с другой – о возможном различии структуры частиц мелкой и крупной фракций. Для определения влияния дисперсного состава НПА на величину α было проведено моделирование зависимости $\alpha = f(\tau)$ для различных температур изотермической выдержки на основе ур. (1) с учетом логнормальной функции распределения частиц [19]:

$$f_g(r) = \frac{r^2}{2r_a^3} \exp\left(-\frac{r}{r_a}\right).$$
 (5)

где $f_g(r)$ — функция (массовая) распределение частиц, мкм⁻¹; r_a — радиус частиц, составляющих среднемассовый максимум, r_a =0,25 мкм; r — радиус частиц, принимающий значения 0,04...0,80 мкм. Величина α (для сферических частиц) связана с функцией (5) посредством уравнения [19]:

$$1 - \alpha = \int_{r_{\min}}^{r_{\max}} f_g(r) \left(1 - \frac{(kr_a\tau)^3}{r^3} + \frac{3(kr_a\tau)^2}{r^2} - \frac{3kr_a\tau}{r} \right) dr, \ (6)$$

где r_{\min} и r_{\max} — радиусы наиболее мелких и крупных частиц, мкм; k — эффективная константа скорости реакции, мин⁻¹. Интегрирование уравнения (6) позволяет рассчитать величину α для образца с заданной функцией распределения. Расчетные и экспериментальные зависимости α от приведенного времени τ_{α} для ряда температур показаны на рис. 7.

Рис. 7. Экспериментальные (■) и расчетные (●) зависимости степени превращения НПА от приведенного времени при температурах: 1) 460; 2) 500; 3) 540 °С (на врезке – график функции распределения частиц НПА)

Из рисунка видно, что для области температур t < 500 °C эти зависимости практически совпадают, для *t*=540 °C – расходятся. Наблюдаемое расхождение расчетной и экспериментальной зависимостей обусловлено преимущественным окислением частиц наноразмерной фракции за счет более быстрого продвижения реакционного фронта [19]. Это различие, в свою очередь, связано с неоднотипностью структуры наиболее мелких и наиболее крупных частиц образца. Поскольку РФА позволяет определить только усредненные характеристики структуры частиц (табл. 2), очевидно, что частицы НПА диаметром порядка 100 нм имеют намного более дефектную структуру в отличие частиц диаметром порядка 1,5 мкм, структура которых, как это косвенно следует из формально-кинетических данных, приближается к таковой для грубодисперсных образцов.

Сопоставление ТГ-зависимостей (рис. 4, 5) позволяет выявить на них участки со значениями α от 0 до 0,1 (окисление частиц мелкой фракции с наибольшей кривизной поверхности) и от 0,1 до ~0,35 (интенсивное окисление частиц с размерами в окрестности среднемассового максимума).

Определение верхнего предела интеграла в ур. (6) позволяет оценить размеры частиц, преимущественно окисляющихся при заданных значениях α : первому интервалу соответствует фракция с d=80...300 нм, второму – фракция с d=300...900 нм. По-видимому, найденное значение d=900 нм соответствует верхнему пределу диаметра частиц НПА, которые еще обладают метастабильной наноструктурой и подвергаются окислению в интервале температур 450...600 °С.

Рис. 8. Микрофотография продукта прокаливания НПА в воздухе при 500 °C (1 ч): стрелками показаны не полностью окислившиеся частицы крупной фракции

Результаты расчета размеров частиц, интенсивно окисляющихся при данных температурах, хорошо согласуются с данными РЭМ (рис. 8): на микрофотографии видны частицы Al, не подвергшиеся полному окислению при прокаливании образца НПА

СПИСОК ЛИТЕРАТУРЫ

- Ильин А.П., Громов А.А. Горение алюминия и бора в сверхтонком состоянии. – Томск: Изд-во Том. ун-та, 2002. – 154 с.
- 2. Пул Ч. Нанотехнологии. М.: Техносфера, 2004. 448 с.
- Hunter M., Fowle P. Natural and thermally formed oxide films on aluminum // J. Electrochem. Soc. – 1956. – V. 3. – № 9. – P. 482–485.
- Vargel C. Corrosion of aluminium. Hardbound, Elsevier, 2004. 700 p.
- Хауффе К. Реакции в твердых телах и на их поверхности. Ч. 2 / Пер. с нем. – М.: Издатинлит, 1963. – 275 с.
- Кубашевский О., Гопкинс Б. Окисление металлов и сплавов. М.: Металлургия, 1965. – 428 с.
- Проскуровская Л.Т. Физико-химические свойства электровзрывных ультрадисперсных порошков алюминия: Дис. ... к.х.н. / Томский политехн. ин-т. – Томск, 1988. – 155 с.
- Eisenreich N., Fietzek H., del Mar Juez-Lorenzo M., et al. On the mechanism of low temperature oxidation for aluminum particles down to the nano-scale // Propellants, Explosives, Pyrotechnics. – 2004. – V. 29. – № 3. – P. 137–145.
- Kwon Y.-S., Gromov A.A., Strokova J.I. Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin // Applied Surface Science. – 2007. – V. 253. – P. 5558–5564.
- Trunov M.A., Umbrajkar S.M., Schoenitz M., et al. Oxidation and melting of aluminum nanopowders // J. Phys. Chem. B. – 2006. – V. 110. – № 26. – P. 13094–13099.

при 500 °C в течение 1 ч. Продукт окисления – γ -Al₂O₃ – образуется в виде чешуйчатых (игольчатых) кристаллитов, что объясняет высокие значения S_{ya} образцов НПА после прокаливания, а также согласуется с полученными кинетическими данными.

Выводы

- Установлены условия термогравиметрии (масса навески m₀<10 мг, объемная скорость потока воздуха v_{возд}>100 мл/мин), при которых процесс окисления нанопорошков Al является квазиизотермическим.
- Показано, что окисление нанопорошков алюминия, в отличие от грубодисперсных микронных порошков, при нагревании в воздухе в интервале 450...600 °С протекает в кинетическом режиме, эффективная энергия активации процесса составляет 182±5 кДж/моль.
- На основании результатов моделирования зависимости кинетических параметров реакции окисления порошков от их дисперсного состава показано различие структуры частиц наноразмерной (*d*_{ср}≈120 нм) и микронной фракции электровзрывного порошка Al.

Автор признателен проф. А.П. Ильину за ценные замечания и рекомендации, а также сотрудникам НАЦ ТПУ Т.П. Морозовой и Н.И. Радишевской за помощь в проведении эксперимента.

Работа выполнена при финансовой поддержке РФФИ, грант № 08-08-12077-офи.

- Шевченко В.Г., Булатов М.А., Кононенко В.И. и др. Влияние свойств поверхностного слоя оксида на окисление порошков алюминия // Порошковая металлургия. – 1988. – № 2. – С. 1–5.
- Rai A., Lee D., Park K., Zachariah M. Importance of phase change of aluminum in oxidation of aluminum nanoparticles // J. Phys. Chem. B. – 2004. – V. 108. – № 39. – P. 14793–14795.
- 13. PDF 2 database, 1996. International Centre for Diffraction Data. Newtown Square, Pennsylvania, USA.
- Русаков А.А. Рентгенография металлов. М.: Атомиздат, 1977. – 480 с.
- Волкова Г.И., Иванов В.Г., Кухаренко О.А. Влияние условий синтеза на структуру и свойства ультрадисперсных оксигидроксидов алюминия // Химия в интересах устойчивого развития. – 2005. – Т. 13. – С. 427–432.
- Wolf D. Grain boundaries in nanocrystalline materials // Handbook of Materials Modeling. – Springer, 2005. – P. 2055–2079.
- Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. – М.: Наука, 1987. – 502 с.
- Розовский А.Я. Кинетика топохимических реакций. М.: Химия, 1974. – 224 с.
- Дельмон Б. Кинетика гетерогенных реакций. М.: Мир, 1972. – 554 с.
- Уэндландт У. Термические методы анализа. М.: Мир, 1978. 528 с.

Поступила 21.09.2009 г.